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INCOMPLETE SEMIITERATIVE METHODS FOR SOLVING
OPERATOR EQUATIONS IN BANACH SPACE*Y

Kuang Jiao—-xun
(Shanghai Normal University, Shanghas, Ching)

Abstract

There are several methods for solving operator equations in a Banach space. The
successive approximation methods require the spectral radius of the iterative operator
be less than 1 for convergence.

In this paper, we try to use the inccmplete semiiterative methods to solve a linear
operator equation in Banach space. Usually the special semiiterative methods are con--
vergent even when the spectral radius of the iterative operator of an operator equation
is greater than 1. |

» §1. Introduction

[ 3

Let X be a complex Banach space. The set of all bounded linear operators from X
into X is denoted by B[X] which is also a Banach space. We consider the linear operator

equation
Az = b, (1.1)

where A € B[X] and b € X is given. If A=! € B[X] then the solution Z = A™*b of equation
(1.1) exists uniquely. To study the successive approximation methods and semiitterative
methods, we rewrite equation (1.1) in a fixed point form

g=T&+ (1.2)

where 7' € B[X] and f € X. -

Let o(T) be the spectrum of T. Then for equation (1.2} and therefore equation (1.1)
there exists an unique solution if and only if 1&7(T). We assume 1€o(T) and apply the
successive approximation methed to solve the foliowing operator equation

# I:TI+f.

The 1terative sequence

i

mm+1—_—T:nm+f=T"‘+lmn+(ZT)f, m>0 zo€X (1.3)
1 =0

converges for any zg € X if and only if the solution of equation (1.2) has a Neumann

eXpansion i
% = (ZT‘) f. (1.4)

==
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But the Neumann series o
2T
t=0
converges if and only if the spectral radius ra(T) of T satisfies

ro(T) < 1. {1.5)

This is a very strict conditioh for operator T.

We denote by 7 (T') the family of all functions which are analytic on some neighbour-
hood of ¢(T} (the neighbourhood need not be connected, and can depend on the particular
function f € 7(T)). Let T € B[X], f € F(T) and let V be an open subset of C whose
boundary B consists of a finite number of rectifiable Jordan curvers. We assume that B is

oriented. Suppose V D o(T) and V U B is contained in the analytic domain of f. Then the
operator f(T') is defined by equation

1) =5z [ 10 -1y~tan (1.6)
Proposition 119, Let T e B[X] and let f € F(T). Then
f(e(T)) = o(£(T)), (1.7)
and hence
2 ra(T)" = ro(T"), n=12,. .., (1.8)

§2. Incomplete Semiiterative Methods

Given a linear equation Az = b, where A € B{X],b € X, we rewrite Az = b in a fixed
point form

z=Tz+ f, (2.1)

where T € B[X]|,f € X and 1€0(T). Corresponding to the successive approximation
method

Im =Tz, + f, (2.2)
if we define the error vector and the residual vector as
m 1= L= Ty Ty = f— (I = T)z,y, (2.3)
then there holds
em =T €y, T = T™rg. (2.3)

Following Vargel4! we define a sernliterative method (SIM} with respect to iterative method
(2.2) by

i
Yo '= ) Tmiti, m 20, (2.4)
=0
where the infinite lower triangular matrix

I' T00 ]

Tio #11 O

il
&=y ‘?Tfm ?l ﬂ.ﬂ : (2.5)
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satisfies

i Men i — 1. (26)

1=K

The associated sequence of polynomial derived from the rows of triangular matrix P 1s

rt
pTH(}‘) = Z wm,i}‘i: m 2 0: (2.7)
i=0 _
and satisfies the condition
pm(1) = 1.

If we mmtroduce another error vector and another residual vector
Em- = — Y FI'TI- o f il (I_ T)yﬂll m > 0: (2'3)

then there holds
B = Pl tny Py =1 [Thrg;, w20, (2.9)

For a SIM, we can rewrite (2.4) in matrix form:

< -y e e

Yo oy
i # Y1 |
Y2 = 2

L & . Ny

As in the finite-dimensional space, it can be shown that

W b T RL R B L B L R S

l.e.,
yrie— 1 .
T =2Zo+ ) m, m>1 (2.10)
t=0
or
m—1 .
tm=go+{ Y T fre, m21 (2.11)
1=0
and
I = To+ (I = T]"lrg. (212)
m—1
The connection between {z,,}, > 0, and the terms of series zg+ Z r; can be expressed
1=0
in matrix notation simply as
- g ]
g | " By ] 1 1 O
L1 To . 1 1

Tao —_— S ri 3 With S — : : , . ' (2.13)
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The connection between sequence {z4,ry,71,---} and sequence {v0,v1,y2, -} can be
also expressed in mdtrix notation

Yo A 'I |' To
. Y1 | ro
i"!s% 30, — P To = .PS ry F (2. 14)
. g i
Let 5
: |
I tg Too 0
¢ r ’
R=Pg=] " BE T (2.15)

be another infinite lower triangular matrix. From ¢ we can introduce a sequence of poly-

nomials
m—-1

‘fm—l(}‘) — E rm....]_":'}li. (216)
+1=0
’
From (2.3') and (2.14) we have
Ym = Zo + gm-1(T)ro. (2.17)

Using (2.12) and (2.17) we can conclude that the y,, defined in (2.17) is a good approx-
imation for solution % if g, (T) approximates well

g{Z) = [d T %

How to choose these polynomials g, 1(A) is a very interesting problem in this paper.
Before answering this question, we give the following

Definition 1. A semiitierative method (2.4) is called an incomplete semisterative method
(ISIM) with respect to the subsequence < my > of {0,1,2,---}, if ppu(A) # O, for all m €
< my >, 1e., if there exist nonzero elements in the mth row of matriz P, then m €< m, >,

Proposition 2. Let P := [ij)mgn,ﬂ < 7 £ m, be an infinite lower triangular matrix

satisfying Z#rm,; =1 me< my >and 7 = 0(i = 0,1, --,m) if m& < m; >,
i=1

Let @ = PS be defined by (2.15). Then corresponding to the sequence of polynocmials

{Pm(A) }m>0,m €< m; >, of matrix P and {gm-1(A)}m>1,m E< m; >, of matrix Q there

hold

dm-1(A) =[1-p(A)]/(1-]), m>0,me<m,>, g—1(A) := 0,

and
Pm(A) =1—(1-Agm_1(2) m>0, me<m;>, g-1{A) := 0. (2.18)

The proof of Proposition 2 is similar to the proof in paper [1]. Let g{A) = 1/(1 — A).
Suppoge ¢m—1(A) (m €< my >) is an approximation polynomial of function g(A) in an open
set {} C C' in some norm sense, then we denote g,,,_1(A) ~ g(A) in 0.
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Theorem 1. Let T € B|X],1€0(T) and q,,—1{)) ~ g(}) in a bounded region 0 D a(T).

M

Let pro{A) = 1= (1 — Ngm_1(}) = Zfrm,-,li and y,, = Zwm;mi for any m €< my; >.
Then there ezists a posstive number (’f’?f%) such that S
lym — 2f| < C(02) maxX {gm-1(A) = g(A)] |ofl- (2.19)
Furthermore |
lm = 211 < Jaf{C(0) max gm-1(3) — 9(A) } ol (2:20

Proof. From (2.12) and (2.17), we have

lym — Z|| < "‘?m-l(T) =~ g{TH llroll-

Let f(A) = g(A) — gm-1(2) and B be the boundary of {1. Then, by {1.6) we have (assume
that 1&€0)

f0) = 5z [ TN -T)

The resolvent Ry = (A~T)~! is analytic on B which is a compact set of C. Hence || Ry|| < ¢,
for any B, where C) is a positive constant. Let ' be the measure of B, then we have

B < =CiT max{gm-1(3) - g(A)] = C(0) max lgm-1(3) - o(A)}

Using the maximum modulus principle, we obtain inequality (2.19). Since the left-hand
side of (2.19) is independent of o{T), inequality (2.19) implies iaequality (2.20) and thus
completes the proof of Theorem 1.

Now we will construct a sequence of polynomials which is a good approximation of g(A)

for a suitable parameter a.

Let
Yo = a,
Y1 = ‘Pﬂ[z o L— )‘)‘Pﬂ]:

Pm+1 = Pml2~ (1 — A)pom|, m>0. (2.21)
For the difference between ,,(A) and g(A} we have

Theorem 2. Let ] be a compact set in C and 1&0). Suppose sup{|a(l —A)—1|: ) €
1)} = q for fized « € C. Then

_ _ 2™
”?5m gllﬂ,m < ?E%{lﬂl )‘,}q ) (2'22}

where g(A) = 1/(1 — A).
Proof. Since
(1= A)pm+1{A) =1 = (1~ A)pm(A)2 - (1 - A)pm(A)] - 1
=—[(1=2A)em(}) - 1J°
= ~{(1=Npm-1(2) - 1

=—[(1=X)eo(d) - 177, (2.22)



338 KUANG JIAO-XUN

we have '
12 = Mlem+12) — glA)) = ={(1 - A)po — 1P,
[emr1(3) = 9(N)] < max{1/j1 - A}g?™",
and

m+ 1
lom+1(A) = glla.co < max{1/|1—A[}¢?
This is the required inequality.
From (2.21) we can define an incomplete semiiterative method:
Let gm-1(A) = m-1(A)(g-1 := 0) be a sequence of polynomials, The Pm(A) 18 defined
as

Pm(A) =1=(1=A)gm_1(A) = mpo + Ta1d + - + Fpgm1 A" ' m > 1, = 2™,
po{A) := 1.

Hence the subset < m; >= {0,1,2,4,8, -- -} and the associated infinite lower triangular
matrix is

Moo
Tio ™1 O
20 W21 T3

Man TAq1 Ty Ta3 T4a4

Theorem 8. Let the ISIM be defined by (2.4) for m €< m; > and the relative infinste
lower triangular matriz P be given as in (2.23). Suppose T € B|H)], 1€0(T) and T* = T.
Then

ﬁm—l

lym = 2] < max {1/]1 = Al}g*" "irol), (2.24)

where H 13 a Hilbert space.
Proof. From (2.12) and {2.17) we have

lym = 2]| < llgm-1(T) — o(T)| lIroll.

Since f(A) = g(A)} — gm—1(A) i3 a continuous function on o(T), so

[9(7) = gm(T)]| = ;max. lo(3) - ¢!

Then, using Theorem 2 we obtain the required inequality (2.24).

Theorem 4. Let the ISIM be defined as in (2.4} and the relative infinite lower triangular
matriz P given as in (2.23). Suppose T € B[X|; 0 is a bounded region in C and 1& {1 D o(T).
Then there ezists a positive constant C, such that

zﬂl— 1

lIroll-

lym — Z|| < Cmax{1/]1 - A|}q
AE(}

. Proof. By Theorem 1 and 2. -
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3. The Determination of Best Parameter o,

From Theorem 3 and the Theorem 4 we have seen that the rate of convergence of
{¥m }m>0 depends on the size of g. If y(A) = a(A — 1) + 1, then our problem is to solve the
minimizing problem:

min max |y(A)l, (3.1)
a AEl)

where y{1) = 1 and {2 is a bounded open subset of C.

Case 1. Suppose A is a real variable and « is a real parameter. Then the above problem

can be simplified as
min max [eA+1-—a|, 1&m, M].
a€R m<A<M

Using the condition y{1) = 1, the above problem can be solved by Chebyshev polynomial.
Let '

M—-m
T ()

where T, (A} is a first kind Chebyshev polynomial of degree n. For n = 1,

Ta(2)

Ty(A) = {[2A — (M + m)]/[2 — (M + m)]}.
Then we obtain the best parameter

aopt = 2/[2 — (M + m)].

Theorem 5. Suppose T € B[H|,T* =T. Let m= inf (Tz,2),M = sup {Tz,z) and

l=li=1 h=l{=1
1&[m, M|. Then
. — o o .<:
o W |aeA +1 ~ af X |aopt A + 1 — agpt| < 1,
where H 13 a Hilbert space.
Proof. We can show |aopeM + 1 — agpe] = max |agpd +1— agpe] f m < M < 1,

m<A<M

Then
|aoptM +1—aepe| =M —m|/2—-(M+m)|=(M-m)/[2-(m+ M)] <1

Similarly to the case of m < M < 1, we have
max |aoped +1 — agpi| = (M —m)/(M+m—-2) <1

if 1 < m < M. This completes the proof of Theorem 5.

Case 2. Let T € B[X], X be a complex B:ena.ch space, and {1 be a bounded open subset
of C'. Suppose A 13 a complex variable and o be a complex parameter. Then, the minimizing
problem becomes

: = mj Al = 3.2
min max [y(A)| = min{max|p;(3) : pr € 1, pa(1) = 1}, (3.2)

where P; is the set of all polynomials of degree not exceeding 1. A classical result!®] shows
that the problem (3.2) has a solution y*(}).
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Suppose {1 is a closed bounded set in the z-plane. In the class P, 2] of polynomials p,, (z)
of degree not exceeding n > 0 with p,,(20) = 1, where 2 is a fixed point in the z-plane, we
find a polynomial such that it is closest to zero on {1. Let

#n(8,20) := inf sup |p,(2)l. (3.3)
anFI:u] :Eﬂ

We need to find a polynomial r,{z) € P,[zy] such that

sup |ma (2} = un (2, 20)- (3.4)
zE€102

Proposition 3%, Suppose that Q,.(z) is a given polynomial of degree m > 1, that 0
is the bounded set of points z satisfying the inequality |Q,,(z}| < r, where r > 0,2,& {1 and
that n i3 an arbitrary natural number. Then

pmn ({2 20) = 1" /|Qum(20)], (3.5)

and g (€1, 20) is attained only for the polynomial

T (2) = {Qum (2)/Qum (20)}™. (3.6)

Using Proposition 3, the above problem (3.2) becomes calculating

2 .
i), 1) = m}en;”f:glpl(z)l (3.7)

or constructing a polynomial @;(z) such that
Q1(2z}| < r forall z € ).

Then
r(2) = Qu(2)/@: (1), (3.8)

and

min{max 1 ()| : p1 € P[]} = r/|Qu (1)} (3.9)

z€

Example. Let {} = {z : |14+ 2| < 1}. Then Q,(2}) = 1+ 2 and r = 1. Thue
£1(0,1) =1/1@1(1)] = 1/2 and m;1(2) = (1 + 2)/2 and ayp = 1/2.
From the above example, we can see a obvious but useful result:

Theorem 6. Let T € B|X|, where X 1s a complez Banach space. Suppose §1 D o(T) 18
an open set which can be contained by a disk Cp = {2 : |z — 21| £ R} and 1&CpR. Then

mEué max lad + 1 —a| < 41(Cgr,1) = B/|Q1(1)] < 1, (3.10)
a€C )¢

where Q4(2) =z — z;.
Theorem 6 shows that, if the ISIM introduced by infinite lower triangular matrix (2.23)

and for some open set 3 D o(T) which can be contained by a disk Cr(1€Cgr)} then the ISIM
1s always convergent for o = agp:.
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54. Numerical Example

i

To illustrate the effectiveness of the ISIM, we simply consider the following example:

Example. To solve the linear equation
Az =), (4.1)

we let A =TI — T and rewrite equation (5.1) in a fixed point form

z =Tz + b, (4.2)
where

10 1 0 1 0 O —10

T=| 111 1|, I=|0 1 0], 8= —12

0 1 12 0O 0 1 —12
Since the spectrum o(T) = {11 - +/3,11,11+ 3}, 50 m = 11 — /3, M = 11 + /3
and aopt = 2/[2 — (m + M)] = ~1/10. Using (2.21) we obtain recursively ps(}) = gs{X)

8

and pa(A) = 1 — (1 — A)ga(A) = ZWBJA"- Thus from (2.17) or (2.4) with zy, = (1,0,0).
1=0
ro =b— Az apd z,4; = Tz; + b, we have

8
Y4 = %o + gs(T)ro = )  msi2: = (1.00000000, 0.99999919, 0.99999919).

t={

The error vector is £ —~ yq = (0,8.1 x 10~7,8.1 x 10~7), and it shows that the rate of

convergence of the ISIM is very high.
Of course, the above conclusion is true for an operator equation in an infinite Hilbert

space or a Banach space.
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