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Absatract

Very recently, there is a growing interest in studying parallel and distributed stochas-
tic approximation algorithms. Previously, we suggested such an algorithm to find zeros
or locate maximum values of a regression function with large state space dimension in
[1], and derived the strong consistency property for that algorithm. In the present work,
we concern ourselves with the problem of asymptotic properties of such an algorithm.
We will study the limit behavior of the algorithm and obtain the rate of convergence

and asymptotic normality results.
,

b

§1. Introduction

Very recently, there is a growing interest in studying parallel and distributed stochastic
approximation algorithms. [1]-|5] proposed several such schemes. The purposes of the
studies are to exploit the opportunities provided by parallel processing methods and take
advantage of the asynchronous communication.

Motivated by [5], we suggeated a parallel stochastic approximation algorithm in {1] to
locate seros or maximum values of a regression function with large state space dimension.
The methods of random truncations were employed in order to obtain the boundedness of
the algorithm and to enssure the convergence. By the truncation techniques, we were able
to treat a rather broad class of regression functions. The strong consistency property for
the aforementioned algorithm was proved under rather weak conditions,

To study any kind of recursive algorithm, there are basically two questions that one
wants to answer. First, one wants to see if the algorithm works {convergence); next, if the
algorithm converges, one would like to find the convergence speed. In this paper, we will
concern ourselvea with the second problem, namely rate of convergence.

The algorithm suggested in [1] is a generalisation of the relaxation method. Such an idea
was originally given in [5]. There are two distinct features for the parallel RM algorithm
proposed in [1]. First, there is no iteration number which is a common index to all the
processors. Second, the computation intervals are random. Intuitively, we would expect
that similar ‘rate’ of convergence result for the classical algorithm still holds for the parallel
algorithms. However, because of the asynchronization and additional randomness (random
computation times) coming in, the analysis is not straightforward. Since we must take
account of available information for all the processors, the notations as well as the analysis
are pretty complicated. One of the key points here is to overcome the difficulties of different
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computation times for different processors. When evaluating the limit, we thus need to work
on each processor separately.
The paper is organized as follows. In Section 2, the basic formulation and some conditions

1 ;
are stated. In Section 3, the result of n®z, — 0 for some 6, with 0 < § < —, is obtained.

Finally, in Section 4, some discussion on the asymptotic normality is derived.
§2. The Algorithm

Let z be an r-dimensional vector, z = (1, -+, 2")'. Let there be r processors, each
controlling one component of the state vector. For each i < r, let processor 1 takes y; units

of time to complete the 7th iteration, where {y;} 18 a sequence of positive integer valued
random variables which may depend on state and noise. Define r} by

{r:} is the random computation time. It is quite similar to the conventional renewal process.
Let £, be the noise incurred in the nth iteration for z°. Let z, = (zi, -+, z]) be the initial

value and z*; be the value of the ith component of the state at the end of the nth iteration

(or nth prnceaaing.tim‘é]; For n c [r},r; +1): put

$ __ 8
In_zr}’
f:;=€:-;:=
S 1 T \?
If;_(zr;;!'”lxr,i

1
Let b(-) : B" — R" be a continuous function, () = (8*(:),-- -, " (")) and &, = e the
basic algorithm to be considered is

Ii.- = ﬂ::..; + E:.:‘(bt(l'r;) + e:.;), ! o (21)

fn+1

Remark. Comparing with the classical RM algorithm here we emphasize parallel as-
pects of our algorithm. Starting with initial value, new values of z* are computed based on
the most recently determined values of z?, for 7 < r. The newly computed values are passed
to all other components of z. This is a generalization of the relaxation methods.

Since each processor takes a random time to complete each-iteration, and this random
time in general is different from processor to processor, there is no “iteration number”
which is a common index for all the processors. This causes difficulties in both notation and
analysis, and we have to use elapsed processing time (real time) as the time indicator.

To assume each processor to control only one component of the state vector is really no
loss in generality. In fact, we could consider the case that each processor controls several
components of the state vector. The notation would be more complicated, but the analysis
essentially remains the same.

To proceed, we also need the following definitions.

N;(n) = sup{k; 1} < n},
Bp =N = Tx.(n)> (2.2)
In = Kai=0}-
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In the case of usual renewal process, N;{n) is the counting process. It counts the number of
events or renewals up to time n. Here it serves the same purpose of counting the number of
iterations for component ¢ up to time n. Al is the so—called “age® or “current life” process
which represents the time that has elapsed since last iteration. If A% = 0, then n is a

random computation time.
To keep track of all the state values used for the r processors at each time n, we define
an augmented vector, Z, such that %, = (2}, .-, 2"}, where for each t < r,

~3 R 0 | r
b A— A = T R A 2
n r"i{‘“-} ( r;hl'.-{l.}, : r}fl-{n.}

With these notations, we can rewrite (2.1) as
I::;-H = 7, + En(bi(i;n] + E:;)I:;+1: 1<r (2.3)
or in a vector form

Int+l = Zn T Enfn-l-l(b(in] + En) | (24)

where
En = (Erjlr ne IIL)':

én = (£ns 1 &0
' b(Za) = (b'(2a),- -+, 87 (Z7)),
I, = diag (I},---,I7).
Remark. For each n, f I}, = 0, no update action is taken, :-:;_,,1 = :::;, and the state
keeps its old value without any change. If I, |, = 1, then 2%, , = 2}, + £, (b%(2%) + &%), and

one step of update is performed.
The state values are communicated to all'‘other components as soon as they are available.

Let 4*(x) = O have a unique root, say zp, for each ¢+ < r. Suppose we have a twice
continnously differentiable function u(-), such that

(i) v(z) #£ v(zo) V z# 20,
(ii) vz}~ tb(z) <0 V¥ z# zo
where u~1 is given by

1 1
_1 SP— - 4 E m Jr——
pm = dlag(ﬁ——l, ,p,.),
(iif) ju(z)] = 00, as |z] — oo

Let {M, } be a sequence of monotone increasing positive real numbers, such that M, — oo
as n — 00. Define o,, as

Op = 0:
Ont1 = On + Lfjo 4 L(b(20)+0) > Mo, >

Jn = I(1x, + 1(b(En)+E) <M, )

Ir = Izt (320 )+ €)1 Mo, } -
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Define ‘
Tn+l = [z,., + ; ,,H[b[i*,.) + en]]Jﬂ + :'EJ: - (2.5)

Now the paragraph after (2.4) and the following conditions (A1), (A2) imply that the
sequence {z,} given by equation (2.5) is strongly consistent, i.e. z, — zo w.p.l. For a
detailed proof, the readers are referred to [1|. Without loss of generality, in the sequel, we
will assume that zo = Q.

(A1) For each 1+ < r, {y.} is bounded and
Yy = yi(-"f.;_lr E::;_l):
E(y;, — uenlyi —p) =0, l<n
where 4 is a sequence of random variables satisfying

bn = B, as.

with u* a constant.
oo

Y att-al gt )
n=1
converges a.s. and
E(yn —pn)? < M
for some o, with 0 < o < 1.
(A2) For each 1 < r, the noise ¢, satisfies

G = i F Y0

()¢, =0, as.

i
rl-

2 €., converges a.s.
(A3) b(z) = Dz + o(|z|) where D is an r X r real symmetric negative definite matrix. Let
—A; denote the eigenvalues of D, with A; > 0. Let p = 11}:115:1 A; and let M be the uniform

bound for {y}}, i.e.

M= max sup |y_;| such that p > —;—ﬂ:f
J

Remark. Assumption (A3) says that b(:) consists of a linear part and a the high order
nonlinear part (high order w.r.t. z). This is a standard assumption in proving the rate of
convergence result. Although z, and Z,, are not the same vectors, as n is getting larger and
larger, the difference between the two is getting smaller and smaller because of the fact that
Zp — 0 a8 n — oo (see the paragraph after (2.4)). Since in the computation we have to use
the vector z,,, we define a block diagonal matrix D) by

B diag (DI:"',:Dr)

with D; equal to the sth row of the matrix D. It follows from (A3) that b(%,) = D%, +0(|%,]).
The assumption on D ig a stability condition. The requirement for D) to be negative
definite 18 not essential. As can be seen in the sequel, all subsequent development can be
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extended to the case that D iz a stable matrix, i.e., all eigenvalues of D have negative real
parts. In order to make the presentation clear, we choose the stronger condition (A3} as in

the present form.

Since y*. is a sequence of bounded randomn variables, the assumption p > %A? implies

that p > 6y’ for all 0 < § < %,a.'lljandiﬂr.

As we remarked in [1], we choose the gain sequence to be of the particular form for
purely notational simplicity. Other forms of the gain sequence can be considered. However,
the idea here is to investigate the convergence and convergence rate of the parallel RM like
algorithm with random truncations, not to find the most general gain sequence.

§3. z, = o(n™?%)

It is fairly easy to see that the convergence speed for the parallel RM like algorithm with
randomly varying truncations is the same as that of the algorithm without truncations. So
we need to consider only the latter one.

To start with, using (A3), write equation (2.3) as

1 - ”
and denote £, 5= (zn, +,2,)", i.e. £, is an r X r vector with each subdivision equal to z,.
We have - |
1 @ 1 i =~
a4+l = In + ; n+1(bzn g ‘fﬂ-) + ; n+1(ﬂ|=nl) -+ D(xn = £n)) )
. (3.2
1 1 g =
1

Lemma 1. The last term on the right hand side of (3.2) can be wn'tteﬁ as = n+1{8Bn +

& =
Ch), such that n®B, -+ 0 and z n®~1C, converges a.g., for é € (0, %)

Proof. To verify this aaserti,:::: we look at the difference ;
zn — E1
T = By =
Ty — I

Recalling the definition of z%, we have for each s < r
n—1
1

Epn — Ef‘ = E ka+1(b(ik] + &). (3.3)
k=r:’i("']'

Note the summation is over finitely many terms due to the boundedness of the random
computation intervals. z, — 0 a.s. implies ' — 0 a.s. for each ¢ < r. Also from condition

RO
(A2), we know that &, = ¢, + ¥, such that Z n’~14, converges a.s., and ny, — 0 a.s.,

n=1
where ¢, ¥n are defined in an obvious manner. The lemma thus follows. As a conseguence,

| 1
:l:n+1 = zﬂ + ; ﬂ.+1(DIn + ﬂ(lmnl) + eﬂ.) + ;; ﬂ.-}-]_(Bn + cn). (3-4)
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There is no loss in generality to assume that D 18 a diagonal matrix, D = diag (—A,
.., —),) with each A; > 0. If D is not a diagonal matrix, then we can choose a nonsingular
matrix P (in fact an orthogonal matrix}, such that '

P iDP = A = diag{—X1, ', —Ar)s

Zn = P-lmn: fn e P-lInP'.r §n = Pnl‘sn: Bn = P-lﬂn: én - P_:Ilcn-
Then (3.2) becomes .

1 A 1 "
zn+1 = 2n + ~Jns1(Aza + ollza]) + &n) + —Ins1(Bn + Cu). (3.5)

Because the matrix P is invertible, the convergence properties of (3.5) will be exactly
the same as that of (3.4). Henceforth, we will let I} be a diagonal matrix.
As we commented before, due to the different random computation times for different

components, we would be better off to work on each component. This leads to

. i . ‘. . - :
Zi =%y +{—hiE ¥ oflz.s ) + &) + 7 (Byy + o) (3.6)
n i

Our ultimate goal s to show that nz, — 0, as n — co. In order to obtain this, we need
to show only n®zf — 0 for each + < r. By the following lemma, this reduces to showing
that (rf,)ﬁi“;_i — 0 {recall z}, are the piecewise constant interpolation of :::f,:; ).

Lemma 2. Under {A1), of (7i)%2}, — 0 asn — oo, then nézi — 0 as n — oo, for each
1 < r. i

Proof. To prove this lemma, we recall Lemma 3.1 and its corollary in [1|, which states
that

wl J
n" ’
N; (ﬂ] \ 1
R Hi
With the help &f this lemma, we have
i 2, = i) () ()23, ) = )21, = ©

This proves the lemma.
With Lemma 1 in mind, we now establish the following lemma.

Lemma 8. Under assumptions (A1)- (A3}, (3)°2}; — 0 as n — oo.
Proof. Set vy = k®z}. From (3.6) we get

i o yi.. 5.8 1 i i ‘ ' 1 |
v, =(1+ ;r) vy — 7 Aive )6 (6 + B + Cy )i+ Eﬂﬂ”r;‘)- (3.7)

Tat1 i L (rn

Now {A3) implies that we can write (3.7) as

: b, 4 ol LAY i Y6 4 i Y8 o4
oh = byt il ol + () e, + ()

1 | ' i (3'8]
+O((ry) by +ollon D+ U+ ) s B+ )

5
Tﬂv
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where d; < 0. Note the convergence of %1‘:‘ implies Z -1—_']-'- = o0 or each s < r, and by

aasumption (r:;)‘sf:i — (0 and

(et o

The result in [6] together with (A1)-{A3) now yield that v!, = 0. Thus we obtain the

following theorem. ®
Theorem 1. If (A1)-(A3} hold, then z, = o{n~%).

Actually, the theorem says more than one can see at first glance; since if z, = o(n™?),

fnrsumaﬂ#:ﬁ-i-;-,thennﬁ'zﬂﬂﬂfurallﬂﬂﬁ'ﬁc‘i{%,

§4. Asymptotic Normality

In (1], we proved that the parallel RM algorithm with randomly varying truncations
would become a paralle] RM algorithm with bounded iterates after finitely many iterations,
i.e. the algorithm is uniformly bounded for n > M , for some M. So for any n > 0, there is
an M, > 0, such that

7 P{sup |z,| < My} >1—1, where o=Ilima,.
n> M n

Let z,, 2, denote the sequence given by the parallel RM algorithm and the parallel RM
algorithm with randomly varying truncations respectively. Then

P{sup |z, - £,| >0} < p

n> A
and for any Borel zet B, we have
P{\/nz, € B}
< Ply/nz, € B, sup |z, — £,| = 0} + P{\/nz, € B, sup |z, — X.| > 0}.
n > M n> M

It follows that
lin:lian{\/Ezn € B} < ]in}‘ian{\/r_;:En € B} + 1.

Similarly, |
lim sup P{y/nz, € B} + n > lim sup P{y/n%, € B).

The arbitrariness of  then implies that

HPP{\/E::,. € B} = ]i:nP{\/Eet,, € B}.

Therefore, \/nz, and \/n¥, have the same limit distribution. In order to prove the re-
sult for the convergence rate and asymptotic normality, we need only to consider the limit
distribution for the parallel RM algorithm. We thus devote our attention to

Tyl = Ty + ;11‘ n+1(b(5n) + fn) (4'1]
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We have proved that n®z, — 0. The question now is what happens to the sequence /nz,,.

1n fack, under some raitatie condikions this sequence i arymptotically normaliy diskriouked.
The cunditioq essentially involves assuming £, £7 are independent for ¢ # 7, and the corre-
lations for {£} } are weak. For notational simplicity, we shall derive the result for D) being a
diagonal matrix first. For this reason, we require an extra condition (A6). Then in Theorem
3, we relax this condition, and give the result for the case that D is a symmetric negative
definite matrix.
(A4) & and & are independent for & # 3.
(Ag) Foreach: <r, Iﬁ\} do not depend on the state or noise

f-;; = 9(%{).

L

- 8

e = z:l:,“[r:_j, for some L
§=0

where 7, are independent random variables, such that E+ g 0, E(:; )2 = r*, Yk, and for

any cnns{mt K,
» k

i |3
* B Mg, >y =

(A6) D = diag (-2, -, —Ar).
We will work on u.ch :nmponent again. Since the asymptotic normality was well studied
(5], {7], [8], here we make no attempt to spell out the details of the proof; rather, we will

make use of the previous results as much as possible,

Define u,, = v/nz,; similarly for their components. From the early dmcussmn we know
that

iy, =+ BRI - b+ =gl o 2 ofjug + T (B + G (4D

nil

As a matter of fact, the last two terms inside the curly brackets do not contribute anything
to the limit. We need only consider the term

E‘i $1(1— .‘E £ 1 . 4.3
1+ B ((1- Sty + i) (4.9
Define ; :
afy =1+ B, 0 =i 1-20)
n|k = H Q-r'“ :I-Il'l = 1.
J=k+1
Then (4.3) can be written as
W 1 4 3
$Liu, + agi €y, for 15w (4.4)

|
rl'l-
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It follows that _
. : . Niln) ot ;
u;+1 — @}';i(“"l“;- + E _'L;ﬁ}fi{n]]j‘f:} + o(1) (4.5)
=1 '\ f 3 3

where 0o(1) — 0 in probability as n — co. From the standard argument [7] [8], we need only

to show that the middle term on the right hand side of (4.5) converge in distribution to a
Ni(n) o’ s

normal random variable with 0 mean and appropriate variance. Since 2 ‘I'Ni(,,) 5 —‘—é‘ i
y=1 \/:;
Ni{n) : 1 ;
and z 'b},i(“)|,-—-ff;; converge in distribution to the same limit, we need only to prove
J=1 P}
the claim for the latter one. In order to do so, we first establish

1 o S
Lemma 4. I[f (A3)- (A6) Aold, then ZQ:'“'\T,—;E:} converges in disirsbution to a
3=1 s
random vwariable which 15 normally distribuied with 0 mean and variance s;:

8 = f e®1ty; 0% dt
0
»
u =
where a; = 7 = A% = ,,,z_:l Y Cl.
The essential idea of the proof can be found in {7]. We will not dwell on it here.
Lemma §. Under the same assumptions of Lemma 4,

Ni{n}

E v, (s 5 ‘/—

=1

converges in distnbution {0 a normal reandom variable with 0 mean and varsance i
The proof for this lemma can be found in [9] Theorem 17.1. Again we omit the detail.
The independence of £* and £7 implies the mdtpendence of the limits &‘ and i-’ for

‘l#j,‘l’hﬂ‘&&' is defined as

Ni(n)

E BN (m)ls ‘/—fii

Combine this with Lemmma 3 and Lemma 4, we hwe
e

Theorem 3. If (A3)~(A6) hold, then \/nz, > N(0,X), where T = dng(# 2 g b
Now we are in a position to eliminate the assumption (A6). As we commented before, if

D is a symmeiric negative definite matrix, then equation (3.5) holds. To obtain asymptotic
normality, we need to examine the following term:

Ni(n)

2 wimis \/_k=1 P&

j=1
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where P} is the (i, k)th entry of the matrix P~'. Similar kind of analysis as above gives
us:
Theorem 3. Under assumptions (A3)-{A5),

VaP 'z, 5 N(6,£)

where & 1s the convariance matriz, and the ijth entry 15 given by

o 1 J
Ly = o E Pyt PRl
| ("“—P‘pj ot k * ik

By virtue of the well-known Slustky’s lemma {cf. [10]), the following corollary holds.

Corollary. /nz, SN (0, PEP) .
The asymptotic normality can also be established via the method of weak convergence.
The interested readers are referred to [5].
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