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A NONCONFORMING FINITE ELEMENT METHOD OF STREAMLINE
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Abstract

A nonconforming finite element method of streamline diffusion type for solving the
stationary and incompressible Navier-Stokes equations ia considered. Velocity field and
pressure field are approximated by piecewise linear and piecewise constant functions,
respectively. The existence of solutions of the discrete problem and the strong con-
vergence of a aubsequence of discrete solutions are established. Error estimates are
presented for the uniqueness case.

» 81. Introduction

i

‘Finite element schemes of streamline diffusion type are nowadays a common procedure for
solving convection dominated problems in fluid mechanics such as transport problems(5l-19].{1]
the Euler equations and Navier-Stokes equations with small viscosity for incompressiblell:[10]
or compressible fow!¢:[11]

In this note the incompressible stationary Navier-Stokes equations are addressed. Re-
cently, Johnson and Saranen!!% considered streamline diffusion methods for the time-depend-
ent case where discrete velocity fields are employed which ar¢ assumed to be exactly diver-
gence free. In the stationary case, we consider a nonconforming FEM based on piecewise
linear and piecewise constant approximations for the velocity and the pressure fields, respec-
tively, satisfying the discrete LBB-condition and thus circumventing exact divergence free
discrete velocity fields. For other approaches of upwind type concerning the incompressible
Navier-Stokes equation, see e.g. {3] or [13].

The plan of the paper is the following. In Section 2 we give some notations. The FEM 15
presented in Section 3. Existence and uniqueness results for the discrete problems are given
in Section 4. Convergence properties of the method are studied in Sections 5 and 6.

§2. Notations

Let 1 ¢ RV (N = 2,3) be a convex polygon or polyhedron with boundary I' = 3} and
let v = 1/Re > 0. We consider the incompressible Navier-Stokes equation:

Find (u, p} such that
-vAu+uVu+Vp =f in (],
V.u =0in 1 (2.1)
u =0 on Ofl
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The spaces for velocity and pressure are defined by
V = H}(O)N,Q = {q € Lg(ﬂ);/ gdz = 0}1 |
{3
W={veV;V-v=0}

For vector-valued functions v = (uy, --,uy) € Wor(Q)¥, v = (vy,---,vny) belonging to
L= ()N we use the usual norms and seminorms, respectively,

N N
lulf =2 lwllz, i, = lwi,,
1=1 3=
i1vll0.00 = max flu;jlo,co-
Furthermore, we introduce
a{u, v} = f Vu - Vudz, Yu,veV,
2
#
T by, v, w) = / (v - V)vudz, Vu,v,w eV,
{i

e, ) = %{b{u,u, w)— e well, Y ewel
satisfying
blu,v,w) = blu,v,w), YueWvweV.
The weak velocity-pressure formulation of {2.1) reads now;
Find (u,p) € V x @ such that
va(u,v) + blu,u,v) — (p,V - v) = (f,v), VYveV, (2.2)

(Q: ¥ u) 0: Vq € Q

From (2.2) we cbtain the weak velocity formulation

Find v € W such that
(2.3)

va(u, v} + b(u,u,v) = (f,v), Vv W

It is well-known that (2.2) admits at least one solution and that this solution is unique
provided that 2| f|lo.2 is sufficiently small.

§3. A Nonconforming Streamline Diffusion Finite Elemment Method

. We consider a nonconforming finite element approximation due to Crouzeix and Raviart[2!
and Temam!'4, Let (J,)s be a regular family of triangulations of {1 into N-simplices K "
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with (1 = Uffj. The faces of K; are denoted by S;;, and the barycentres of S;; by B;;.

7
Moreover, we shall need the inverse assumption on the family of triangulations

h

r ﬂ C, VKJ < U Jh
] h

where i; = diamK; and h = maxh,.

7
The finite element spaces for velocity and pressure are defined by

Vi = {U & LQ(Q}N; U,Kj € Pl(KJ')N, VKJ = Jh,
v continuous in By;,v(B;;) = 0 if B;; € I'},
'Q = {qe LE(N) ;q|K; € Bo(K;), VYK, e L}.

Because of Vi, ¢ V' we have to extend the divergence operator and the forms af-,-), (-, ),
6{-,-). This can be done by an elementwise calculation ~f the integrals over.

(q,"i?h -U) o E/ q(V-u)d:e:, Yve Vy, g€ Q4

— JK,
" 7

) anu, v) =Z/ Vu - Vude, Yu,veV + V,,
| i oR

bn(u, v, w) =Zf (u - V)vwdz, YVu,v,w eV + Vy,
~ Jr.
3 J

by (u,v,w) = %{6;1{11, v,w) — bp{u,w,v)}, Vu,v,weV +V,,
Further, let
Wy = {U € Vi,V - VIK; = 0 VKJ = Jh}

be the space of discrete divergence free functions and
[vlls = lan{v, v)]'/2

the norm on V; and W), respectively.
Following!!® we use test functions of the form v + b;(up - Vv + Vg) giving extra control

over gradients in the streamline direction. Note that in our method Vax, =0and Ayx. =
0, VK; € J,. The streamline diffusion method then reads;

I Find (up,pn) € Vi x @1 such that
Bs(un, un; un,v) — (pr, Vi - v) = Ls(un;v), Vv €V, (3.1)
l (¢, Vi -un) =0, Vg € ¢,

In (3.1) we used following notations

Bs(u, up; v, w) = vap(v, w) + bp{u,v, w) + Z 5i(u - Vo, up - Vuw)g, (3.2)
;

Ls(up;w) = (f, w) +.Z: 85 (fy un - vw)ff_f (3.3)
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with the L?-scalar product (-, )k, restricted on K;. Setting §; = 0 in (3.1) we obtain the
classical method!?:114] In the following we denote by ¢ a general constant independent of h

and v the value of which may be different from row to row, and 6 = maxé;.
J

§4. Existence and Uniqueness of Discrete Solutions

Now let us consider the solvability of the discrete problem (3.1). The discrete velocity
-u;, satishies

Find u, € W; such that
(4.1)

B; (uh, Uh, Uph, U) = Lg(uh; ‘U), Yo e W,,.

To prove the existence of a solution of (4.1) we shall apply a variant of Brouwer’s fixed
point theorem!!*. Taking into consideration that our finite element spaces fulfil the discrete

I.BB-condition:

There is a constant a > 0 independent of A such that

‘Y (4.2)
(9 V5 -%) 5 Glgllos, V€ Qn

sup
PEV, ”””h

we obtain a unique pressure py, € Q) to each solution u, € Wj, of {4.1) such that (un,ps) is

a solution of (3.1).
Theorem 1. Assume that f € LZ(Q)Y and 0 < 6; < cqv™!. Then there ezists at least

one solution (up,pn) € Vi X Qn of (3.1). Moreover, there 13 a constant cz > O such that
each solution uy € W), of (4.1) satisfies

vllullz + D illun - Vunlld 2 i, < car ™ I£II5 2 (4.3)
3

Proof. Let [v,w]| = aj(v,w) be the scalar product on W), and p;W, — W, be the

operator defined by
|[Pv, w| = Bg(v, v;v,w} — Ls(v; w).

Using standard inequalities we have

[Pu,v] = vau(v,v) + bp(v,v,v) + Zﬁj(u-vu,u -Vu)g, — (f,v) - Zéj(f,u -Vu)k,,

J

0,2,K ;-

[Pu,v] > vflol2 + > 6llv- VolZ, ik, — Ifllozllvloz — D 8ill flloak,llv- Vo
7 3

Because | u ;
| Fllo.2]lvlo,2 < §||t’||121 + ;“f”E,z
and ;
C1
S 6l oo ollozk, < 3 Y dille - Volas, + 21132
.f J' :
~ we obtain

1 2
Pool 2 2ol + 85l - Fola, — 21£132)
r
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such that each solution up, of Pv = 0 satisfies (4.3) and [Py, v] > 0 for |jv[s > EE”f”g,g.
- | ] y
It reamins to show the continuity of P. For %y, us € Wy there holds

[Pui — Puz, v] = vap(uy — ug, v) +by(ur, uy, v) — by (usz, ug, v)
+R1(u11 Uy, Uy, U) — Rl(uﬂiuﬁr Uz, t}) + RZ(UI — Uz, t}')
where we used the awbbreviations

Ri(u,v,w,z) = Eﬁj(u-?u,w-‘?z)gj, (4.4)
;

Ra(u,v) = Zﬁj(f,u*?u};{j. (4.5)

By means of the continuity of a5 and b, we can estimate

van (u1 —uz, v)+bp{u1, u1, v) =84 (uz, uz, v)| < (v+c(furlla+lluzlla)) lus~uz|lnllvfln. (4.6)

Using an inverse inequality and a discrete version of Sobolev’s embedding theorem!4l we
conclude the estfnate
”u”[;‘m < ch_”"u”h Yu V), (4.7)

with ¥ = X(N), ¥(2) > O arbitrary and X(3) = 1/2.

Now we have

By (v, v, w,2)| < [lullo,0llwllo,c0 Y _ 850|125, 12|12,k

7
1/2

1/2
< ch X ullallwln (3 &5lelak,) " (2 Elehax,) (48
J J

< e6h™ |lullal|vlinllwllnl 2]l

and
| R2(u, )| < flullo,eo Y 65l fllo2k, Ivl: 2., < c6A72X| fllozllelinllv]la. (4.9)
;
Consequently, it follows that
lRl(un“hm.U) - R1(“2:“2:H2=U)| < |Rl(u1 = u21u1:u1,ﬂ)| |Rl(u2,u1 = Hz.ﬂ-l:”]]

+IRy (uz, vz, u1 — uz, v)| < 6R™H (Jlun 1] + uallallualln + lu2lfZ)ws — uallnllvll
(4.10)

and
|R2(u1 — uz,v)| < c6h™¥||fio.2flur — wallallv]a. (4.11)

Combining (4.6), (4.10) and (4.11) we finally obtain

[Puy — Pug, vl < cl8, 0, k, flurfln, luzlln)luz — uzflnfiv

1.e. the bounded Lipschitz continuity of P.
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Brouwer’s fixed point theorem yields the existence of at least one solution u,; € W, of
Puy, = 0 satisfying (4.3). The existence of a unique P, € Q, corresponding to this solution

u, can be established by means of (4.2} in the usual way.
A unigueness result s gaven by

Lemma 1. Let § belong to L*(Q)" and b; satisfy 0 < §; < v~ k¥ ¢y (k) with lim ¢, (k)

= 0. Then there are positive constants 1o = (|| fllo.2) and hy such that for v > vy and:
h < hg the solution of (4.1) 1s uniquc.

Proof. Let u; € Wy,1 = 1,2, be two solutions of (4.2) and u = u; — uz € W;,. Then, it
follows that

I""”1"“‘”?;; < Bﬁ (ulrull;u: u‘) a5 Bﬁ(ullul;uhu} e Bﬁ(ulrul;uﬂlu)
< L.s(ul; u) = Lﬁ(uﬁi u) + B&(“z:“ai“z: ﬂ) = Bﬁ(ulr Ul;umu)
< Bafu,u) + bn(u, ug, u) + Ry(ug, ug, vz, u) — Ry{uy, up, ug, u)

with the abbreviations R;, R, defined by (4.4), {4.5}). Applying the estimates (4.8), (4.9)
and taking into consideration the continuity of &,, we conclude

vlulli < cBh™X | fllo,2llullf + clluzlinllullz + c6A~2¥ ([luz i + [|eallnflualln)llu]2.
s
By means of the a“priori estimate stated in Theorem 1 we obtain

vl|ul[5(1 — cv 7| fllo,2 — e hH| flloz — bR || F |12 5) < 0.

-

The term in brackets is positive provided that v > c||f|lo.2 and kg is sufficiently small.
Consequently, we have u = u; — u, = Q.

§5. Convergence of the Discrete Solutions

In this section, we stu:dy convergence properties of the solutions {up,pp) of (3.1). Let
I 2V +V, - L*(Q)¥ Y be the embedding operator defined on each element X ; by

(Inw)(z) = (w(z), (Vw)(z)), V=€ K,

satisfying || [hwllo2 < cllwllp, YweV +V,.
Theorem 2. Assume that 0 < §; < v~ Yh?¥¢ (R} with Jl;nin c1(h) = 0. Let {(un,pn)}

—+{J

be a sequence of discrete solutions of (3.1} with h — 0. Then there is a subsequence
{(unr,pn')} and an elément (u,p) belonging to V x Q such that Iy py converges to (u, Vu)
in LQ(Q)N"NI,IJM converges to p weakly in L?(Q) and the pair {u,p) is a solution of the
continuous problem (2.2). Moreover, if (u,p) belongs to W2Z(Q)N x Wh2(Q)), the pressure
p), converges to p also strongly sn L2(Q3).

Proof. (i) Because of Theorem 1, ||J,us||o 2 is uniformly bounded with respect to A, By
means of the discrete LBB—condition (4.2) we conclude from (3.1) for all A

|prllo,2 < C.

Consequently, there is a weakly converging subsequence {(Jn-uns,par)} benceforth for sim-
plicity again denoted by {(fnun,pn)}. It was proven in [14] that there exists an element
u € W such that ' - '
In(un —u) — 0 in LE(@Q)Y*N'  h 0.
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In the following step, we show that (u,p) is indeed a solution of (2.2). Let r; W — W,
and ry: V — V), respectively, be the restriction operator defined by

1
) = ds.
(fhu)(B b mﬁans(sﬁ] '/.5;1; vas

For N < 3 and v € C§2{f2)¥ there hold

,{{'}}](Pm Vi v} =(p, V), (5.1)
ilmhbh(uh’ up, 1hv) = b(y, u, v), i{inhﬂh[uh,fhﬂ) = a{u, v) {5.2)

and
tim (7, rav) = (£, (539

It remains to consider the terms

Ry(un, un, un,mav) = Y _ 8;(un - Vup, up - Vrpo)g,,
-

Rg[uh,rht?] — Z&j(f, Un V?‘ht‘);{j.
# E

i

Because of the estimates (4.8) , {4.9), and the boundedness of ||usflr and {|rpv||n we get

|B1(un, up, un, rav)| < C6R™3X, (5.4)
| Ry (un, rav)| < C6R™X, (5.5)

Combining (5.1)- (5.5), we have in the limit of (3.1}
va(u,v) + b{u,u,v) — (p,V - v) = (f,v) for all v € C&° ()Y
(¢, V -u) =0 for all g € Q.

Since C° () is a dense subset of Wy'?(f2), (u, p) is a solution of the continuous problem
(2.2).

(ii) Now we prove the strong convergence of In{up — u) in L*((2)¥ +N*
liun — raul|Z = an(up, un) — 265 (un, 7au) + an(ray, rau)

v (S, un) + Z §;(f — wn - Vup, up - Vug) k)

5

—_ Zah[uh, rhu) + ﬂ.h(rhu, rhu)
and therefore

||u.,u_ e rhu”ﬁ E y"l((f, uh) ~+ Z ﬁj'[f, uy - ?uh]_{{j} s 2uh{u, rhu) - ﬂ.h(rhu, rhu).
g

As in the proof of (5.2) and (5.4}, we fina

‘lﬂl}j ap(u, rpu) = &1_12} an(rnu, rnui = alu, u)
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and
lim > &(f,un Vun)x =0
J

such that
hm ”uh S rhu”h == )
h—D

Together with the triangle inequality, we dednce the strong convergence of I,(u, — u) to
zero in L2(Q)N+N?

(iii) The strong convergence in L?(f1) of the pressure py, in the case (u,p) € W22{Q) x
W12(0) follows in the way below. Multiplying the equation

—vAu+u-Vu+Vp=f,

which now holds in L?(Q)¥ | with v € V},, integrating over K ;, applying Green’s formula
and summing up over all finite elements K 5 we get

vap (u,v) + by (u,u,v) — (p, V), -v) = (f,v) + I.(v)
for all v € V}, where I (v) is defined by

L) = Z/ﬂxl(u%u— %[u-n)(u-u) — p(v - n))ds.

Together with (3.1) we have for each v € V},
(P“Ph:vh 3 U) s (P}vh 'U) “(Fh:vh *‘U}

= vap(u— up, v) + by {u — up,u,v) + by {up, u — up, v)

+Egj(f — Up - Vug, uy, - V'U)Hj = Ih[ﬂ].
;

In [14] it was already shown that
| In(v)] < eh|lv)ln  for all wveV,.

The continuity of a;, 6, and the estimates (4.8), (4.9) imply
(P~ 21, Va - 0)] < (v +c(llelln + [Junlin)) e — ualn o]l
 4ebhX|f]

Using a priori estimates for u and u,, respectively, we get

o2llunllnllvlln + 8~ |lun [Zlvlln + chllv].
(P~ Ph, Vi - 0)| < {cllu — unlln +c1(h) + ch)||v]|a
and with the L*-projection §, of p on Q,
(P = Pry Vi - 0)| < (Cllu = upln + c1(h) + ch)|jvfla-
The discrete LBB—condition applied on Ph — Pn € Qn and the triangle inequality yield

Ip = pallo.2 < lip — Fullo.z + a™*(Cllu — unlla + c1 (k) + ch) (5.7)

such that the discrete pressure pj, converges to p in the L?-norm.
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§6. Error Estimates in the Uniqueness Case

For sufficiently large v both problems (2.2) and (3.1} admit a unique solution. We shall
study the order of convergence now.

Theorem 3. Assume that 0 < §; < v~ hZ¥¢;(h) with &m}:‘ ¢1(h) = O and let the ezact
solution {u,p) belong to

(W (0) nW22(Q))Y x wi3(Q).

Then there are posstive constants vg = vo(||fllo.2) and hg such that for v > vy and h < hg
the problems (2.2) and (3.1) admit unique solutions which satisfy

vliu —unllf + 3 &llun  Viu—un)lf 2.k, < K(R +6%h72),
=

o = prllo,2 < K(h+ 8A™1),

Proof. Let rpu be the restriction of the exact solution u € W introduced in the proof of
Theorem 2 and let u; be the unique solution of (4.1). Then for ¢ = r,u — uy, it holds that

So = vlig|2 + D  &llun - Vollg.2.6, = Bs(un, un;rru, ¢) — Bs(un, un; un, <)

» )
= B (un, tn; Tat, ) — Bs(u, un; u,¢) + Bs(u, un; u,¢) — Ls(ua; ). -
The first difference on the right hand side can be bounded as follows

S1 = Bg(up, un;rau, ¢) — Bs(u, up;u,¢)
= vap(rau — u,¢) + bn{un, rau — u, ¢) + bp(up — u, u, ¢)

+25j(uh -?(rhu o u],uh : ‘?g)h—j e 253-((% =S u) ; ‘G’u, Up ?g)gj.

J J

Applying a priori estimates for u, u; and the triangle inequality

lu —uplln < Ylu—ravsn + |I¢ln

we obtain

[S1] £ vlrau = ullallslln + v | Fllo2llrnu — ullnlls |l

» 1
+ev " fllozlislz + 5 2 8illun - Vsll3 2.,
:

"H’Z b5 llun - V(rnu — “)”g,z,f{j T Z b5l (un — u) - v’-‘”ﬁ,z,x,-
J 7

Now let K be a constant which may depend on v, || f|lo.2 and ||Vu||p,c0. Taking into account
the approximation properties of V;, we have

7y
81| < <|I¢ll2 + cv™ | fllo,2ll¢|IZ + Kh? + cbljus]

2 2
U,mh

1
+2 S " 6jllun - Vel ok, + Bl VuZ oo llun — ullZ
-
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and by means of (4.7)
Si| € Zl¢liZ + er? 2 4 o8| Vull2 o el + = 3 65llun - VelI3 Kh?. (6.2
51] < Zlelih + v i fllozllsIR + el Vullg colislia + 5 2 dillun - Velloax, + KA”. (6.2)
r
In order to estimate the second difference in (6.1) we start with

Z(-—Vﬁu—i- u-Vu+Vp— fie+6us Vel =0
;

provided the exact solution (u,p) belongs to W22(Q)N x W12(} and f € L2(£1})" . Green’s
formula yields

van (4,¢) + ba(wu,¢) — (P, Vag) + Y _ Sl Vu,un - Ve)g,

= (1) + D& (frun - Ve)x, + ) &i(-vAu+Vp un Vo), + uls)

1.e.
»

Sy == By (u, un; u,6) = Ls(un, ) = (0, Vi -¢) + In{¢) + D _ 6;(—vAu+Vp,up Vo)k,. (6.3)

,
In [14] it was already shown that
[ 1n{$)1 < chllslln

and with the L%-projection gy of p on @, we have

I(Pj Vi S‘H = |{p — Ps, Y ¢)| < cilp — ﬁh“n,z”a‘“h < chll¢|ln.

[t remains to estinate the third term in (6.3). Because

‘ Z 6;(—vAu + Vp,up - Vilg,

5

< |lunllo,co Z 5|l — vhu + ?P!h,zﬁj

i

L/ o
< legllﬁ 4 K#2p %4,

we have the estimate "
Sah < ZslE + K(h? + 622, (6.4)

Combining (6.1), (6.2), (6.4) we deduce

l.-'

1 = —“f“tnz — 26[|Vu

6,00 lIsTn + 3 25 lun - Venlid 2.k, S K(h? + 62h72%)

k]

and get by means of the trmngle inequality for sufficiently small A < kg the error estimate
- stated iIm Theorem 3.
The error estimate for the pressure follows in the same way as (5.7) was proven.
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Remark 8.1. For optimal order of convergence we choose § = max§; = O(u‘l hl"‘?;'")
3

and obtain the first order convergence.
Remark 8.2. Theorem 3 also gives additional control over gradients in the streamline
direction; more precisely, with the choice §; = ci"1h1*2¥ we have

Z |ua - V(u — uh)”g,ﬁ,h’j < Kh'™2X,

J

§7. Concluding Remarks

The proposed streamline diffusion method is characterized by additional control over
gradients in the streamline direction and therefore by improved stability compared with
Galerkin’s method or special upwind techniques for the convection term [13|. Furthermore,
in contrast to [10] exact divergence free discrete velocity approximations have been avoided.

An extension of the presented method to higher-order approximations for the velocity and
pressure satisfying the discrete LBB-condition is straightforward. For a streamline diffusion
approach with circumvention of the LBB-condition following [7| for the Stokes equation, see

[12].
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