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Abstract

We present a semi—coarsening procedure, i. e., coarsening in one space direction, to
improve the convergence rate of the multigrid solver presented in {5] for solving the 2D
steady Navier-Stokes equations in primitive variables when the aspect ratio of grid celle
is not equal to 1, i. e., when h./h, > 1 or € 1, where h, is the grid step in z direction
and h, the grid step in y direction, z and y represent the Cartesian coordinates.

Introduction

In numerical simulation of fluid flows we encounter frequently situations in which physical
quantities (pressure, velocity, etc.) change at different scales in different space directions.
When there is a main flow’ direction, where the change of physical quantities is much smaller
along the flow direction than in the direction orthogonal to the main flow, different grid steps
in different directions are often used. For dealing with these problems, it is essential to have
a solver of the discrete system whose convergence rate is not very sensitive to the ratio of
grid steps.

In (5], we have presented a multigrid solver for solving the 2D steady Navier—Stokes
equations in primitive variables on rectangular regions. It is based on second-order up-
wind differencing for the discretization of the convection terms and the SCGS relaxation
procedure (this procedure was originally proposed by S.P. Vanka[3| as smoothing operator
for his multigrid solver based on hybrid differencing) and has been observed to have good
convergence rate for Reynolds numbers up to 10000*.

If we denote by h, the grid step in z direction and h, the grid step in y direction, the

convergence rate of the above M.G. solver depends on the ratio p L h, [fhy. The best

convergence rate is obtained when p = 1 while the convergence rate is significantly slowed
down when p € 1 or p » 1, a8 can be seen through Figure 1, which shows the total

residual of the approximate solution with regard to the number of multigrid iterations. In
this example, the computational region is the rectangle (0, A) x (0, B) and the grid is the
32 X 32 uniform grid, so p = A/B. The four curves are obtained with A =1and B =1, 4,
8, 16, respectively and the following test zolution :

u(z,y)=Asin() cos( ).

v(z, y)=—B cos(~) sin( ),
zy

F(Ily]—-A B'

The V-cycle is used with 2 pre-—relaxations, 1 post-relaxation in the multigrid solver and
the relaxation parameter § = 0.8. The multigrid procedure converges when p geql/4 but

* Received J anuary 20, 1989,
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the convergence is very slow when p = 1/4 and it even diverges when p < 1/8 (we can get
convergence when p > 1/8 by using smaller relaxation parameter § but the convergence is

always very slow).
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Figure 1: Convergence rate of the MG solver for the test problem (R = 100)
with different values of p :
o:p=1 o:p=1/4 *x:p=1/8 o:p=1/16

The convergence rate of multigrid solvers depends essentially on the smoothing properties
of the relaxation procedure (also called smoothing operator). The SCGS relaxation has
better smoothing properties when grid cells are nearly square. An easy way to improve the
convergence rate when p 3> 1 or p < 1 is to use coarse grids obtained by increasipg only
one grid step in one space direction, instead of increasing the grid steps in all directions,
in the multigrid procedure {this approach was also proposed by Hackbusch(2] for solving
anisotropic problems). The object of this study is to investigate the efficiency of the semi-
coarsening in multigrid solution of steady Navier-Stokes equations.

In the present paper, we will first recall briefly the multigrid solver presented in [5].
Then we give details of the implementation of the coarsening procedure and corresponding
numerical results.

Remark. Vanka has also done some numerical experiments with the second—order upwind
differencing. Contrast to our conclusions given in [1] and [5|, he has observed very slow
convergence of his multigrid solver combined with the second—order upwind differencing and
no improvement in the precision of approximation with regard to the hybrid scheme, when
Reynolds number is greater than or equal to 600 (see [4]). There are several differences
between his scheme and the ours which may be the cause of slow convergence and poor

precision of his acheme :

1. He wrote the convection terms discretized by second—order upwinding finite differences
as the corresponding first—order upwinding discretization multiplied by a constant plus a
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correction term. He put the correction terms at the right hand side of the equation at

each iteration, Le., he computed them using known values. So his solution procedure is
in some sense a preconditioned Richardson scheme using the first—order upwinding scheme
as preconditioning. In our scheme the multigrid procedure and the SCGS relaxation are
applied directly to the discrete system obtained by second—order differencing.

2. He imposed the gero normal derivative condition to the pressure on construct the
prolongation operator at points near the boundaries. In our scheme, the pressure on points
near the boundaries are prolonged by extrapolations.

3. The third difference is in the discretization of the convection terms used on points near
the boundaries. Vanka used the first—order upwinding differencing while we pass to centered
differencing when points outside the computational region have to be used. We think that
this difference should not slow down the convergence rate, but it can have influences on the |
precision of the diacrete solution.

§1. Discretization of the Governing Equations and the Multigrid Solver

We use the 2D incompressible Navier—Stokes equations in their primitive formulation :

1 Ju du Jp
——Au+4 u_— —_—— —=

RN s e =l
, 1 du dv dp

- —— A+ U+ v— + =1y,
R 0z dy Oy

Ju & dv 5

dx Oy

where (u,v) represents the velocity, p the pressure and (f1, fz) the external force. R > 0 is
the Reynolds number.

These equations are discretized on staggered grids in which the values of u are taken at
the centers of the two vertical sides of each grid cell, the values of v at the centers of the
two horizontal sides of each cell and the values of p at the center of each cell.

The linear parts of the equations are approximated by usual second—order centered dif-

ferencing. For the nonlinear terms, second-order upwind differencing is used. For example,
du

ua_;l(mm:uu) 18 discretized by :

S 3u(zo, yo) — 4u(zo -—:;,yg) + u(zo — 2h,, yo) .
or by

. yu)Su[:rn, vo) — du(zp + :;, vo) + u{zo + 2h., yo) if ti(20, o) < O,

where h, is the grid step in z direction.

The resulting nonlinear system is solved by an iterative method called SCGS iteration
(Symmetrical Collective Gause—Seidel iteration), proposed by S. P. Vanka[3]. In this method,
five unknownas on a grid cell (comprising two horisontal velocities, two vertical velocities and
one pressure} and the five corresponding discrete equations (four momentum equations and
one continuity equation) are relaxed simultaneously by solving a system of linear equations
with five unknowns (this linear system is obtained by linearizing locally the corresponding
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equations). To ensure and accelerate the convergence, the velocities are underrelaxed by
introducing an underrelaxation factor § € {0,1). One SCGS relaxation consists of one
scanning of all grid cells in a certain order. This iteration procedure has been shown to be
very efficient for solving the discrete system obtained by hybrid differencing by Vanka in [3],
and also for solving the discrete system obtained by second—order upwind differencing by
our numerical experiences reported in [5)].

To use multigrid techniques to accelerate the convergence rate of the above iteration

procedure, a sequence of coarse grids is constructed by doubling the grid steps h; and A,
each time. The approximate solution on a grid is relaxed by several SCGS iterations, then
it 18 transferred to a coarser grid using an interpolation operator called restriction operator
which is constructed by linear interpolations. Another transfer operator, called prolongation
operator, from a grid to a finer one constructed by linear interpolations or extrapolations,
i1s used to correct the approximate solution of the finer grid using the solution obtained on
the coarser grid. For details of multigrid methods, see, for example, Hackbuschi2|.

The SCGS iteration combined with the multigrid techniques provides a rapidly conver-
gent solver for Navier—Stokes equations in primitive variables discretized by hybrid or first
or second—order upwinding finite differences, when grid cells are nearly square {i. e., when
hz/hy ~ 1). Detailed implementation of the MG solver and corresponding numerical results
obtained for the driven cavity problem can be found in [5].

»
. §2. Alternative Coarsening Procedure

Since the convergence rate of the multigrid solver based on the SCGS iteration depends
heavily on the grid step ratio p = h./h,, we can construct coarse grids by doubling only
the smaller of k., and k, instead of doubling them simultaneously to make p as close to 1 as
possible on coarse grids to ameliorate the convergence rate of the multigrid procedure. The
use of semi—coargening in one space direction needs more computational work in each MG
cycle because there are more level of grids and more grid points on coarse grids, but it is
largely compensated by the gain obtained in the convergence rate.

To describe our coarsening procedure, let the computational region be the rectangle
(0, A) x {0,B) and let A/N and B/M be the steps of the finest grid with N, M € N,
Suppose N = Ny27 and M = My2¥ where Ny and My are odd or equal to 2. Suppose also
that the current grid steps are h, = A/(No2?) and hy = B/(Mp2*), then the next coarse
grid is determined by the following rules :

j=0and k=0 = This is the coarsest grid
3>0and k=0 = Coamening in x direction

7=0and k>0 = Coarsening in y direction
hy > bh, => Coarsening in x direction

j>0and k>0 = hg > Oh, = Coarsening in y direction
hy < 6hy, and hy < 6h, =+ Coarsening in both directions
where § is a control parameter greater than 1. In our numerical experiments, it is set to v/2.

£3. Numerical Results

We have solved the same test problem used in the introduction using the coarsening pro-
cedure described in the previous section; we will call it semi—coarsening procedure while
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multigrid procedures in which no semi-coarsening is used will be referred to as total-
coarsening procedures.

Figure 2 and Figure 3 show the convergence history for Reynolds number R = 100 and
400 respectively. The relaxation parameter 3 is equal to 0.8 for R = 100 and 0.6 for R = 400.

Because the number of pre-relaxations and post-relaxations is fixed in the multigrid
procedure, the CPU time needed for one multigrid iteration is nearly constant. In Table 1,
we list the CPU time for performing one multigrid iteration (on an IBM/PC) and the number
of multigrid iterations to get the residual less than 1 x 10™* for R = 100.

We conclude with the remark that with the semi-coarsening procedure about 50% more
CPU time is needed for each iteration, but the number of iterations is magically reduced,
so it provides an efficient multigrid solver for steady Navier-Stokes equations on grids with
reasonable aspect ratio of grid cells.

Table 1. CPU time per iteration and number of iterations
to have the residual < 1 x 107* (R = 100)

Total-coarsening Semi-coarsening
CPU time/it. | # of iterations | CPU time/it. | # of iterations
hy:hz=1 | 233 seconds 4 - —
hy:hzs=4 " 234 seconds 33 327 seconds 5
hy:hs =28 236 seconds |. diverged 346 seconds 6
hy : hy = 16 | 236 seconds diverged 357 seconds 13
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Figure 2: Convergence rate of the MG solver with semi-coarsening for the
test problem (R = 100) with different values of p :
o:p=1 o0:p=1/4 x:p=1/8 o:p=1/16
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Figure 3: Convergence rate of the MG solver with semi—coarsening for the
tgst problem (R = 400) with different values of p :
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