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Abstract

For the problems of the left and right matrix Padé approximations, we give
the necessary and sufficient conditions for the existence of their solutions. If the
left Padé approximant exists, then we prove that its uniqueness is equivalent to the
existence of right Padé approximants, and we further give the exact result about the
dimension of the linear space - R*(m, n) formed from the left Padé approximants.

§1. Introduction

Let
LD
» f(z) — Zcizi, Cs & Cdxd,
* t=0
k
Hy = {Z a;2" : a; € ¥4},
1=0

where C?%4 consists of all d x d complex matrices with d > 0. We define right Padé
approximants J‘“[r:n/n]‘Jr = RpRQ-1 by

f(2) “Qlz) - ®P(z) = O(zm*n+Y), -
| Q) =T
and left-handed Padé approximants Llm/n] y= “Q 1 LPhy
LQ(2)f(2) - LP(z) = O(zmtnTl),
“Q0) =1

where ( P, £Q), (L P, tQ)e H,, x H,, and ] € C9%4 ig 4 unit matrix.

The approach to matrix Padé approximants adopted here follows that of Bessis [1]. For
other approaches and generalizations to a non-commutative algebra, we refer to [1] and [2].
For their applications in many domains such as the theoretical physics, the realization prob-
lem in system theory, and many other problems such as algebraic properties, computations
and convergence of matrix Padé approximants, we refer to the references of [3]. However,
the most basic problems, i.e., the existence and uniqueness for matrix Padé approximants,
have not yet been investigated completely.

In this paper, the questions concerning the existence, and uniqueness, or nonuniqueness,
for matrix Padé approximants are discussed. Some interesting results are established by
careful analyasis.
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§2. Existence
We shall first quote the following notations:

T T T
c"’ E ci__l ke n"_J' c“ E{_l . ¥ c"_:‘
: T T T
* = .- c‘.+1 ci & ¥ cl— .+1 - - — c! C' - c-" ¥
- H(s,5,k) = 7 JHy(s, 7, k) = | “+t ; i-i+1 |
; : : : ¢ T T
Citk Citk—1 .-+ Citk—j Citk Citk-1 '+ Citk-j

where c] is the transpose of c; , the coeflicients of f(z), and definec; =0,if £ <O,
Lemma 2.1. If ¢y € C%*¢ | then

rank H(s,4,k) = rank Hr (i + k — 3, k, 7),

where rank denotes the rank of a matriz,
Proof. Since

O I O I

HT (4,5, k)

e HT(£+k'_J‘:krj):
»
I 0 I O |

by the relation rank H(s,3,k) = rank H T(i,3, k), the lemma is valid.
Now we establish the existence results.

Theorem 2.1. Let f(2) = 10 ci2', ¢; € C¥%4. Then
(i) ®[m/n], exists if and only f
rank H(m,n — 1,n — 1) = rank H{m + l,n,n—l)._ (2.1)
(i) “[m/n], ezists if and only if
rank H{m,n— 1,n— 1) = rank H(m,n— 1,n). (2.2)
(iii) Both ®#{m/n], and “[m/n], ezist, if H(m,n—1,n— 1) 42 nonsingular (see [5]).

Proof. (i) Let BP(z) = 3.7v, Rai2*, ®Q(2) = v, Bbizt, Ra;, Bb; € C¥%9. Then
by equating the coefficients of 2'in (1.1) for + =0, 1,...,m+ n, one has |

Raﬂ Rbn
Rﬂl Rbl
. | =H({O,nm){ . (2.3)
Rﬂm Rbn
and
Rbl —Cm+41
Rbﬂ —Cm+42
Hmn—1n-1){ . | = . (2.4)
Rbn —Cm+n
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Therefore #|m/n] # exists if and only if (2.4) is solvable. Because (2.1) is the necessary and
sufficient condition for the solvability of (2.4), the conclusion (i) is thus proved.

(ii) Let “P(z) = Y La;2*, “Q(2) = X", Lb;z'. Then by a similar approach, we

have
Lﬂg Lb(i;‘
Lﬂ‘{ Lb'{'
= HT (U, n, ﬂ'I) ’ (25)
Lﬂi Lbf
and LbT —{:T
Lb%‘ '?-*'1
" i
Hrimn-1,n—-1)| " |={ ™| (2.6)
Lbf —Cﬁ_,_“

It follows that *[m/n] s exasts if and only if

rank Hr{m,n— 1,n—1) = rank Hr(m + 1,n,n—1).

From Lemma 2.1 we get the assertion (ii).
(iii) If H(m,n ~ 1,n — 1) is nonsingular, then both (2.1) and (2.2) are valid. Thus
Elm/n] s and L/ n), exist simultaneously.

In the case of ordinary Padé appraximation (ie., d = 1), we always have

rank H(m+ 1,n,n — 1) =rank H(m,n — 1, n).

At present, the equality may not be valid in some cas

es. This means that thereis a possibility .
that only one side matrix Padé approximant exists.

The following is an example.

Let g = € = [g g],cl = [é g],ﬂa = [{; g],m l and n = 2. Then

rank H(m,n — 1,n — 1) = rank (m,n — l,n) = 2, rank H(m + 1,n,n — 1) = 3. There-
fore I‘[1{2]; exists; 7[1/2] does not.
From the proof of Theorem 2.1, we get inmediately the following

Corollary 2.1. If ¢; are symmetric matrices for ¢ = 0,1,...,m+n, then both #[m/n] ’
and “[m/n], exist or neither exists.

§3. Structure
Let

“R(m,n) = {(P,Q) € Hpn x Hp\{0} : Qf ~ P = O(s™+n+1)),
“R(m,n) = {(P,Q) € H,, x Ha\{0} : f1Q — P = O(z™1n+1)).
We attempt to characterize the structure of ER(m,n). First we have
Lemma 3.1. Let (LP, LQ) e LR(m,n), (RP BQ) € ER(m, n}. Then
LpEQ=LgRp (3.1)
Proof. Since

LQf - LP = Oz, (3.2)
f RQ . RP - O(zm+n+l]‘ (3.3]
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by subtracting (3.3) multiplied on the left by “Q from (3.2) multiplied on the right by RQ,
we get

Lo "p - +p EQ = 0{zm ), (3.4)

The left-hand side of {3.4), which 15 a matrix polynomial of degree m + n at moat, ¢an not
vanish m + n + 1 times without being identically zero, thus the lemma is true.

Now we define integers:

u = min{3(P): (P,Q) € “R(m,n)},
v =min{3(Q) : (P,Q) € “R{m,n)},

where 3(P) denotes the degree of the matrix polynomial P, and we define 3(0) = —oo.
Lemma 3.2. Let f(2) = Y iogci2', and co be invertible. Then there exists a (P*,Q%) €
LR(m, n), such that
3(P*)=14u, 3(Q")=v,

provided there exists a (P, Q) € ER{m,n), such that the leading coefficients of P and Q are
snvertible.

Proof. We first note that u and v are nonnegative. By the definitions of u and v, there
are (P;, Q;) € “R(m, nl, t = 1,2, such that

0(Q1) =v, 8(P)2u,
8(Qz2) 2 v, IJ(P)=u.

From Lemma 3.1, it follows that
HQ=QiP: ==1:2
Thus
3(P) +9(Q) = 3(Q:) +3(P), i=1.2,

and hence

3(P1) +3(Q2) = 3(Q1) + 8(Fa).
Therefore 3{P;) = u, 3(Qz) = v.

The following theorem characterizes the structure of “R{m, n).
Theorem 8.1. If there exist (P*,Q*) € “R(m,n) and ( BP, #Q) € FR(m,n), such
that
oP) =w 9(Q)=u

and the leading coefficients of P*,Q*, ®P and *Q are snvertible, then for any (P,Q) €
LR(m,n), there exists a matriz polynomsal q, such that '

(P,Q) =a(P", Q7). (3.5)
Proof. By division with remainder ( [4], p.248 ), P and @ could be expressed as

P=gP'+r, Q=qQ +r, (3.6)
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where 8(r) < 3(P*), 3(r1) < 3(Q*). From Lemma 3.1 and (3.6), one has
aP* "Q+r"Q=q:Q" BP+ 1 Rp,

and hence
(q - ql}(P* RQ) =n RP e RQ. (3.7)
Since |
I(P)+3("Q)=a(Q")+3( ®P),
A(r1 ®*P) < a(r}+3( BP) < 8(Q*) +8( B P),
3(r £Q) < 3(r) + 3( RQ) < 3(P*) + 5( 2qQ).
(3.7) can not hold if ¢ — ¢; # 0. Hence ¢; = g.
Now we have

O(z"+"*1) = Qf — P=q(Q"f - P*) + ryf —r

and hence {r,r;) € “R(m,n}). This is a contradiction. Therefore r; = r = 0, and the

theorem is thus proved.

§4. Uniqueness
#

Assunre problem (1.2} is solvable, and Q*_IP“' is one of its solutions. Let

LR*(m,n) = {QQ* P - P (P, Q) satisfies {1.2)}.
Then we have

o
Lemma 4.1. [Let Q*~1P* = ZE;:‘. Then jor any R € LR*(m,n), there exist

+=0
B; € C%4 gyuch that
By
7. |
HT(m, n-— 1, n— 1) i = U, (41)
1
o
R(z) = 2™+ 3" B ok, (4.2)
k=0
where
i ;
Ey = Zﬁi5m+n+k+1-i- (4.3)
t=1
Proof. Let

R=QQ* 'P*-P,

AQ=) fi=Q-q",

=1

AP = ia,-z‘ = P - P",

1=1
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Then by (2.5) and (2.6),

HT [m, n— 1, - M I)BT - ﬂ, AT == HT[D, n-— 1, m — I)BT, ‘(4.4]
and =
R=AQQ" P'- AP, [4.5)
where
BT ay
e ﬂT ag‘
Br = 2 , Ar=| .
ﬂ'r oT

It follows from (1.2) that

g;=c¢, fors=0,1... m+n. (4.6)
Therefore
R(s) = (3 ) (D is) - Z wtt = SO B )t = 3 ant
=1 §=0 k=1 =1 k=1
m<4+n
= Z[Z ﬁlck‘-‘i ar)®+ ) (E Bick—i)2" + Z (E Bifr—i)z".
k=1 s=1 k=m+1 =1 k=m+n+l 1=1

Using (4.4}, we have

R[E] £ zm+n+1 Z(Z ﬁicm+ﬂ+k+1-l-]z

k=0 i=1
=z"‘+"+1 E Ekzk.
k=0

Thus the lemma i1s prnved
Let R; = @Q:Q* — P, € LR*(m,n) fori1 = 1,2, and R, # Rz. Then by Lemma

4.1, there exist E,El), Ef} e C**4_ guch that
Ri(z) = 2™t Z EV 2k, i=1,2

Since Ry + Ry, there is some ko such that B = E? for k < ko and E{,) # E.>). Let

O

QI-IPl ca ¢ Q;IPQ — Eﬂkzk.

=0

Then by
Q7 P - Q7 P = (Q P - Q7' P) - (@ P —Qi'P)
=Q;'R: - Q' R,
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we have
e; =0, for £=0,1,---,m+n-+ ko,
€m+ntko+1 7 O

This fact implies that the different elements in YR*{m, n) correspond to the different left
Padé approximants. Therefore, it is important for us to introduce and characterise the set
LR*{m,n). To establish results about “R*(m, n), we introduce the following

Lemma 4.2, Let A € CPX* B € C9%*, Let
rang(B,A) = {yeC?:y= Bz, z € N(A]}

Then
dim rang(B, A) = rank C — rank A,

where dim rang(B, A) denotes the dimension of the linear space ra.ng(B; A),

N(A) = {z € C* : Az =0},

, o-(3)

Proof. Since N(C) < N{A), we may choose z3, z2,...,2, € C® so that
i} {z1,%2,...,%x} is a base for N(C),

and

i) {z1,22,..., %k, Tk+1,--.,Tk+t} i8 a base for N(A), and
ii) {z;,%2,...,%,} is a base for C*.

From the relation

rank D + dim N(D)=g4q, De CP*9,

3

we have that Cziyq,...,Cz, are linearly independent. Therefore Cxyyq,...,Cxx4y are
linearly independent alsoy and hence

dim rang(B, A) = dim rang(C, A) = {(k+ 1) — k
= (8 — rank A) — (s —rank C} = rank C — rank A.

L 4]
Theorem 4.1. Let Q*1P* = Z 6;z'. Then LR*(m,n) is a linear space and

1=0

dim LR*[m,n)=dZ[rank Hm+k+1,n+kn—1)—rank Him+k,n—1+k,n— 1)]

k=0
=d[lim rank H(m+k+1,n+kn— 1) — rank ﬁ(m,n—— 1,n—1}],
k— o0
where
C; £i—1 poie By
Hi, g k)= |54 5 e Gmid

Cithk Cipk—1 +vr Cigk—jy
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Proof. (i) From the proof of Lemma 4.1, we have

LR [m, "] ={R:R= g Eﬁi(z Em+n+l=+1-i3k): ﬁT(m:ﬂ —1,n— I)BT — D}-

1=1 k=0
Therefore “R*(m, n) is a linear space.
(i) Let
Se = {ET e C¥4: ET = Hr(m+n+ k,n— 1,0)Br, Hr(m,n—1,n — 1+ k)Br =0},
E’,{l, - "=EE,1;. be the base of Sy (Iz may be zero) and

Bii:,lr ey BJ:EI# = {BT : ﬂT(m,ﬂ —1,n-— I)BT == U},
such that )

EE:J-:HT[I‘H—FH-}-IC,H— I,U)BEJ-, 9 = 1,2,--, 1.
Then for any

co o0
R(z) = z'“'"“"'l Z Ekzk = z"‘+“+1 Z[ﬁq‘(m +n+ k, n— I,OJBT]TZ’:
k=0 k=0

in ¥ R*(m, n), there exisk constants «; ; such that

(% 'i
ET = Hr(m+n+k,n—1,0) ZZ ai ;B ;. (4.7)

£=0 7==1
In fact we can prove by induction that there exist «; ; such that

koL
ET = Hr(m+n+ k,n~— 1,0) E z a;,; Bl (4.8)

e=071=1

For i = 0, since {ET ,} is a base of Sp, there exist ap,7, 7 =1, -, o, such that

lo lo
EY = Z an‘_.,-Eg:_f = Hp(m +n,n—1,0) Z agng:_f.

§=0 =1

Suppose a; ; have been determined for1 =0,1,---,k—1,and y=1,---, k. Then by

k-1 1,
EY = EE.‘ = I}T(m+n + k,n— 1,0) ZZ&{JBEJ—
- =0 =1
k-1
+ Hr(m+n+kn—1,05> Y o;;BF;
=0 =1
k-1
= Hr(m+n+ k,n— 1,0)(Br — EZ“‘!J'BEJ')
1=0 =1

k-1 I
+I?T(m+:_ft+k,n— 1,0) ZZ“‘E'J'BEJ’"

s=0 j=1
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and
k=1 I;
Hr(m+n+Ln—1,0)(Br — > Y ai;BY;)=ET ~ET =0, I=0,1,-.
1=0 5=1
we have
" k-1 I,
Hr(m+n+kn—1,0)(Br - Y % a;;B7,) € .
t=0 y=1
Then there exist ok, ; such that
k-1 ¢
HT(m +n -+ }C,ﬂ- - 1, UJ(BT = Z Z ﬂ",J*BEJ-)
t=0 y=1

1, i
— Z crk.:‘Eg:_,- = HT(m +n-+ k: n— 1: 0) E “M’BEJ"
3=1

=1

Hence (4.8) is proved. (4.7) follows from (4.8).
From (4.7) we have

dim “R*(m,n) = > dim S,
k=0

80 we need only to consider the dimension of the linear space Sk.
Now we note that |

Xk — {(z1,22,..., %) e CI*k . p. e X Cc%}

'1k_ 11

73

18 a k-dim X dimensional linear subspace of (jd"", provided X is a linear subspace of C4.

Therefore, from the fact that

Sk = {rang(Hr(m+n+ k,n — 1,0), Ap{mn—1,n—1+ k))}d,

and Lemma 4.2, we have

dim S; =d-[ra.nk ﬁr(m,n-— 1,n+ k) —rank ET(m,ﬂ— l,ﬂ“1+k]].

Then the theorem is proved by using Lemma 2.1.
Now we establish the uniqueness theorem.

Theorem 4.2. Suppose L [m/n] y exssis. Then the followsng statements are equivalent.

(i) “[m/n], is unigue,

(ii) R[m/n]f exssts,

(iii) There ezists a (P, Q) € ER(m,n), such that detQ # 0,
(sv) For any (P,Q) € 'R(m,n),

Q L[m,f'n]f -P=0.

(4.9)
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Proof. a) (i) = (3%). If “[m/n], is unique, then by Theorem 4.1 we have

rank H(m + 1,n,n — 1) — rank H(m,n—1,n—1)] =0.

Then from (4.6), relation (2.2) is valid; this implies the existence of #[m/n)|,.

b) (ii) = (iii). Let ®*[m/n], = PQ~'. Then (P,Q) € ER(m,n) and detQ # 0.

c) (iii) = (iv). Let ( P, Q) € #R(m,n), and det?Q # 0. Then for any (P,Q) €
LR(m,n), by Lemma 3.1 we have

(Q “im/n}], - P) FQ=QQ* " P* Q- P 7Q
=QQ‘--1Q1 RP—Q RP=.Q,RP_QRP=0’.

where L[m/n], = Q* ' P*. Hence (4.9) holds.
d) (iv) = (i). From (4.9), one has LR*(m,n) = {0}. Then ¥|m/n|, is unique.
Remark. The results obtained in §3 and §4 can be established fnr right matrix Padé
approximants in a similar manner.
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