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THE CONVERGENCE OF
CONTOUR DYNAMICS METHODS *
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( Computing Center, Acadmia Sinica, Beijing, China)

Abstract

In this paper the properties of contour dynamics methods of two-dimensional
incompressible inviscid vortex fiows are investigated. The error estimates and
the convergence of the methods for piecewise constant vorticity patches using
Euler’s method are obained.

1. Introduction

The numerical methods of vortex flows have attracted much attention. Since
1970 the vortex methods for numerical simulation of incompressible vortex flows have
been greatly developed, for example, the random vortex methods [1], vortex in cell
or cloud in cell methods {1], the particle methods [2] and contour dynamics methods
3]. For two-dimensional incompressible inviscid flows with initial piecewise constant
vorticity patches it is sufficient to track the boundaries of the patches for simulating
the evolution of the vortex flows. Hence, N. Zabusky et al. [3] proposed the contour
dynamics code for simulating the vortex motion of flows with piecewise constant
vorticity blobs, and numerically revealed a number of phenomena of vortex flows.
Today many scientists are studying the problems in physics and fluid mechanics by
means of the contour dynamics methods.

Up to now, due to the complexity of the evolution of the vortex, the problems
" of stability, convergence and the error estimates of the contour dynamics methods
have not been discussed yet. This paper is one of the series of our works on analysis
of contour dynamics methods. In section 2, we give a preliminary investigation of
the flow motion. In section 3, the physical models of our consideration are proposed,
and severa! conditions on the behaviour of the contour are imposed. Sections 4 and
5 are devoted to the truncation error and the convergence problems of the contour
dynamics methods. Finally a discussion on the results obtained is given.
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2. Preliminary considerations

In the conventional notations the inviscid incompressible vortex motions in
two dimensions are described by the Helmholtz equations :

u,v(2z,y,t) are the velocity components of the fluid particles, and w(z, y, t) is called
the vorticity density of the flow. |
From (2.1) we have the integrals for the stream function ¢

#(@9,8) = =5 [ [1nr-w(E,n,)dedn

and the velocity U

- .
U(z,y,t) = El;"/.,/‘ ( :-E ) Inr-w(&,n,t)dédy
| 3z

where r? = (z — £)? + (y — ).
Let

g = (I: y)Trz, = (f:’?)rr

s () (25255
= B z)_h’ dy’ 3z lnr—zx R '

We express the velocity as a convolution of X and w,

U(z)=K*w= /./;z? K(z — 2 )w(2)dz'.

Euler’s equation can be written as
2 = v (z)

Let w'(z,y) = w(z, y,t) be the varticity function and z(s,?) the contour equa-
tion at time ¢ and zp(8) = 2(s,0), where ¢ is an arc parameter of the contour.

In what follows we use the notation | - | to denote the absolute value when it
- operates on a sclar and to denote the Euclidian norm when it operates on a vector.
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We have an obvious inequality
al 2 / f a(z)dz
(2 e
2 [\ b(2) [ b(z)dz
R3
2.1. The boundedness of the velocity
Let Bp(z) be an open circle with radius I? > 1 and centered at point 2, Bp =
Bp(0).
Throughout the text, we make a basic but reasonable assumption on the phys-
ical models under consideration.
Assumption A. The vorticity function w(z,t) is finite and has a compact
support in Bp with sufficiently large D for 0 <t < T with T fixed.

Lemma 2.1. Suppose w(z,y) 18 a finite vorticity funclion, and its compact
support is contained in a circle Bp. Then the velocity U ts uniformly bounded as

lU| < M D.
Proof. Suppose |w(z,y)| < C and let xp(2z) be the characteristic function of
domain Bp,t.e.
1 if z€ Bp,
xp(z) = ’

0 1if z€ Bp.

Let P,p denote a square containing Bp :

Pip = {(z,9)|lz| < D,ly| < D}.

| K*w] l[ K(z - 2w(Z)dz'| = |ff (z — 2 Nw(z')dZ

<cf[ K (z - )| xp(2')d?’ <cff VK (2')|d7.

_]'JI

We have

If z € Bap, then z+ Bp € Byp. Hence

K'wl < C = 8CxD.
| K w| < T
Bup |z |

If 2 € Bap, then we have max(|z|, |y[) > /2D, and

f[Bn+: |2'] /-/;mﬂ \zl /"_m f“';ﬂ \/j'z;j-y'y"

< 2D min (ln = Dl lnIyigD

< 2D1n(3 + 2v/2).
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Therefore, we get the following estimate :
8CxD, Vze B
IK < WI < - 2D,
2CDIn(3 + 2v/2), Vz <€ B;p.

Let My = 8Cx. The proof is completed.
2.2. The continuity of the velocity field
lemmma 2.2. For the velocity field sn Lemma 2.1, we have the estimate

|U(zl) = U(Zz)l S k16 + kzﬂ In D/&l,

where 6§ = |z; — 22|, and ky, ks are positive constants.
Proof. If |2y — z2] > D, then by Lemma 2.1, we have

|U(21) — U(22)| < |U(21)| + |U(22)| < 16CxD < 16C78.
Now, consider the case |2; — 22| < D. At this time z; € z; + Bp. Let
U(z1) - U(2) = h + L+ I, |

where

L= ff . ( il
in Bas(z:) (1 — E)z + (y1 — '7)2

I =gz .[/Bga(n) (z2 — &)’ _:I—l(y:z —n)’ ( —z:a—“qf) )w(z’)d’"=
- 21?/ -/;in\B:a(n] [(zl < ﬂIL (w1 - '?)T( “?;1_"’5) )

1 v2—1n Yot
(2 — &)* + (y2 - ﬂ]!( —(za — &) )]w( I
We have the estimate

2x
I < %/‘;

For each z € Bas(21) it is obvious that

sin § 25
( ) |d9 dp = 2C8.
0

cos @

| \z - zgl < \z — 2-'1] e \zl —_ zzl < 34, ng(zl) & B35(z.'2)‘

Therefore, we get

i
5] < 5 f -[au(::) A —

( —z:;_-ﬂf) )’dfdﬂ = 36C.
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Finally, we estimate Is. Using the mean value theorem we have

Tz e e QRN R oot (N |
(31— €)'+ — )" (g, —¢)) . (E2—&) " +(v2—1)" (25 - ) (2.2)

1 — z2)? + (y1 — ¥2)%, V(1) € Bas(z1)

1
NGE DA

where (z*,y") is on the segment #17z; . Because

V& =+ - ) <6< (@ — 67+ (o - 0’
we have

VE =TTy —n? 2V -0+ -7 -V -n) +{y' - n)’
> /(21— )T+ (31 — ). (2.3)

5
5 <£ ] —
Bp\Bas(z1) (= 'f) }'e% n)

< 15-‘?-/[ 5.
= " JIBo\Bus(ay) (21— €) + (1 — )’

If Bap N 326(31) F 0 , z€ Bap and z € Bap N ng(zl), we have

dédn

lz - z1| < |z - Z|+ |2 — 1] £ 4D + 26.

Hence, ng C Bs(2p+5)(21) and

|Is| < 2771C6 [/ | f‘fd” > <4C6In "
Baap+)(21)\Bas(z) (21 — €) + (v1 — 1) ¢

If Byp N Bas(21) = 0, then for any 2' € Bp, 2" € Bys(21) we have

|2" - 2'| > |"| - |2'| > 2D - D = D.

Hence, g

—1 ' d.Z"
‘I3‘ S 27 Cﬁf/ 12 S 206
Bp |21--z|

Thus, we get the estimate

U (21) — U(22)| <

[ 18078, if |21 — 23| > D,
(7C +4C1n3)6 +4C5In F, if |21 — 22 < D.

4
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Putting ky = 16Cx and ky = 4C, we have
D
In —|.
)
This 18 what to be proved. Note that the above estimate can be replaced by the
following inequality

U(21) — U(23)] < k16 + ko

D+48
.
2.3. The properties of finite vorticity patches.
Lemma 2.3. Suppose w'(z) 1s finite and has a compact support for0 <t < T.
Let 2(t) be the solution of equation

z(t) = k x (2.4)

z(t)];=u - Z0. (2.5)
Then for any fized T and any 0 < t; < t; < T, the inequality
2(t1) - 2(tz)| < MyALD | At=t; —t,

holds, where M, 1s the constant tn Lemma 2.1.
The proof is a direct consequence from Lemma 2.1.

Lemma 2.4. Assume 2{0),22(0) € supp w®(2) c Bp(z). Let 6(t) =
|21(t) — 22(t)|. Then the following estimate is true

Dexp ("%(Ekgt e 1)) (‘s_gl)“p(k“‘) N
< §(t) < Dexp (%(1 . E-m)) ( ggl) exp(— kat)

Proof. First we note an elementary inequality

|U(£1) — U(Eg)l < k16 + k2 1n

dz dlzl
| I dt _— IEI EE- *
By Lemma 2.2 and equation (2.4), we ha.ve
ds* D?

dt
The lemma is proved by solving this differential inequality.

From Lemma 2.4 it becomes clear that. if the solution of (2.4)—(2.5) exists,
then the solution is unique. Secondly, the initially uniformly continuous contours
keep their unifrom continuities during the motion theoretically.

For finite piecewise constant vorticity distribution the particles of the fluid
which are initially on the contour will remain on the contour during the motion.
- Therefore, we can track the trace of the fluid particles on the boundary of the
vortex patches for simulating the vortex motion of these blobs. This is the main
idea of the contour dynamics methods proposed by N. Zabusky et al. [3).

-—2k15 — ko §%1n % < - 2’:152 + kgﬁz In E_T
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3. The physical models

In general, the properties of vortex flows are very complicated. Therefore, it
Is necessary to confine our consideration of the physical models. Let us consider

the plane motions of a finite number of piecewise constant vorticity blobs. We will
impose certain smoothness conditions on the boundaries of the vortex blobs a priori.

We only consider the case of one contour because it is easy to extend the results to
the multi—contour case.

The contour of the constant vorticity blob at time t is denoted by I'*. The
circle B,(z) is called an e-neighbourhood of z € I'* .

Be(z) = {#||z - 2| < ¢}

Consider an e-neighbourhood B.(z) of contour I'* with sufficiently small £ such that
the part of the contour I'* N B,(2) is divided by the point z into two branches ré ,r® .
Let ps(w) = |2 — w| be the distance of z and w.

Assumption B. There are positive constants €* and 8 independent of t such
that for any two points 21,22 on éither branches rf;,rf, the follwing 1nequality
holds :

|pe(21) — p2(22)| 2 Bl21 — 2. (3.1)
Remark. From Assumption B 1t 18 clear that
min(| < zz122|,2% — | < zz123]) > % (3.2)
or, in other words,
pe(22) > pa(21). (3.3)

Let the equation of the contour be

z=1z(s), y=y(s), 0<s< S

where s is the arc—length of the contour. We define

. P30 (8)V(z(8) — {r:(soii’ + (y(a) — y(e0))?,

Hypo, = 951(32) = p#:(sl)'

Lemma 3.1. Suppose functions z(s) and y(s) are sufficiently smooth. As-
sume there exist positive constants &, o, a1,k independent of t such that tn the &-
neighbourhood of any &p the following inequalities are valid :

af 2 (2(s))* + (9(s))* > ag > 0,|&(s)| < k, 4i(s)] < &.
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Then the followtng tnequality

Iﬂau(sl) G pan(sz) 2 ﬁHMl:

holds for any 81,82 > 89 { or < 89) and an absolute constant 5.
Proof. According to the assumption of the lemma, in the e-neighbourhood of

3g we have the expansion

Pas(81) = peg(82) + £5,(8”) (81 — 82)

where 8* is between 83 and s3,

(6) = [2(7) = 2(50))(5") + (y(s") ~ y(s0))i(s")]
[z(s* — z(50))® + (y(s*) ~ y(s0))?]'/?

Expand z(so) and y(sg) at s* :

oo

z(s0) = z(8") + £(s*)(s0 — 8*) + 3(s0 — 8*)?2(s}"),
¥(20) = y(s*) + y(s*)(s0 — 5*)3 (50 — ") §(s3’

where s1*, 53" are between sg and 8*. Then we have

[2(s*) (z(s*) — 2(s0)) + 9(s*)(v(s") — y(%0))]|
> [#(a*)? + §(s*)¥]ls0 — 5| — §(s0 — 8*)2V2VEF T §(5°)".

By the Schwarz inequality we get
[(2(s*) - z(20))* + (y(5*) — y(s0))*]"/2
< VT 50 — 5| %2 (50 — *)k.
Hence, when ¢ is sufficiently small, we have

V2 V2e

L b Bt
> E &1]/[ﬂ1+ >

k]} - l'sl = 32' = ﬂlsl T 32| > ﬁHlll::

P20 (81) = peo(82)] = {[%

where s,, 82 are in e-neighbourhood of &g, and the proof is completed.
According to Lemma 3.1, Assumption B is actually true if the contour is quite

smooth.
By Assumption B it is not difficult to prove the following
Contour Property 3.1. Consifer the contour I'*. Let s; be the arc length of

I'!. T denotes the e-neighbourhood of contour I :

F: = U B,,(z)

2Tt



No. 1 The Convergence of Contour Dynamics Methods 31

£ < €",0<t <T. Then there exist constants M, M*, a, independent of ¢, and N}
points Q;,1 = 1,..., N}, such that

in(QJ'] T |QI — le > ae, Vi #£ 7,
Ni Mﬁ: < M*S;,

U BM;(Q;) - Pt

and the maximal number of the circles Bys,(Q;) intersecting Bpys,(2) for an arbitrary
point 2z € I"* does not exceed d which is independent of ¢t and .

Assumption C. There exist constants Mz, M3(1 < M2 < Mj3) independent
of ¢ such that lf the distances Hi = |2} — z}| and H} = |w} — w}| of two arbitrary
pair of points 2§, 2§ and w},w} on the contour I'¥ satisfy the condition

1/M, < HY/H3 < M,
then for any 0 < t < T the following inequalities hold :
1/Ms < Hi/Hj < Ms.

Assumption C means that if N points 2{ are chosen on the contour I'°, then
there exists a constant M, such that

Ht/ht < M‘l:
where M, 1s independent of ¢, and

Il

b lad . st
h "H?nlz-"“ zjl

P o ..
H —m?xlzj+1 z-l

d ¢ i ik
and zp.q = 2.

Let us approximate the initial contour I'° by an N-polygon with vertices
2y, (e = z"i]). Let z; be the corresponding point on the contour I'* of

f The segment zj 4+ ©of the polygon and the arc 2z ‘

area A' whose dla.met.er 18 D‘ We have the follwing.
Cﬂntour Property 3.2. Under Assumprions B and C, there exist Cﬂnstﬂ.nts

Mg, Mg such that for any 0 < ¢ < T the following mequalltles hc:ld

+1 of the contour form an

H'/h* < Ms, D}/h}i < Mg, j=1,...,N.
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4. The truncation error of velocity calculation

Lemma 4.1. Suppose w(z) and w,(2) have the same vorticity density inside
the contours I'* and I',, respectively, and T',, belongs to the e-neighbourhood of T'*.

Lel
I'=sl¥ ~Ug= / k(z; — 2 ) (w(2") — wa(2'))d2

be the difference of the velocities U and U, induced by w(z) and w,(2) respectively.
Then the estimate

1
1| < Ms[cl-{—cz[lnml]

is valid for some constants Cy,C3 indrpendent of € and t.

Proof. The area where w(z) — wn(z) # 0 belongs to the e-neighbourhood T,
of I'. By Assumption B, there exists a constant M, and a corresponding family
of circles F = { By, (Q:; )}rﬁ ; which cover T',. According to the Contour Property
3.1, for any point z; on the contour I' there exist at most d circles of the family
F intersecting Bpre(2;). Hence, the circle Bsp.(2;) will completely include these
d circles. By I we denote the set of the subscripts Q; of the circles intersecting
BM,(E:,;).

If 1+ € I; we have

f ’
TRy -
B (Q) Izj — & I Bante(2;5) '3.1' — 2 ‘

i f / < 12rdMe.

iel, ¥ Y Bme(Q)) lz:r —Z |

hence |,

Now, consider the case when 1€I;. Assume Q; = (s;,r;) and 2’ = (z',¢') €
Bpse(Q:). According to the mean value theorem we have

1 _
|zj — 2] I?‘(j Q;] )
.= 2 By = X ~ 8¢ P
gl Py w1 o)

yi —ri —8(y — )
7 — Qi — 8(2' - Q)

!

— ;)

F(y

S Py oy T e T R CAEO L
< Me ¢ € (0,1).

(I2; ~ @il — 6Me)*”’

Therefore,

Med2' aM?ie? }
il ,
Z //:BM.(@ ) lzJ — 2| E [/ /Bae(Qs) (27 — Qs] — 0Me)? |2z — Q4

i€14
B [ x(Me)® x(Me)? }
- ier (27 — Qi] - 6Me)’ I 2 — @il |
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Let €* be the one in Assumption B. Separate the above sum into two parts : Z =
icl,
E + Z, where I) is the index set for Q; € B,«(z;) and I, the index set ¢ for
i€y 1€l
Qi€ B,+(2;),1E1,.
Consider the sum over I; first.
When 3Mce > ¢*, the set I; is empty. So, we assume 3Me < £*. In this case,

B3M:(zj) C B;'[Zj).

The part of the contour I' N B,+(z;) is divided into two branches by z;. We consider
the sum over I; spread on one of these two branches . For convenience, we order zy
and all the points @ on this branch as z;,Q;,, ... ,Qi, . For theindicess; € 11,1, €],
we have

7~ Qicl > 28,01, (Quurs) > pei(Qi) B =1, L1 see(33) |,
Qisyr — Qu| > ae>0,k=1,...,L— 1 ( see (3.4)) |

and

Now , from (4.2}, (4.3) we have the estimates

- w(Me)® - w(Me)? ]
- [(sz - Qinl —0Me)* |z - Qi)

k=1 '
L 3 2
1 'Jl'(ME) W(ME) W ,
= afe 2 (lzj — Qi | — ﬂMﬁ)2 T 1z; — @, ) (FHJ'(QH) pzj(Qu_l))
x(Me)® x(Me)?

s —Qal- Me)? -4
e’ r(Me)® wM?? e n(Me)®  w(Me)?
& (1‘%1'.-5:]2  2Me

1
< !
B EEE 2Me (p == 9ME)2 P

x 1 ' |l ap2. , 3
< af 2(2_9-)-+Ilnm§”M e+ saMe.

Similarly we can estimate the sum spread on the other branch. So we have

§
E'/f - - < CiMe +CoMe lni
icl BM:(QE) lzJ — % I

Me
Next, consider the sum over [,.
For any 1 € I, Q; is outside the circle B,-(z;). Hence,

\zj o Q,I :_>‘ E*.

- There are two cases. When 3Me < ¢*, for every 2’ € Bas.(Q;:) we have

. (4.4)

2 — 2| > |2 ~ Q| — Qi — #'] 2 &' — Me > (1 - 3)e?,

dz' fig o N
z_/._/B I" < Z(l - '3"') E_‘I(ME) < EH’M StE-.

il rMe(Q0) 'lz.f e =3 P

(4.5)
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When 3Me 2> £*,Q; is outside the circle B,.(z;). The total number of these circles
centered at {Q;} is less than

M!l

M'S,/Me < 375,

By Lemma 2.1 we have

dz'
f/ o — < 8x Me,
BM:(Qi) |zJ' — 2 I

Z// | M —— 58 Me - 3.

erd IBraa(Q)) Iz,

The proof is completed by synthesizing (4.1), (4.4), (4.5) and (4.6).

Corollary 4.1. Replace the support of w*(z) by an N-polygonal region with
N vertices on the boundary of the support. The vorticity function @*(z) with this
N-polygon as its support has the same vorticity density as w*(z) has. Let H be the
maximal length of the N sides of the polygon, and

s / fR k(zj — 2)[wH(2) - @*()|d2"

Then the estimate «* .
1] < (Cs — Cy|In ) H

hence,

holds under Assumptions B and C for some constants Cs,C, independent of ¢.
5. The convergence of Euler’s explicit method

Let @*(2) be the N-polygonal approximation of w!(z). We solve the following
initial value problem

.ij:K*wt, (51)
z.ft:_u:z_? , J=1,2,...,N

by using explicit Euler’s method

W

B = 2 + ALK(5]) + o™,

8=, §=12 ..M,

(5.2)

where w™ 18 a vorticity distribution with the support of an N-polygon with verices
My =1,...,N.
Intrnduce the intermediate contour at time t+At with vertices £,7=1,.., N,

where z, are calculated as follows :
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+1 -
27 =27 + AtK(z}) 0"

(5.3)
z}‘zzj(nﬁt), 30,250 ¥

where &" is a vorticity function with the support of an N-polygon vertexed at
£2,31,...,N.

Lemma 5.1. Assume supp w%(z) € Bp(z). Then the solution of (5.2) has
the following properties :

b 3l =
sk _ 20 < MTD
where
Dy = (1 + Mlﬂt)Dh Dy=D,
k=012 ...,N¢p~1, Nt = [T/ At).

Using Lemmas 2.1 and 2.3 the proof is completed by induction.
Next, we estimate the computational error. First, estimate the error at the
first time step. We have

Fr o= z? + At ff ) K(z? - 2')* Exn(z')dz'.
R

The exact solution of the physical problem shoud be

At
zj = 7 + ./0 f - K(z; — 2') » '(2")dt.

Therefore, we get
At

2; — 2] < i (L + I+ I3)dt

where |
i f ﬁ, K (2~ £)  [2°() - ()14,
L= ] K@ -#)+6%) - w’()]|d,

Is - f K (2 — 2') — K(z; - 2")] = w°(2')]d2".
For 0 <t < At by Lemma 2.3 we have

12(0) — 2(t)| < M1AtD = MAL.

Hence, for 0 < t < At the contour I'* belongs to the M At-neighbourhood of I'?.
Then by Lemma 4.1 we get

1 | - 1
I C Chail — MMAt = {Ces + CglIn —|)AL.
|I1] £ (C1+Chl nMM.&tl) (Cs + Cé] ﬁtl)
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For I3, according to Corollary 4.1, we have
1
|I2] < (Cs + Cy|In ?l)ﬂu,

where
Ho = max |2} — 27|
0 ; J 3+11°

Similarly, for Is we get the estimate

1
I < (Ciogln — ;
Izl___( 10 nat+09)ﬁt

Finally, we have the error estimate
2} — 2}| < [(C11 + Cr2ln 5)At + (Cs + CyIn -I%U)Hn]m = goAt, (5.5)

where gg denotes the terms in brackets, and go < 1 if At, Hy are sufficiently small.
In the same way we can extend the estimate (5.5) for any n :

|E?+1 ~ z?+1| < Atgy,

where

1 ‘ 1
Ty =2 (Cu +Cialn E)ﬁt g (03 + C4 In H—)Hn

and

Hp = max|s} ~ 27| , nAt<T.

Suppose Hg < 1. By Lemma 2.4 we have

H, < Oy Ho®-tmat) o oo grew(~hT) -

H, 1, Hr<l, g¢g,<1.

Denote the bound for max |2} — 27| by fa(n > 1) and f; = At - go, and let
J

9y = (C11+ Crzln ﬁ)ﬁt + (C14+Cisln ﬁE)HT , On < grgn<l,  (56)

Co = [MC1 +Ca|ln || + [k1 + k2 In(DEMT)]
Ca0 = k2 + MCy,

CaoT
) = max{]_’ (]1‘) }GC:DT‘FCI‘DT.

Theorem 5.1. Suppose CsoT < 1, At, Hy are sufficiently small, such that

4 1
OTgs CaoT =
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Then the following estimate
I K D5 Tt (5.7)

holds for n = 1,... Np(= T /At).
Proof. We prove the theorem by induction. For n = 1, because {1 > 1 and by
(5.8), the conclusion is true . Assume (5.7) is true for all n < k. Consider the case

ofn=k+1< 2% ;
From (5.2) , (5.3) we get

3

P’ S IRIT I FYN f [R K (3 - 2) - K( - )] oM
+At f fR K (2 - 2)[[0*() - oH(#)|de = |5 — 24|+ AtRy + AtR,

where

R; = / f K (3 - ) - K(zf - £)l|o*()|de’
R=[[ | IK( - )aH() - aH(@)ldz

By Lemma 5.1, the supprot of &*(z') is included in the circle Bp exp(M,T). Therfore,
by Lemma 2.2, we have

L X DMt
|Ry| < k1|z;-z;|+k:\zj-‘—z§\ln( = ) '
.EJ* — ZJ'
By the assumption of induction
fn < -1— ¢ DexoMiT) ek
e

So we have

At|lRy| < kiAtfy+ k2AtfiIn [Dex%‘:’{lT)_]

< Atlky + k2 In(D exp(M1T))| fx + ke AtfiIn 7:!;

Similarly, by Lemma 4.1, we can get the estimate for R,

L Y

1 1
Ry < M [C + Chlln — +Cln-—-].
‘ 2‘ [ |C1 2| Ml 2 A

At last, we get

IE;'*“I 5 i z::-}-ll E |§;+1 - f;"l‘l‘ o+ |E;:'-+l i z;"l"ll

< Atgy + fi + At[C19 + Caoln %;]fk-
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Hence, we obtain a fundamental relation for the error estimation fj,;

Jev1 = Atgr + fr + At[Cro + Caoln 71;])'1:- (5.8)

Now we are going to check inequality (5.6) for n = k + 1. From (5.8) ,

fk+1 = Eﬁtg, + Zﬁt [Clg + Cogln ] fi 2 (k + l)ﬁ.tyg.

s fi

In addition, from (5.7) we can also get an inequality
ferr 2 (k+1-7)2% |, 0<j5<k (5.9)

By (5.8), (5.9) we have
k-1 k-

fe+1 = Atgy + Z H {1 + At (Clg + Caln -—)] Atg;

$=0 j=¢ fJ'l‘l

k—1k-1 (5.10)

1
< 1 : ;
,_.Eo H [ + At (C'lg+len 1= i)&tg;)] Atg; + Atg,

Let

o 1
Prn=]] |1+At (Cm+cm1nmtyj)] .

=1

Because In(1 + z) < z for z > 0, we get

m
1
In P <At§ C Caoln - :
N, < i=1[ 19 + L0 n:&tgj]

m ) CaAt

P < eﬂ'umbt :

W 55 (I_‘[l :&tgj)

_ Ciomat [ 1 \Cmat 1 CaoAt
il (9;.-) (m!At“) '

The time increment At equals 7'/Nr. Hence we have

[(7) 7"

N m

'“!5‘“:11(3;1,)3""‘} II

=1 i=1

and -
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Note that N
T 1
T S e € T By P
: m
(dee) s (1) T
Therefore,

Applying (5.10) and (5.11) we get

| k-1
fre1 < Atge + QALY Atgl=Cawolk—i)at

i=1

k
E nz ﬁtg:"c:in(k“i]ﬂt 5 (k + l)ﬂtng:—cgukﬁt 5 Tng:—cinT
=0
< Tng}—G:uT < %_

The induction 1s comleted.
Remark. Theorem 5.1 shows the following error estimate of the approximate

solution by explicit Euler’s method :

AP n 1-CaeT
max |27 — 27| < (1T gy

]

where g, = O{Atln At + Hpln Hp) is defined in (5.6).
8. Discussion

we have proved the convergence of the discrete contour dynamics methods
for a certain class of vortex flows with explicit Euler’s method for sufficiently small
T(C2T < 1). But , one can always regularize the distribution of the points z; on
the contour at each time step in such a way that the conclusion will be true for any
finite time interval T'. In [7], it is proved that if the contour at each time step is
regularized to meet certain conditions, the approximate solution converges to the
solution of the equation

E z=K(z) »w,
zlt=0=30- \

So far we have obtained the convergence results of the explicit Euller’s method
which, as well known is of first—order accuracy. It can be expected that similar results

hold for predictor—corrector methods used in {5].
Finally we make a remark concerning the canonical properties of the method

used in contour dynamics codes.
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According to [8], the contour dynamics system
#=K(2)*w (*)

13 a Hamiltonian system of infinite degrees of freedom. The approximation of (*)
yields a system

éj—f-K(zj)*w - I — (**)

which is a Hamiltonian system of N degrees of freedom. But, the contour dynamics
methods in [3—6] do not preserve the Hamiltonian and other canonical properties of
the system. How to construct new contour schemes to preserve these good prop-
erties of the system is an important problem. The canonical difference schemes of
[9] will certainly resolve the above problem. The new methods will preserve the
symplectic properties of the physical problem. The detailed numerical algorithms
and computational results obtained will be reported elsewhere.
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