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Abstract

It is showed that, for many commonly used difference models on hyperbolic initial
boundary value problems, the necessary and sufficient condition for GKS-stability (in
the sense of Definition 3.3 of [1}) is a necessary condition for I2-stability.

§1. Introduction

Consider the mixed iflitial boundary value problem
AU (z,t) /3t = A3U(x,t)/8z, z 20, t>0,
U(z,0) = f(z), =z =0, (1.1)
Ulo,t) = SUM(0,t) + g(t), t=0.
Here A is a constant square matrix, and
Uz, t) = (vW(z,¢), -, UM (2,2))T

is a vector function. Furthermore, 4 is diagonalizable and of the form:

Ay O

A =
0 A

] . with A; <0, A, > 0. (1.2)

Ui(0,¢) = (v, -, ulN)T and UN(0,t) = (ul!+1),. .-, uT correspond to the partition
of A, § is a rectangular matrix, and f(z) and g(t) are given functions.
We want to solve the above problem by the general consistent multistep difference model

Q:
1Uﬂ+1 ZQHU“ -:r, n > 3, Jl=1:213:"':

o=0

U7=f7, 0<o0<s, g=-r+1, —r+2,--, (1.3)

ik = ZS“‘)U“' +gt, —r+1<u<0, n>s.

g=--1
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Here U ~ U (7h,n7) denotes the difference solution, h and 7 are mesh width of space step
and time step, respectively. The ratio 7/h = A is a constant.

P
= Y A K', KU'=UP, -1<0<s

s=—r

are difference operators with matrix coeflicients, and Q_; 18 invertible.

q
SW=5"CcWEKI —r+1<p<0, ~1<o<s
3=0

are one-sided difference operators. The initial value f? and boundary value g, are given
(0o <8, 72 —r+1,n>s—r+1< u<0). sp,r g are nonnegative integers. As usual,
we need the following assumptions. '

~ Assumption 1.1. The difference model (1.3} can be solved boundedly for Un*! ie.,
there is a constant M > 0 sucy that, for every G € l3(z), there is a unique solution W € i;(z)

of
Q_1W': 71 3‘21:2:31”':
WH—-SE'?Wl =gu; —T+iZux0h
0 00 ._ N ,
With [W(2 < M{|G|2+h S lgul?).Here [W[2= 3 |W,Phand W] =S (W1)2,
pe=—r<41 J=—r+41 =1

Assumption 1.2. The matrices {A,,,}},__,,—_; are simultaneously diagonalizable.

Definition 1.1 We say the finite difference model Q is initial and boundary value is-
stable, if for any given time T > 0, there exist constants M > 0 and 7y > 0 such that, for
any initial value f° and boundary value g, (0 <o <3 —r+1< u<0], the estimate

O

o2 <M > loulPer + Z 17°112)

p=—r41
T/r
holds for all n and v with nr < T, 7 < 1. Here (|gullfcr = Z 19,.1° k.
The aim of this paper is to show that for many cummnnly used difference models defined

by (1.3), the necessary and sufficient condition for GKS-stability (in the sense of definition

3.3 of [1]) is a necessary condition for [;-stability.
We shall use some results of [1] and [2], and assume that the reader is familiar with those

papers.

§2. Left-going and Right-going Signals

_ Let @ denote the difference scheme

lUn+1 ZQuUn o
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and let Z be the time shift operator

Then Q can be written as

P 8
P = 3, (¥ Anek™ 2"~ Ami-gpBotrgvillor =0 (1)

m=—r o=0
The dispersion relation for (2.1) is

r

det P(k, z) = det z (t Ak E o Am(—1)km+"z’+1) = (), (2:2)

m=-—r og=0

where the wave number £ and frequency w are defined by
k = exp(—1€h), =z = exp(iwr).

Assumption 2.1. Q is Cauchy stable.

Assumption 2.2. For all 2z with |z5| 2 1, the polynomial
#

‘ Pl(k) = P(k:zﬂ]

has nonsingular Oth and (r + p)th coefficients.
Throughout this paper, we assume @ and Q satisfy assumptions 1.1, 1.2, 2.1, and 2.2.
Under assumption 1.2, there exists a nonsingular matrix 7', such that

Amo =TAmsT ' = diag(ald), -, s}, —r<m<p,-1<a<s

ma) "3 H'lﬂ'

withal® e Rforall -r<m<pl1<a<N,—-1<0<s.
We denote TUT? by U;‘, and TPT~% by P. Then we have

p 8 _
P(K,Z)0" = [ S (E A, Kmtrge=o _ Zm{_l}K""”Z'“)]U;‘ =0

m=-—r o=0

Now P is a bivariate polynomial with diagonal matrix coefficients. This system i8 equivalent
to the N scalar systems

P ' |
P{a] (K; Z)(U{u]);l - Z (E GL‘L}.K"‘-‘-IIZ'_# {“) )K’m+rzl+1)(ﬂ'{a});} =0,

Gon(-1
m=—r o=0

1<a<N. (2.3)
"By assumption 2.2, for each scalar ordinary difference equation

P@)(K, 20) (0=

> : \ | (2.4)
= 3 (D algdkmtrage —al) | Km0y =0, 1<ax<N,

m=-—y o=
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with 2, € @ |25| > 1, according to ordinary difference equation theory, there exist sequences

1< < uld,
(“} [k(“}].‘lj ; O ﬂ 5 ﬂ v}“} - 1’ (2.5)
1< a< N,

which are linearly independent solutions of P,(,:'}(k]ﬂ-“} = Ple)(K, zu](;}“] = 0, and span
the linear space of all such solutions. Here {k(“}}lgigp[u} denote the distinct nonzero roots

of B!C }(k} = 0 with k{ ) of multiplicity u[ ),
Lemma 2.1. Suppose that zg € € ts the root of P( }(z} = Pl (ko, 2) = 0 with mults-

plicity B and ko € €13 the root of Pi,, )(k] = P(“](k,zu) = 0 with multsplicsty v}, Then for
z and k which satisfy P®)(k, z) = 0 and are in a sufficiently small neighborhood of (ko, 20),
the formula

(z = 20)% = bk — ko)*'™ + O((k — ko)*'"*+1), b#0
is valid. Here b € Cis a constant only dependent on (2o, ko)Y.

Proof. The lemma can be easily proven by the Taylor expansion.

From (2.2)-(2.5), we know the linearly independent solutions of P(K,z)¢; = O are

#
g _ pla)
;= KUPP, 1<i<p 0586 -1,1<a< N> WY =p+r,
=1
: . . [a) {u:) 1<a<N
and they span the linear space of all such solutions, where {k;"’, | 5 <ic<ula) AT€ defined

X
et N, .
as above, and %) denote T-1(0,---,0,1,0---,0)7.
Lemma 2.22l. Suppose that Q admits o solution

UP = 23 PrIpl®) = exp(i(wot — &oz))¥ (™), z=jh, t=nr

PR
with |z| = |ko| = 1,9'®*) = T-1(0,...,0,1,0,--,0)F. Then the group velocity of exp(i(wot—
£oz) )@ defined by

(wo,€0) Adk z (ko.20)

ezists and 18 real. Furthermore, c(ko,20) = O if and only if ko 1s a multiple root of the
polynomial PL™ (k) = Pl®)(k, 25) = 0. Here k and z satisfy P1®)(k, z] =,

Definition 2.1/, Suppose that @ admits a solution
0<§<v—-1, |if|z]>1,

U’-‘=z"kj ol {u]’
§ =R 0<6< (v+1)/2, if|zo]=1.

1) Note. By asumption, Q- is invertible in I3, and the coefficient of the first term of polynomial
P2}k, 2) is not rero for kg with |kg| = 1 {and hence, by continuity, for |kg| sufficiently close to 1).



216 HSIEH FEI-PENG AND XU SHU-RONG

Here v is the multip]icity of ko as a root of P{?)(k,2z,) = 0. The strictly right-going (left-
going) and right-going (left-going) signals are defined as follows:

Table D
|zn| > 1 Izul — Ii"ul = |£u| =1 Izu| = } |En' = 1 2ol = 1 I Zp| = 1 Izu' > 1
|ko| > 1 |ku| = |ku| >1 lko| = 1 lko| = 1 |ku| =1 |ka| < 1 kol =1 Ikul <1
¢ <0 c=0 c=0 ¢ =0 c>0
| S — §=D‘P Egmin{ d =y, —  ————
strictly left-going =ve+1 | vp,04} = pp +1 strictly right-going
N ——————— e ——————————
right-going

Here ¢ = ¢(ko, 20) denotes group velocity of z 03%(“1 and v, and v, are defined as in
Theorem 2.3.2 of [2], and satisfy

v = Uy = 12, - | if 1/ is even,
Ve =vpt+l=(v+1)/20rv, =y, —1=(r—1)/2, ifrisodd.
@
Lemma 2.8!1." For all z5 € C with |z0| 2> 1, the number of linearly sndependent right-
going signals of Q@ 13 equal to Nr.

For given zy € Cwith |2p] > 1, put the right-going signals in order. By Lemma 2.3, the
general right-going solution of the form U = z3¢; admitted by @ can be written as

A= ED Zﬂik:.?&"i’n lzﬂl 2 1. (2'6)
Inserting (2.6} into the homogeneous boundary formula

yrtl = Z Slelyr-2  _p41<u<0,

o=—1

we obtain a linear system of equations

Zr[. e =

1=1
where each term in brackets is a given N,-vector.
If we write

ﬂ[r]. = (311 s JﬂNr]T:

then these equations take the form:
E(Eﬂ)ﬂ[rl =0

where E(zg} is an N, x N, matrix.
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§3. Necessary [;-stability Conditions

Theorem GKS[!. The necessary and sufficient condition for GKS-stability of Q (in
the sense of Definition 3.3 of [1]) ts that for all z € C with |z] 2 1, the matriz E(z) ss

nonsingular, t.e.

det E(z) #0, Vi|z|2>1,
Proof. See [1].

Let Q. denote the homogeneous boundary difference model
Qg2 =% QU
o=0

8
untl = E sluign=e  _y4+1<pu<0.

o==—1

Theorem GRT (Godunov-Ryabenkii, Trefethen). A necessary condition fﬁr initial and

boundary value I3-stability of Q is that the difference model Q. admits no strictly right-going
solution for all z € € with |2} > 1, where the strictly right-going solution means that the

solutton ts the linear combination of strictly right-going signals.
Proof. See Pheorems 4.2.1, 4.2.3 and 4.2.4 in'[2].

Theorem 8.1. A necessary condstion for instial and boundary value lz-stabslity of Q s
that Q. admits no sloution in the followang form:

!
Uf=zgzﬂikf\bi: a; #0, 11, |z0|21. (3.1)
=1 :
o 4

A 1 " r " *
Here for each t,4; = T~%(0,---,1,0,---,0)7 and 23k v; 15 a right-going signal of Q. When
|z0| = 1, (a) the multiplicsty of each k; as a root of Plei)(k, z0) = O s not larger than two,
and (b) for the z which is sufficiently close to 2o, the following estimate 18 satisfied

+ oo ! o
o@D = 3 |3 ki@ b2 eh/lz -zt (3.2)

j=—r+1 =1 :

where T 13 a positive constant, and z"kf(z]ﬁ (1 <1< 1) are all right-going signals of Q.

Proof. Assume the difference scheme Q. admits the solution (3.1).
If {z5| > 1, then by Lemma 2.2.1 of [2] and Theorem GRT, Q is {z-unstable. In the

following, we assume |z9| = 1.

Let z = (1 + £)zp and k;(z) satisfy Pl@i)}(k;(z),2) = 0 (1 < ¢ < I}, where ¢ is a small
enouth positive number.

By assumption (a), Lemma 2.1, and Lemma 2.2.1 and Theorem 2.3.2 of {2], we have

ki(2)} < 1, [ki(2) = Kilzo)| < Me?, 1< <1, (3.3)

where M 18 a constant.
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Choosing the 1nitial value

§
ff:zﬂZaikf[z)iﬁi, z=(14+¢€)zg, 0L o <35,

=1

and solving the Cauchy problem

Q IUn-l-l E QEUﬂ-a’

=10

U;=f;: 3=0,+1,%2,.---,0< ¢ < 3,

we have the solution

{
UP? = 2" ) ack!(2)4:.

i=1
Let
4 -

gr=UM - Y sWurTe, —r4+1<u<0, n2s. (3.4)

og=—1

Since Z a,zgk’ (z0)y; Batisfies the boundary fﬂrmula

=1
L E slrlgr=—e  _r41<u<o,

o=-1

it follows that

{ 8 i
Zﬂizokﬂzﬂ)%f’i = Z Ea;zﬁ"ﬂ“}k}(zﬂ)iﬁ; =0, —r+1<u<0,
1=1

g=-—13=1

From this formula and (3.4) and (3.3}, we obtain

g21? < (1+¢) 2“‘20,[ k() — 20k (20) |

1=1

3 ! |
e Z Za.-Sé**) [z‘”kf(z) —ggﬂk}(zﬂ)],){,ir < Mo(1 + €)*"e,

o=-—11=1

_f'klfgﬁlﬂtl

where My 18 a constant independent of «.
For any given h, set N +1 = 1/h,e = ht. Then, on the one hand, we have

N+1
lgull?er < Mok ¥~ (1+€)"e < Mok(1+€)? T+ /2, e<1, —r+1<p<0; (3.5)

=43

on the other hand, by assumption (b), we have

U2 = 112 > h/e}, (3.6)
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where 7 iz a positive constant.

From (3.5) and (3.6}, we get

|UR -+ " (1+ £)2F+1) 0|2
0 = > '
S laulier + STUFNZ TMok(1+ )2 (B0 /2 + U2 3 (1 +e)*
p=—r+l =0 S0

A (1+s1*<”+11} K. (1+h*1*f“}_.
Em‘“{rMuk’ ' 2 MoaRE P 1) ) T

2) (1+¢)?

o=0

when A — +40.

It follows that Q is initial and boundary value [z-unstable.

Theorem 8.2. A necessary condition for instial and boundary value I3-stabslity of Q 1s
that Q. admits no solution in the following form.:

:
UP = azdkivi, a#0, 1<4<1, |z|>1, (3.7)
=1
where for each t,¢; = T~H0,--,1,0,---,0) and 2kl t; s a right-going signal of Q; k; s
the simple root of P(%)(k, z) = 0. |
Proof. Assume the difference scheme Q, has the solution (3.7) with |z5] = 1. Let
z = (1 + &)z with sufficiently small . |
Similarly to (3.3), now we have

ki(2)] < 1, |ki(2) — ki(20)| < Me, 1S4 <],

where M > 0 is a constant independent of £, and z and k;(z) satisty P{“‘}(kg(z),z) = 0. .
Choosing the initial value

{
17=2") aiki(2)ts, z=(1+e€)z0, 0<0 <3,

$=1

and solving the Cauchy problem:

Q—IU_-:"+1 = Z Q#UF_#I

o=0

U? = ff, §=0,£1,42,43,:-:, 0<o <3,

J

we have the solution _
(

U;" = z" Z: ﬂ;kf(!)¢,

=1
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Let

8
gn=Us*— > SPIUPT°, —r+1<u<0, n>s.

o=-1
Then, as earlier, we get
gh[* < Mo(1 + )?"e?,
where M; > 0 is also a constant independenﬁ of €.
For any given h > 0,set N+ 1= 1/h, e = hi. Then, on the one hand, we have
N+1 .

”9;:";25; < Mpe?k Z (1+¢&)*" < Moek(1 + 5]2(ﬁ+2]/3, e<l,~-r+1<u<0; (3.8)

n—a

on the other hand, we have
0°J2 = [17°)2 > eh, (3.9

where ¢ is a positive constant independent of k.
By (3.8) and (3.9), we get

"Uﬁ+1”i (1 o E.):z{!i’+1} |Uﬂ lz

L

-
0 8 — 8
> Nguler + D 17712 rMock(1+€)2R+1)/3 4+ U012 3 (1 + £)27

J"-i—_-"l'-l"l =0 p—
>min { MM QePTHY o[ e (+abpn
B 2rMoek/3" - 2rMoAh3 ' 22¢t1(s + 1)

2 Z(l + )%

o=()

)=

when A — +0.
This has proved the theorem.

Theorem 3.8. For the difference models coupling the following difference schemes to ar-

bitrary boundary formulas, a necessary condition for I, -stability 1s the same as the necessary
and sufficient condstion for GKS-stability.

Difference schemes (We need only consider scalar difference schemes):
{(a) LF-Leap Frog:

U;H £ U;l_l = A“(U;-H - U ),
z—z"1 = da{k— k™1);
(b) CN-Crank Nicolson:

U;““ -UP = Aa(UJF_I'_Fll _ UJ‘."_‘F‘ll +UP, — U}‘—1)/4:

z—1=Aa(zk —zk™ ' + k- k1) /4;
(c) BE-Backwards Euler:

Uptl— U = xa(UnH — UPHY) /2,

z — 1= Ja(zk — 2k~ 1}/2;
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(d) UW-TUpwind:
Untl—yr = Aa(UP., —UP), if a>0,
z— 1= Aalk — 1);

(e) Bx-BOx:

yrtt L UpHl —UP = U2, = Aa(UZ,, + URN - U - U2,

z2+2k—1—k=Aa(k+2k—1-2z).

Proof. For any fixed difference scheme listed above, and for any fixed 2o with |20} = 1,
the difference scheme has only one right-going signal z2k?. It always satisfies the following
condition:

(i} k is a simple root of P(k, 2}|y=y, = 0, where P(k,z} = 0 denotes the corresponding
dispersion relation of that difference scheme; or

(ii) £k = ¢ (resp. —%}, and the multiplicity of root k is two; furhtermore, the estimate

(3.2} is satisfied.
So, by Theorems 3.2 and 3.1 and the definition of £(2), a necessary {3-stability condition
for the considered difference models is det E(z) # 0,V|z| > 1.

Theorem ?:.4. For the difference models coupling the Laz-Friedrichs difference scheme
to arbitrary-boundary formulas, a necessary lg-stability condilion 13

detE(2) #0, V |z|> 1.
Proof. The L-F acheme is
1 1 .
UFH = E(U?+1 + Uf—ﬂ ¥ E'\“( Trr —Uj_):
Its dispersion relation 1s
1
. = %(Hrl)-;- “halk - &7, (3.10)

Now we prove for all z with |z] = 1 that the roots k; of equation {3.10) are simple.

(3.10) is equivalent to
2zk = (k% + 1) + (Aa)(k* — 1).

If &y is a multiple root, then 1t satisfies
z = ko + Aako,

1.e.

ko = z/(1 + Aa). (3.11)
Inserting (3.11) into (3.10), we get
222(1+ Aa) = 2% + (1 + Aa)? + (Aa)2? — (Aa)(1 + Aa)?
= z%(1+ Aa) + (1 — Aa)(1 + Xa)?,

that 1s
22 = (1 + Aa)(1 — Aa) = 1— (aX)2
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Since Aa is real and nonzero, we must have [z] < 1. This proves that, for all z; with [z5| = 1,
the roots k of P(k, 20) = O are simple. By Theorem 3.2, this theorem follows.

Theorem 3.5. For difference models coupling the Laz- Wendroff scheme to arbitrary
boundary formulas, a necessary l;-stability condition is also

detE(z) #£0, Vz|> 1.

Proof. The proof is similar to that of Theorem 3.4.
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