l₂-STABILITY OF DIFFERENCE MODELS FOR HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS *

Hsieh Fei-peng Xu Shu-rong (Zhongshan University, Guangzhou, China)

Abstract

It is showed that, for many commonly used difference models on hyperbolic initial boundary value problems, the necessary and sufficient condition for GKS-stability (in the sense of Definition 3.3 of [1]) is a necessary condition for l_2 -stability.

§1. Introduction

Consider the mixed initial boundary value problem

$$\begin{cases} \partial U(x,t)/\partial t = A\partial U(x,t)/\partial x, & x \ge 0, \ t > 0, \\ U(x,0) = f(x), & x \ge 0, \\ U^{\mathrm{I}}(0,t) = SU^{\mathrm{II}}(0,t) + g(t), & t \ge 0. \end{cases}$$

$$(1.1)$$

Here A is a constant square matrix, and

$$U(x,t) = (u^{(1)}(x,t), \cdots, U^{(N)}(x,t))^T$$

is a vector function. Furthermore, A is diagonalizable and of the form:

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$
, with $A_1 < 0$, $A_2 > 0$. (1.2)

 $U^{I}(0,t) = (u^{(1)}, \dots, u^{(l)})^{T}$ and $U^{II}(0,t) = (u^{(l+1)}, \dots, u^{(N)})^{T}$ correspond to the partition of A, S is a rectangular matrix, and f(x) and g(t) are given functions.

We want to solve the above problem by the general consistent multistep difference model Q:

$$\begin{cases} Q_{-1}U_{j}^{n+1} = \sum_{\sigma=0}^{s} Q_{\sigma}U_{j}^{n-\sigma}, & n \geq s, \ j=1,2,3,\cdots, \\ U_{j}^{\sigma} = f_{j}^{\sigma}, & 0 \leq \sigma \leq s, \quad j=-r+1, \ -r+2,\cdots, \\ U_{\mu}^{n+1} = \sum_{\sigma=-1}^{s} S_{\sigma}^{(\mu)}U_{1}^{n-\sigma} + g_{\mu}^{n}, & -r+1 \leq \mu \leq 0, \ n \geq s. \end{cases}$$
 (1.3)

^{*} Received October 28, 1987.

Here $U_j^n \simeq U(jh, n\tau)$ denotes the difference solution, h and τ are mesh width of space step and time step, respectively. The ratio $\tau/h = \lambda$ is a constant.

$$Q_{\sigma} = \sum_{i=-r}^{p} A_{i\sigma} K^{i}, \quad KU_{j}^{n} = U_{j+1}^{n}, \quad -1 \leq \sigma \leq s$$

are difference operators with matrix coefficients, and Q_{-1} is invertible.

$$S_{\sigma}^{(\mu)} = \sum_{j=0}^{q} C_{j\sigma}^{(\mu)} K^{j}, \quad -r+1 \le \mu \le 0, \quad -1 \le \sigma \le s$$

are one-sided difference operators. The initial value f_j^{σ} and boundary value g_{μ}^n are given $(0 \le \sigma \le s, j \ge -r+1, n \ge s, -r+1 \le \mu \le 0)$. s, p, r, q are nonnegative integers. As usual, we need the following assumptions.

Assumption 1.1. The difference model (1.3) can be solved boundedly for U^{n+1} , i.e., there is a constant M > 0 sucy that, for every $G \in l_2(x)$, there is a unique solution $W \in l_2(x)$ of

$$\begin{cases} Q_{-1}W_j = G_j, & j = 1, 2, 3, \dots, \\ W_{\mu} - S_{-1}^{(\mu)}W_1 = g_{\mu}, & -r+1 \le \mu \le 0, \end{cases}$$

With
$$||W||_x^2 \le M(||G||_x^2 + h \sum_{\mu=-r+1}^0 |g_\mu|^2)$$
. Here $||W||_x^2 = \sum_{j=-r+1}^\infty |W_j|^2 h$ and $|W|^2 = \sum_{i=1}^N (W^{(i)})^2$.

Assumption 1.2. The matrices $\{A_{m\sigma}\}_{m=-r,\sigma=-1}^{p}$ are simultaneously diagonalizable.

Definition 1.1 We say the finite difference model Q is initial and boundary value l_2 -stable, if for any given time T>0, there exist constants M>0 and $\tau_0>0$ such that, for any initial value f^{σ} and boundary value $g_{\mu}(0 \le \sigma \le s, -r+1 \le \mu \le 0)$, the estimate

$$||U^n||_x^2 \le M \Big(\sum_{\mu=-r+1}^0 ||g_\mu||_{t \le T}^2 + \sum_{\sigma=0}^s ||f^\sigma||_x^2 \Big)$$

holds for all n and τ with $n\tau \leq T$, $\tau \leq \tau_0$. Here $||g_{\mu}||_{t\leq T}^2 = \sum_{n=1}^{T/\tau} |g_{\mu}|^2 k$.

The aim of this paper is to show that, for many commonly used difference models defined by (1.3), the necessary and sufficient condition for GKS-stability (in the sense of definition 3.3 of [1]) is a necessary condition for l_2 -stability.

We shall use some results of [1] and [2], and assume that the reader is familiar with those papers.

§2. Left-going and Right-going Signals

Let Q denote the difference scheme

$$Q_{-1}U_j^{n+1} = \sum_{\sigma=0}^s Q_{\sigma}U_j^{n-\sigma},$$

and let Z be the time shift operator

$$ZU_j^n=U_j^{n+1}.$$

Then Q can be written as

$$P(K,Z)U_{j}^{n} = \left[\sum_{m=-r}^{p} \left(\sum_{\sigma=0}^{s} A_{m\sigma}K^{m+r}Z^{s-\sigma} - A_{m(-1)}K^{m+r}Z^{s+1}\right)\right]U_{j}^{n} = 0.$$
 (2.1)

The dispersion relation for (2.1) is

$$\det P(k,z) = \det \sum_{m=-r}^{p} \left(\sum_{\sigma=0}^{s} A_{m\sigma} k^{m+r} z^{s-\sigma} - A_{m(-1)} k^{m+r} z^{s+1} \right) = 0, \qquad (2.2)$$

where the wave number ξ and frequency ω are defined by

$$k = \exp(-i\xi h), \quad z = \exp(i\omega \tau).$$

Assumption 2.1. Q is Cauchy stable.

Assumption 2.2. For all z_0 with $|z_0| \ge 1$, the polynomial

$$P_z(k) = P(k, z_0)$$

has nonsingular 0th and (r+p)th coefficients.

Throughout this paper, we assume Q and \bar{Q} satisfy assumptions 1.1, 1.2, 2.1, and 2.2. Under assumption 1.2, there exists a nonsingular matrix T, such that

$$\bar{A}_{m\sigma} = TA_{m\sigma}T^{-1} = \operatorname{diag}(a_{m\sigma}^{(1)}, \cdots, a_{m\sigma}^{(N)}), -r \leq m \leq p, -1 \leq \sigma \leq s$$

with $a_{m\sigma}^{(\alpha)} \in \mathbb{R}$ for all $-r \le m \le p, 1 \le \alpha \le N, -1 \le \sigma \le s$.

We denote TU_j^n by \bar{U}_j^n , and TPT^{-1} by \bar{P} . Then we have

$$P(K,Z)U_{j}^{n} = \left[\sum_{m=-r}^{p} \left(\sum_{\sigma=0}^{s} \bar{A}_{m\sigma} K^{m+r} Z^{s-\sigma} - \bar{A}_{m(-1)} K^{m+r} Z^{s+1}\right)\right] U_{j}^{n} = 0.$$

Now P is a bivariate polynomial with diagonal matrix coefficients. This system is equivalent to the N scalar systems

$$\bar{P}^{(\alpha)}(K,Z)(\bar{U}^{(\alpha)})_{j}^{n} = \sum_{m=-r}^{p} \left(\sum_{\sigma=0}^{s} a_{m\sigma}^{(\alpha)} K^{m+r} Z^{s-\sigma} - a_{m(-1)}^{(\alpha)} K^{m+r} Z^{s+1} \right) (\bar{U}^{(\alpha)})_{j}^{n} = 0,$$

$$1 \le \alpha \le N. \tag{2.3}$$

By assumption 2.2, for each scalar ordinary difference equation

$$\begin{split} \bar{P}^{(\alpha)}(K,z_0)(\bar{U}^{(\alpha)})_j^n \\ &= \sum_{m=-r}^p \Big(\sum_{\sigma=0}^s a_{m\sigma}^{(\alpha)} K^{m+r} z_0^{s-\sigma} - a_{m(-1)}^{(\alpha)} K^{m+r} z_0^{s+1} \big) (\bar{U}^{(\alpha)})_j^n = 0, \quad 1 \le \alpha \le N, \end{split}$$

with $z_0 \in \mathbb{C}|z_0| \ge 1$, according to ordinary difference equation theory, there exist sequences

$$\bar{\phi}_{j}^{(\alpha)} = [k_{i}^{(\alpha)}]^{j} j^{\delta}, \qquad 1 \leq i \leq \mu^{(\alpha)}, \\ 0 \leq \delta \leq \nu_{i}^{(\alpha)} - 1, \\ 1 \leq \alpha \leq N, \qquad (2.5)$$

which are linearly independent solutions of $P_{z_0}^{(\alpha)}(k)\bar{\phi}_j^{(\alpha)}=\bar{P}^{(\alpha)}(K,z_0)\bar{\phi}_j^{(\alpha)}=0$, and span the linear space of all such solutions. Here $\{k_i^{(\alpha)}\}_{1\leq i\leq \mu^{(\alpha)}}$ denote the distinct nonzero roots of $\bar{P}_{z_0}^{(\alpha)}(k)=0$ with $k_i^{(\alpha)}$ of multiplicity $\nu_i^{(\alpha)}$.

Lemma 2.1. Suppose that $z_0 \in C$ is the root of $P_{k_0}^{(\alpha)}(z) = P^{(\alpha)}(k_0, z) = 0$ with multiplicity β and $k_0 \in C$ is the root of $P_{k_0}^{(\alpha)}(k) = P^{(\alpha)}(k, z_0) = 0$ with multiplicity $\nu^{(\alpha)}$. Then for z and k which satisfy $P^{(\alpha)}(k, z) = 0$ and are in a sufficiently small neighborhood of (k_0, z_0) , the formula

$$(z-z_0)^{\beta}=b(k-k_0)^{\nu^{(\alpha)}}+O((k-k_0)^{\nu^{(\alpha)}+1}), \quad b\neq 0$$

is valid. Here $b \in C$ is a constant only dependent on $(z_0, k_0)^{1}$.

Proof. The lemma can be easily proven by the Taylor expansion.

From (2.2)-(2.5), we know the linearly independent solutions of $P(K,z_0)\phi_j=0$ are

$$\phi_j = [k_i^{(\alpha)}]^j j^{\delta} \psi^{(\alpha)}, \quad 1 \leq i \leq \mu^{(\alpha)}, 0 \leq \delta \leq \nu_i^{(\alpha)} - 1, 1 \leq \alpha \leq N, \sum_{i=1}^{\mu^{(\alpha)}} \nu_i^{(\alpha)} = p + r,$$

and they span the linear space of all such solutions, where $\{k_i^{(\alpha)}, \nu_j^{(\alpha)}\}_{1 \leq i \leq \mu^{(\alpha)}}^{1 \leq \alpha \leq N}$ are defined as above, and $\psi^{(\alpha)}$ denote $T^{-1}(0, \cdots, 0, 1, 0 \cdots, 0)^T$.

Lemma 2.2^[2]. Suppose that Q admits a solution

$$U_j^n = z_0^n k_0^j \psi^{(\alpha)} = \exp(i(\omega_0 t - \xi_0 x)) \psi^{(\alpha)}, \quad x = jh, \ t = n\tau$$

with $|z_0|=|k_0|=1, \psi^{(\alpha)}=T^{-1}(0,\cdots,0,1,0,\cdots,0)^T$. Then the group velocity of $\exp(i(\omega_0 t-\xi_0 x))\psi^{(\alpha)}$ defined by

$$c(k_0,z_0)=\frac{d\omega}{d\xi}\Big|_{(\omega_0,\xi_0)}=-\frac{1}{\lambda}\frac{dz}{dk}\frac{k}{z}\Big|_{(k_0,z_0)}$$

exists and is real. Furthermore, $c(k_0, z_0) = 0$ if and only if k_0 is a multiple root of the polynomial $P_{z_0}^{(\alpha)}(k) = P^{(\alpha)}(k, z_0) = 0$. Here k and z satisfy $P^{(\alpha)}(k, z) = 0$.

Definition $2.1^{|2|}$. Suppose that Q admits a solution

$$U_j^n = z_0^n k_0^j j^{\delta} \psi^{(\alpha)}, \quad 0 \le \delta \le \nu - 1, \quad \text{if } |z_0| > 1,$$
$$0 \le \delta \le (\nu + 1)/2, \quad \text{if } |z_0| = 1.$$

Note. By asumption, Q_{-1} is invertible in l_2 , and the coefficient of the first term of polynomial $P^{(\alpha)}(k_0,z)$ is not zero for k_0 with $|k_0|=1$ (and hence, by continuity, for $|k_0|$ sufficiently close to 1).

Here ν is the multiplicity of k_0 as a root of $P^{(\alpha)}(k,z_0)=0$. The strictly right-going (left-going) and right-going (left-going) signals are defined as follows:

Table D

left-going			g			ght-going		
strictly left-going			$\delta = \nu_p \\ = \nu_r + 1$	$\delta \leq \min\{ \nu_p, \nu_r \}$	$\delta = \nu_r \\ = \nu_p + 1$		strictly right-going	
	c < 0		c = 0	c = 0	c = 0		c > 0	2000
$\begin{vmatrix} z_0 \end{vmatrix} > 1 \\ k_0 > 1$	$ z_0 =1$ $ k_0 =1$	$ z_0 =1$ $ k_0 >1$	$\begin{vmatrix} z_0 = 1 \\ k_0 = 1 \end{vmatrix}$	$\begin{vmatrix} z_0 = 1 \\ k_0 = 1 \end{vmatrix}$	$\begin{aligned} z_0 &= 1 \\ k_0 &= 1 \end{aligned}$	$\begin{vmatrix} z_0 = 1 \\ k_0 < 1 \end{vmatrix}$	$\begin{aligned} z_0 &= 1 \\ k_0 &= 1 \end{aligned}$	$\begin{vmatrix} z_0 > 1 \\ k_0 < 1 \end{vmatrix}$

Here $c = c(k_0, z_0)$ denotes group velocity of $z_0^n k_0^j j^\delta \psi^{(\alpha)}$, and ν_r and ν_p are defined as in Theorem 2.3.2 of [2], and satisfy

$$u_r = \nu_p = \nu/2,$$
 if ν is even,
$$\nu_r = \nu_p + 1 = (\nu + 1)/2 \text{ or } \nu_r = \nu_p - 1 = (\nu - 1)/2, \text{ if } \nu \text{ is odd.}$$

Lemma 2.3^[1]. For all $z_0 \in C$ with $|z_0| \ge 1$, the number of linearly independent right-going signals of Q is equal to Nr.

For given $z_0 \in C$ with $|z_0| \ge 1$, put the right-going signals in order. By Lemma 2.3, the general right-going solution of the form $U_j^n = z_0^n \phi_j$ admitted by Q can be written as

$$U_j^n = z_0^n \sum_{i=1}^{Nr} a_i k_i^j j^{\delta_i} \psi_i, \quad |z_0| \ge 1.$$
 (2.6)

Inserting (2.6) into the homogeneous boundary formula

$$U_{\mu}^{n+1} = \sum_{\sigma=-1}^{s} S_{\sigma}^{(\mu)} U_{1}^{n-\sigma}, \quad -r+1 \leq \mu \leq 0,$$

we obtain a linear system of equations

$$\sum_{i=1}^{N_r} [\cdots] a_i = 0,$$

where each term in brackets is a given N_r -vector.

If we write

$$a^{[r]}=(a_1,\cdots,a_{Nr})^T,$$

then these equations take the form:

$$E(z_0)a^{[r]}=0,$$

where $E(z_0)$ is an $N_r \times N_r$ matrix.

§3. Necessary l2-stability Conditions

Theorem GKS^[1]. The necessary and sufficient condition for GKS-stability of \bar{Q} (in the sense of Definition 3.3 of [1]) is that for all $z \in C$ with $|z| \geq 1$, the matrix E(z) is nonsingular, i.e.

$$\det E(z) \neq 0, \quad \forall |z| \geq 1.$$

Proof. See [1].

Let Q. denote the homogeneous boundary difference model

$$\begin{cases} Q_{-1}U_j^{n+1} = \sum_{\sigma=0}^{s} Q_{\sigma}U_j^{n-\sigma}, \\ \\ U_{\mu}^{n+1} = \sum_{\sigma=-1}^{s} S_{\sigma}^{(\mu)}U_1^{n-\sigma}, \quad -r+1 \leq \mu \leq 0. \end{cases}$$

Theorem GRT (Godunov-Ryabenkii, Trefethen). A necessary condition for initial and boundary value l_2 -stability of \bar{Q} is that the difference model Q_* admits no strictly right-going solution for all $z \in C$ with $|z| \geq 1$, where the strictly right-going solution means that the solution is the linear combination of strictly right-going signals.

Proof. See Theorems 4.2.1, 4.2.3 and 4.2.4 in [2].

Theorem 3.1. A necessary condition for initial and boundary value l_2 -stability of Q is that Q_* admits no sloution in the following form:

$$U_j^n = z_0^n \sum_{i=1}^l a_i k_i^j \psi_i, \quad a_i \neq 0, \quad 1 \leq i \leq l, \quad |z_0| \geq 1. \tag{3.1}$$

Here for each $i, \psi_i = T^{-1}(0, \dots, 1, 0, \dots, 0)^T$ and $z_0^n k_i^j \psi_i$ is a right-going signal of Q. When $|z_0| = 1$, (a) the multiplicity of each k_i as a root of $P^{(\alpha_i)}(k, z_0) = 0$ is not larger than two, and (b) for the z which is sufficiently close to z_0 , the following estimate is satisfied

$$||U^{0}(z)||_{x}^{2} = \sum_{j=-r+1}^{+\infty} \left| \sum_{i=1}^{l} a_{i} k_{i}^{j}(z) \psi_{i} \right|^{2} h \ge \bar{c}h/|z-z_{0}|^{\frac{1}{2}}, \qquad (3.2)$$

where \bar{c} is a positive constant, and $z^n k_i^j(z) \psi_i$ $(1 \leq i \leq l)$ are all right-going signals of Q.

Proof. Assume the difference scheme Q_* admits the solution (3.1).

If $|z_0| > 1$, then by Lemma 2.2.1 of [2] and Theorem GRT, \bar{Q} is l_2 -unstable. In the following, we assume $|z_0| = 1$.

Let $z = (1 + \varepsilon)z_0$ and $k_i(z)$ satisfy $P^{(\alpha_i)}(k_i(z), z) = 0$ $(1 \le i \le l)$, where ε is a small enouth positive number.

By assumption (a), Lemma 2.1, and Lemma 2.2.1 and Theorem 2.3.2 of [2], we have

$$|k_i(z)| < 1, |k_i(z) - k_i(z_0)| \le M \varepsilon^{\frac{1}{2}}, 1 \le i \le l,$$
 (3.3)

where M is a constant.

Choosing the initial value

$$f_j^{\sigma} = z^{\sigma} \sum_{i=1}^{l} a_i k_i^j(z) \psi_i, \quad z = (1+\varepsilon) z_0, \quad 0 \le \sigma \le s,$$

and solving the Cauchy problem

$$\begin{cases} Q_{-1}U_j^{n+1} = \sum_{\sigma=0}^s Q_{\sigma}U_j^{n-\sigma}, \\ U_j^{\sigma} = f_j^{\sigma}, \quad j = 0, \pm 1, \pm 2, \cdots, 0 \le \sigma \le s, \end{cases}$$

we have the solution

$$U_j^n = z^n \sum_{i=1}^l a_i k_i^j(z) \psi_i.$$

Let

$$g_{\mu}^{n} = U_{\mu}^{n+1} - \sum_{\sigma=-1}^{s} S_{\sigma}^{(\mu)} U_{1}^{n-\sigma}, \quad -r+1 \le \mu \le 0, \quad n \ge s.$$
 (3.4)

Since $\sum_{i=1}^{l} a_i z_0^n k_i^j(z_0) \psi_i$ satisfies the boundary formula: $U_{\mu}^{n+1} = \sum_{\sigma}^{\sigma} S_{\sigma}^{(\mu)} U_1^{n-\sigma}, \quad -r+1 \le \mu \le 0,$

$$U_{\mu}^{n+1} = \sum_{\sigma=-1}^{s} S_{\sigma}^{(\mu)} U_{1}^{n-\sigma}, \quad -r+1 \leq \mu \leq 0,$$

it follows that

$$\sum_{i=1}^{l} a_i z_0 k_i^{\mu}(z_0) \psi_i - \sum_{\sigma=-1}^{s} \sum_{i=1}^{l} a_i z_0^{-\sigma} S_{\sigma}^{(\mu)} k_i^{1}(z_0) \psi_i = 0, \quad -r+1 \leq \mu \leq 0.$$

From this formula and (3.4) and (3.3), we obtain

$$egin{align} |g^n_{\mu}|^2 & \leq (1+arepsilon)^{2n} \Big| \sum_{i=1}^l a_i \Big[z k_i^{\mu}(z) - z_0 k_i^{\mu}(z_0) \Big] \psi_i \ & - \sum_{\sigma=-1}^s \sum_{i=1}^l a_i S_{\sigma}^{(\mu)} \Big[z^{-\sigma} k_i^1(z) - z_0^{-\sigma} k_i^1(z_0) \Big] \psi_i \Big|^2 \leq M_0 (1+arepsilon)^{2n} arepsilon, \ & -r+1 \leq \mu \leq 0, \end{aligned}$$

where M_0 is a constant independent of ε .

For any given h, set $\tilde{N} + 1 = 1/h$, $\epsilon = h^{\frac{1}{2}}$. Then, on the one hand, we have

$$||g_{\mu}||_{t \leq \lambda}^{2} \leq M_{0}k \sum_{n=s}^{\bar{N}+1} (1+\varepsilon)^{2n} \varepsilon \leq M_{0}k (1+\varepsilon)^{2(\bar{N}+1)}/2, \quad \varepsilon < 1, \ -r+1 \leq \mu \leq 0; \quad (3.5)$$

on the other hand, by assumption (b), we have

$$||U^0||_x^2 = ||f^0||_x^2 \ge \bar{c}h/\varepsilon^{\frac{1}{2}},\tag{3.6}$$

where \tilde{c} is a positive constant.

From (3.5) and (3.6), we get

$$\frac{\|U^{\bar{N}+1}\|_{x}^{2}}{\sum_{\mu=-r+1}^{0}\|g_{\mu}\|_{t\leq\lambda}^{2}+\sum_{\sigma=0}^{s}\|f^{\sigma}\|_{x}^{2}} \geq \frac{(1+\varepsilon)^{2(\bar{N}+1)}\|U^{0}\|_{x}^{2}}{rM_{0}k(1+\varepsilon)^{2(\bar{N}+1)}/2+\|U^{0}\|_{x}^{2}\sum_{\sigma=0}^{s}(1+\varepsilon)^{2\sigma}} \\
\geq \min\left\{\frac{\|U^{0}\|_{x}^{2}}{rM_{0}k}, \frac{(1+\varepsilon)^{2(\bar{N}+1)}}{2\sum_{\sigma=0}^{s}(1+\varepsilon)^{2}}\right\} \geq \min\left\{\frac{\bar{c}}{rM_{0}\lambda h^{\frac{1}{4}}}, \frac{(1+h^{\frac{1}{2}})^{2/h}}{2^{2s+1}(s+1)}\right\} \longrightarrow +\infty, \\
\text{when } h \to +0.$$

It follows that \bar{Q} is initial and boundary value l_2 -unstable.

Theorem 3.2. A necessary condition for initial and boundary value l_2 -stability of Q is that Q_* admits no solution in the following form:

$$U_j^n = \sum_{i=1}^l a_i z_0^n k_i^j \psi_i, \quad a_i \neq 0, \quad 1 \leq i \leq l, \quad |z_0| \geq 1, \tag{3.7}$$

where for each $i, \psi_i = T^{-1}(0, \dots, 1, 0, \dots, 0)$ and $z_0^n k_i^j \psi_i$ is a right-going signal of $Q; k_i$ is the simple root of $P^{(\alpha_i)}(k, z_0) = 0$.

Proof. Assume the difference scheme Q_* has the solution (3.7) with $|z_0| = 1$. Let $z = (1 + \varepsilon)z_0$ with sufficiently small ε .

Similarly to (3.3), now we have

$$|k_i(z)| < 1$$
, $|k_i(z) - k_i(z_0)| < M\varepsilon$, $1 \le i \le l$,

where M>0 is a constant independent of ε , and z and $k_i(z)$ satisfy $P^{(\alpha_i)}(k_i(z),z)=0$. Choosing the initial value

$$f_j^{\sigma} = z^{\sigma} \sum_{i=1}^{l} a_i k_i^j(z) \psi_i, \quad z = (1+\epsilon) z_0, \quad 0 \le \sigma \le s,$$

and solving the Cauchy problem:

$$\begin{cases} Q_{-1}U_j^{n+1} = \sum_{\sigma=0}^s Q_{\sigma}U_j^{n-\sigma}, \\ U_j^{\sigma} = f_j^{\sigma}, \quad j = 0, \pm 1, \pm 2, \pm 3, \cdots, \quad 0 \le \sigma \le s, \end{cases}$$

we have the solution

$$U_j^n = z^n \sum_{i=1}^l a_i k_i^j(z) \psi_i.$$

Let

$$g_{\mu}^{n} = U_{\mu}^{n+1} - \sum_{\sigma=-1}^{s} S_{\sigma}^{(\mu)} U_{1}^{n-\sigma}, \quad -r+1 \leq \mu \leq 0, \quad n \geq s.$$

Then, as earlier, we get

$$|g_{\mu}^n|^2 \leq M_0(1+\varepsilon)^{2n}\varepsilon^2,$$

where $M_0 > 0$ is also a constant independent of ϵ .

For any given h>0, set $\bar{N}+1=1/h$, $\varepsilon=h^{\frac{1}{2}}$. Then, on the one hand, we have

$$\|g_{\mu}\|_{t\leq\lambda}^{2}\leq M_{0}\varepsilon^{2}k\sum_{n=s}^{\bar{N}+1}(1+\varepsilon)^{2n}\leq M_{0}\varepsilon k(1+\varepsilon)^{2(\bar{N}+2)}/3, \quad \varepsilon<1, -r+1\leq\mu\leq0; \quad (3.8)$$

on the other hand, we have

$$||U^0||_x^2 = ||f^0||_x^2 \ge \bar{c}h, \tag{3.9}$$

where \bar{c} is a positive constant independent of h.

By (3.8) and (3.9), we get

$$\frac{\|U^{\bar{N}+1}\|_{x}^{2}}{\sum_{\mu=-r+1}^{0} \|g_{\mu}\|_{t\leq\lambda}^{2} + \sum_{\sigma=0}^{s} \|f^{\sigma}\|_{x}^{2}} \ge \frac{(1+\varepsilon)^{2(\bar{N}+1)} \|U^{0}\|_{x}^{2}}{rM_{0}\varepsilon k(1+\varepsilon)^{2(\bar{N}+1)}/3 + \|U^{0}\|_{x}^{2} \sum_{\sigma=0}^{s} (1+\varepsilon)^{2\sigma}} \\
\ge \min\left\{\frac{\|U^{0}\|_{x}^{2}}{2rM_{0}\varepsilon k/3}, \frac{(1+\varepsilon)^{2(\bar{N}+1)}}{2\sum_{\sigma=0}^{s} (1+\varepsilon)^{2\sigma}}\right\} \ge \min\left\{\frac{3\bar{c}}{2rM_{0}\lambda h^{\frac{1}{2}}}, \frac{(1+h^{\frac{1}{2}})^{2/h}}{2^{2s+1}(s+1)}\right\} \longrightarrow +\infty,$$

when $h \rightarrow +0$.

This has proved the theorem.

Theorem 3.3. For the difference models coupling the following difference schemes to arbitrary boundary formulas, a necessary condition for l_2 -stability is the same as the necessary and sufficient condition for GKS-stability.

Difference schemes (We need only consider scalar difference schemes):

(a) LF-Leap Frog:

$$U_j^{n+1} - U_j^{n-1} = \lambda a (U_{j+1}^n - U_{j-1}^n),$$

$$z - z^{-1} = \lambda a (k - k^{-1});$$

(b) CN-Crank Nicolson:

$$U_{j}^{n+1} - U_{j}^{n} = \lambda a \left(U_{j+1}^{n+1} - U_{j-1}^{n+1} + U_{j+1}^{n} - U_{j-1}^{n} \right) / 4,$$

$$z - 1 = \lambda a \left(zk - zk^{-1} + k - k^{-1} \right) / 4;$$

(c) BE-Backwards Euler:

$$U_j^{n+1} - U_j^n = \lambda a \left(U_{j+1}^{n+1} - U_{j-1}^{n+1} \right) / 2,$$

$$z - 1 = \lambda a \left(zk - zk^{-1} \right) / 2;$$

(d) UW-Upwind:

$$U_j^{n+1} - U_j^n = \lambda a (U_{j+1}^n - U_j^n), \text{ if } a > 0,$$

 $z - 1 = \lambda a (k - 1);$

(e) Bx-BOx:

$$U_j^{n+1} + U_{j+1}^{n+1} - U_j^n - U_{j+1}^n = \lambda a (U_{j+1}^n + U_{j+1}^{n+1} - U_j^n - U_j^{n+1}),$$

$$z + zk - 1 - k = \lambda a (k + zk - 1 - z).$$

Proof. For any fixed difference scheme listed above, and for any fixed z_0 with $|z_0| = 1$, the difference scheme has only one right-going signal $z_0^n k^j$. It always satisfies the following condition:

- (i) k is a simple root of $P(k,z)|_{z=z_0}=0$, where P(k,z)=0 denotes the corresponding dispersion relation of that difference scheme; or
- (ii) k = i (resp. -i), and the multiplicity of root k is two; furthermore, the estimate (3.2) is satisfied.

So, by Theorems 3.2 and 3.1 and the definition of E(z), a necessary l_2 -stability condition for the considered difference models is $\det E(z) \neq 0, \forall |z| \geq 1$.

Theorem 3.4. For the difference models coupling the Lax-Friedrichs difference scheme to arbitrary-boundary formulas, a necessary l2-stability condition is

$$\det E(z) \neq 0, \quad \forall |z| \geq 1.$$

Proof. The L-F scheme is

$$U_{j}^{n+1} = \frac{1}{2} (U_{j+1}^{n} + U_{j-1}^{n}) + \frac{1}{2} \lambda a (U_{j+1}^{n} - U_{j-1}^{n}).$$

Its dispersion relation is

$$z = \frac{1}{2}(k+k^{-1}) + \frac{1}{2}\lambda a(k-k^{-1}). \tag{3.10}$$

Now we prove for all z with |z| = 1 that the roots k_i of equation (3.10) are simple. (3.10) is equivalent to

$$2zk = (k^2 + 1) + (\lambda a)(k^2 - 1).$$

If k_0 is a multiple root, then it satisfies

$$z = k_0 + \lambda a k_0$$

i.e.

$$k_0 = z/(1 + \lambda a).$$
 (3.11)

Inserting (3.11) into (3.10), we get

$$2z^{2}(1 + \lambda a) = z^{2} + (1 + \lambda a)^{2} + (\lambda a)z^{2} - (\lambda a)(1 + \lambda a)^{2}$$
$$= z^{2}(1 + \lambda a) + (1 - \lambda a)(1 + \lambda a)^{2},$$

that is

$$z^2 = (1 + \lambda a)(1 - \lambda a) = 1 - (a\lambda)^2$$
.

Since λa is real and nonzero, we must have |z| < 1. This proves that, for all z_0 with $|z_0| = 1$, the roots k of $P(k, z_0) = 0$ are simple. By Theorem 3.2, this theorem follows.

Theorem 3.5. For difference models coupling the Lax-Wendroff scheme to arbitrary boundary formulas, a necessary l2-stability condition is also

$$\det E(z) \neq 0, \quad \forall |z| \geq 1.$$

Proof. The proof is similar to that of Theorem 3.4.

References

- [1] B.Custafsson, H.-O.Kreiss and A. Sundstrom, Stability theory of difference approximations for mixed initial boundary value problems (II), Math. Comp., 26 (1972), 649-686.
- [2] L.N. Trefethen, Wave propagation and stability for finite difference schemes, PhD diss., Dept. of Computer Sci. Stanford Univ., 1982.
- [3] L.N. Trefethen, Instability of difference models for hyperbolic initial boundary value problems, Comm. Pure Appl. Math., 37 (1984), 329-367.
- [4] H.-O.Kreiss, Stability theory for difference approximations of mixed initial boundary value problems (I), Math. Comp., 22 (1968), 703-714.
- [5] S.Osher, Stability of parabolic difference approximations to certain mixed initial boundary value problems, Math. Comp., 26 (1972), 13-39.