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Abstract

In this paper the results in [5] and [8] related to two-parameter nonlinear problems
and computing the folds of degree 3 are generalized to any n-parameter nonlinear
problems. Constructing a repeatedly extended system for an n-parameter nonlinear
problem we prove that a fold of degree n + 1 corresponds to a regular solution of its
n-th extended system. Also, the equivalence between the n-th extended system and its

reduced system is proved. Finally, some examples are computed.

1. Introduction

We consider an n-parameter nonlinear problem in the form

.f()‘!pll"'lﬂﬂ'*l::)=n (1'1)

where A, p1, - ,4n_1 € R,z € X, a Banach space, and f is a C™! mapping from

Rx.. xBRxXtoX.

lI'mIn many applications some loss of criticality in (1.1), which corresponds to a fold
point of higher order at particular values A*, P13y Mn—y, i8 concerned. For example, the
loss of criticality in the exothermic reaction described by a two-parameter nonlinear problem
corresponds to two particular values A*, u* which are called the third degree fold point of
f(A, 4, 2z} = 0 with respect to A.
In the case n = 2, following the idea suggested in [2] and [4], Spence and Werner 5]
p?uposed an “extended system” of the original problem, and proved that a third degree fold
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point of f(A, u, z) = 0 with respect to A corresponds to a second degree fold point of the
extended system with respect to 4. Yang and Keller [6] further developed a “double extended
system” of f(A,u, ) = 0, and pointed out that a third degree fold point of f(}, z,z) =0
with respect to A corresponds to a regular solution of the double extended system.

The outline of this paper is as follows. In Section 2, the one-parameter case is discussed
and definitions of fold points are given. We introduce some special polynomial operators
and discuss their properties. We prove a sufficient and necessary condition for a fold point

of higher order.

In Section 3, we discuss the two-parameter case

f(A,p,5) =0 ' (1.2)

and consider the relation between (1.2) and its extended system. We generalize the resulte
in [5] and prove that a fold point of degree n + 1 of (1.2) with repect to A corresponds to a
fold point of degree n of its extended system with repect to u.

Section 4 contains the main results of the paper. We apply the idea of the extended

gystem repeatedly for the n-parameter case

I(Alpl‘l“'!pﬂ-—llz) é.o' (1'3)

We develop “the n-th extended system® of (1.3) and prove that a fold point of degree n + 1
of {1.3) corresponds to a regular solution of its n-th extended system. A reduced aysteﬁl for
the n-th extended system is introduced in order to compute the fold point of degree n + 1
practically.

Section 5 contains two numerical examplea in which there are folds of degree 3 and

- degree 4.

2. One-Parameter Case and Fold Points

We consider a one-parameter nonlinear problem in a Banach space X

f(A,z) =0 (2.1)

where A € R,z € X and f is a C"*}{n > 1 is a suitable pﬁuitive integer) mapping from
IR x X to X. .

The notations fj(a), fax(a), fz(a), fz=(a): fr=(a), fzzx(a), ... are used to denote the
partial Frechet-derivatives of f at a = (), z} € IR x X. We denote the dual pairing of z € X
and ¥ € X* by ¥z where X* is the conjugate space of X.
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Definition 2.1. A point ao = (Ao, 20) € IR x X 15 a fold point of (2.1) with respect
to A «f

f(aﬂ] = 0, (2'2)
Ker £, (aO) # 0, (2-3)
fr(ao) & Range £.(ao). (2.4)

Definition 2.2. A fold point ag s a ssmple fold of (2.1) unth respect to X if, in
addition to (2.2)-(2.4)

dim Ker f,{ao) = Codim Range f(ao) = 1. (2.5)
In this case there exist nontrivial ¢o € X and o € X* such that

N =Ker fu(so) = {abo |a€ R}, (2.6
R = Range f;{a0) = {z € X | Yoz = 0}. (2.7)

As is well known, the sero set of f(), z) near a simple fold a; is a smooth curve
L: f710) U = {(A(s), =(s)) s — 20| < 5)

where U is an open neighborhood of the simple fold point ag,§ is a small positive and
Afe), z(s) are C"*! mappings satisfying A{so) = Ao, 2(s0) = zo, |M(8)[? + 1=’ (2))|* > 0 and
z(s) = (s — 30) o + v(s},v(s) € V;, where V; is a complement of N, i.e. X = N @ V.
Along I we have the identity f(A(s), z(s}) = 0. Instead of £, (A(s), i(a)], f=(A(s), (s)),
-+ - we shall write f), f;,--- and denote ) = fi(A(s0), z(50)), f? = f=(A(20), z(80)), - - . Dif-
ferentiating f(A(s), z(s)) = O with respect to s yields

ﬂl'(a) + f22'(8) =0, |8 — 3| < 6. . (2.8)

Obviously
A'(Ju) — 0, (2.9)
E’(Su) = tﬁu. (2.10)

Deflnition 2.3. A simple fold point ag € IR x X 1s said to have degree n + 1 tf
A"[#u) _——e = A{n) (-ﬂn) = 0, ;\('H'l] (ﬂu) ?{-' 0 (211]

where AU} (sp) is the i-th derivative of A(s) with respect to s at s = sg. We also call it the
(n+ 1)th degree fold.



No. 3 Higher Order Folds in Nonlinear Problems with ... 265

Before working out a sufficient and necessary condition for the (n + 1)th degree fold

we must mmiroduce some special polynomial operators.

Py(40; f) = fzzd0do, (2.12)
Ps(¢o,$1; f) = 8fz:9081 + f2z:90%0%0, {2.13)
Pi(do, b1,02; f) = 4f0.d0b2 + 3f0. d1é1 + 3f:;,¢q¢u¢1 + foeazbodododo,  (2.14)
Ps(¢0, 41,2, #3; f) = f2:(5d0¢s + 1041 ¢2) + £2.. (106002 + 15061 6:)

+ 2. (104381) + £% #5. (2.15)

The polynomial operator of degree n P, (o, #1, -, ¢#n—2; f) in n— 1 elements can be

defined in the following way:
If M{so) = 0,---,A")(s5) = 0,A("+)(s) # 0 and z'(s0) = o, -+, 2"(80) =
$n—1, 2" (30) = ¢, then |

Ppi1(do, - sPn-1;f) = dﬂ+lj;(:,5:); =(s))

— f0n — FOAFY) (59). (2.16)

Theorem 2.1. a9 = (A(s0),2z{s0)} 38 an (n + 1)th degree fold (2.1) sff there ezist
$o € N,d1, -y dn-1 € Vo such that

do = z'(s0), ¢1=2"(s0), ) Pn~1 = 2" (s0)

which are uniguely determined by

f.—g¢i—1 o _H(¢ﬂl"'l¢i~2;f]l £=2:“'!ﬂ' (2'173")

and ¢ = z(Pt1) (20) satisfies

Poyi(do,-  bn-1:F) + 2¢n + 2AP¥1) (55} = 0. (2.17b)

Furthermore

%[R[¢0:"'i¢i—2;f]] = D: 1 = 2yt ey My
(2.18)

YolPu+1{d0, ) #n-=1;f)] #O.

Proof. In the case n = 2, differentiating f(A(s),z(2)) = 0 twice with respect to s at
8 = 8o yields

f3z'(s0) + f2X (80) =0

and

fas%'(20)2"(20) + 122" (50) + 23X (20) 2’ (50) + £2,2"(80)A"(20) + f3A"(s0) = 0. (2.19)
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Substituting A'(s0) = 0, 2'(s0) = ¢o and A”(sp) = 0 into (2.19) yields

fzadodo + 02" (80) = 0. | (2.20)

$1 = z"(s0) € V is uniquely given by (2.20). Multiplying ¥ on (2.20) yields vo[Pz(d0o; f)]
= 0. Differentiating (2.19) with respect to s at s = 8o and substituting /V({!n) = 0, A"{s0) =
0, I’(lo) = %,G“(an) = ¢, into it we obtain

Ps(go0,41; f) + £22"(30) + F22"(s0) = 0. (2.21)

Multiplying ¥ on (2.21) and noticing A"*(so) # 0 we have

Yo |Pa(do, d1; 1)) #£0

and

—¢HIP3(¢0: ¢'5_;f]]
Yol[f7]

So the theorem is true for n = 2. According to mathematical induction we suppose that

A [#n) =

the theorem is true for n = k. First we prove the necessary condition for n = k + 1.
Differentiating f(A(s), z{¢)) = 0 from twice to k + 1 times with respect to s at s = 55 and
noticing A"(s9) = 0,-- -, A(®)(s,) = 0, AF*1{45) # O we obtain

Pa(do; f) + f2¢1 = 0,

- Puldo, - br-2; f) + f2s-1 =0,
Prs1(do, - y P15 ) + fgﬁ(k“}[#u) + ffﬂk""” (30) = 0.
Multiplying each equation by %o and denoting ::“’"‘”(au] = @x We get the necessary condi-
‘tion.

Secondly, differentiating f (A(s),z(2)) = 0, k times and k + 1 times respectively and

noticing the assumption of the induction for n = k, we obtain
Pe(do, -1 8x-3; f) + f2n-1 + AR} (ap) = 0, (2.22)
Peyi(do,- s dr-1; £} + fb1 + 221 (55) = 0. (2.23)

Multiplying (2.22) by v yields
| A®(s0) =0

.because Yo[Pi(do,- -, br—2; f)] =0 and Yolf7] # 0. Multiplying (2.23) by ¢o yields

A{k-"l)(ﬂo) - _ﬁuIPh-l-l%;[}:_t;]' !¢k—1;f” # 0
A
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because Yo[Pr+1(Po, -, dx—1; f] # 0 and o[f°] # 0.
The sufficient condition 1= also proved. Q.E.D.

3. Two-Parameter Nonlinear Problems

The two-parameter nonlinear problem

f(A-.- 1, :I‘:] =0 ' {3'1)

18 considered in this section, where A\,u € IR,z € X, a Banach space, and f is a O™}

mapping from IR x IR x X — X. Regarding A, 4, x as functions of s we consider nonlinear

mapping f(A(s), u(s), z(s)).
Lemma 3.1. JIf

M(so) =0,--, A" 1) (g4) = 0,
F,['sﬂ) =0,--- lp(n_l}laﬂ) = 0,
then

= (B OG), o) D)X () + (o), ), ()i (0))

(3.2)
= n (22" (50)A™) (s0) + 122" (30} (s0) ) + FIA™+1)(85) + FOu+1) (sq).

Proof. In the case n = 2, differentiating f, A’ 4 f,u' twice with respect to s at s = s,

we obtain

d2 [ 4 r i’ mn ({4
— (O + fun )L=ln = 2()'2,:'(39)1 (s0) + 72,2’ (s0)u (ao)) + f22"(s0) + fOu"(s0).
So the theorem 18 true for n = 2.

The theorem is supposed to be true for n = k — 1 by induction.

d%-1 |
dak—1 ([AA + fup')

= (k = 1){#2.2(50)2*~ (s0) + f2.2’ (o)~ (s0)

=4y

(3.3)
: + 1A (50) + fﬂﬁ‘(k} (s0)

Differentiating (3.3) with respect to s at s = s and using M*~1 () = 0, ulk—t)(gy) = 0
yields

&%2"()'11' + fﬂp’]L='D = (k- 1) (fBII’{SD)A(k]("ﬂ) + fﬂl;ﬂ(an)pu‘](!ﬂ))

+12,7'(0)A) (80 + 122 (30} (s0) + SN+ (s0) + F2uH1) ()
= k(722002 M) (s0) + (20} (20)) + EAC+){a0) + 24+ (uo).
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Q.E.D.
Let

F(F‘: y) = (M =K, f(‘\:f‘: I): f=¢]T = 0, (3-4)

where y = (A,2,4)T €Y = IR x X x X,L € X*. V is a complement of N(F))in Y.

Theorem 3.1. Suppose Fﬁ & Range FI?. An (n + 1)th degree fold point (o, o, Po)
of (3.1) with respect to A corresponds to an nth fold posnt (U, Ao, Zo, $o) of (3.4) unth respect
to p. And

0
P{(@o,- ":q’i—ﬁF) o H[%I-”l¢l‘-2; f) ’ (3'5)
Piv1(d0, s $i-13 f) — fazbodi-1
Vi=2,--'n,
\I'D-Pi(éﬂ: R :Qi-i;F) o 'lbﬂ-Pi+1(¢'ﬂ: SRy T f)l V=2, - ,n, (3'6)
where

&; =yt () = (0, bisbit1)’s, Vi=1,--,n~2, (3.7)

®; € V 1s gniguely given by
F:@.' = —Pir1(Po, - -y Pi-1; F). (3.8)

Proof. Theorem 3.1 in [5] shows the theorem is true for the case n = 2.

Suppose the theorem is true for n = k ~ 1 by induction and we consider the case
n=k .

Differentiating F(u,y) = O with respect to s at s = 30 up to k — 1 times and noticing
#'(80) =0, -, 4¥~?) (s0) = O by the assumption of induction, we obtain

Pi—1(®0, -1 Br-a; F) + Ff‘l’k-—z + fﬁ#(k_”(ﬂo) =0

where

Do = y'(80), - Pr-a3 = y*-3) (30), Bx—2 = ylk=1)(a0).

Actually
(§) (4.1 200 G+ (e V) -
¢1i—1 =¥y (30) = (A ("0): 9 (30)1 x (30]) — (0: ¢€—1:¢i)! Vi = Ly vy k— 1,

because (Ao, Ho,Zo) is a (k + 1)th degree fold point of (3.1) with respect to A. By the
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assumption of induction we obtain

Pi1(®o, , Ors; F) + FO®s_a + FOulk~1)(s0)

0 0 0 L D .
= Pe—1(d0, -, Px—3; f} + 5 L © $r-2
Pe(do,* 1 br—2; f) — fobobr—2 fsbo. fozbo [ $r-1
0
+| 0 s N(s0) =0.
fazdo

So
p* N (s0) = 0

and ®,_; €V is also uniquely given by (0, $x—2,¢x—1)7 and satisfies (3.8).
Next we show that (3.5) and (3.6) are also true for n = k. By the definition of
Pa(do, -+, bn—2; f) and A() (s5) = 0 we have

P(®o,- -+, Ox-a; F) = :%F(F(Hn],y(ﬂo)) - F,?y“‘" (s0) - Fgﬂ(k](ﬂu)

tz[l:+1-} (ED)

e d* f(A{(s0), p*(ln), z(s0))

ds*

P lad
55 f=(A(20), {20), =(s0}) b0

0 D £ A{k}(aﬂ) 0
-l om0 x| e [-| s (6%
.00 fbo 12 2(+1) () 72,40

tz“‘""”(an] ais tz“"“l(ag)

d*
ds*
dk
ds*

f(A(s0), 1(30), 3(20)) — F22*) (30) — FOu¥) (s0)

f=(A(80), #(20), 2(20)) $0 — (f2=¢u$“‘)(ﬂo] + fox(R+1 (a0) + £O, dopl® (30))



270 Journal of Computational Mathematics Vol. 7
e ———eere————————— e

Because u'(25) = 0,---, us(*~ 1 (g5) = 0 and Al*) (55) = 0 we obtain

R%I(A(sﬂ]l “("011 z('ﬂ)) = f;’:(kl (’0) B flep[h) (’0]

- B%I (AM20)s 10, 2(20)) — 1221 (s0) — FRAP) (20)

=Ph(¢0!""l¢k—ﬂ;f)

where po in i;- f(A{s0), 1o, 2{s0)) is fixed and is not regarded as a function of s.

Applying Lemma 3.1 to the third component yields

;a:“_f-(l(ao)m(ﬁn]:ﬂ(#o])% ~ (f£=¢o==(")(ﬂo) + f225 4 (s0) + £O, dous® (ﬂn))

= ::,.:1 F(A(20), 1(20), 2{s0)) — g; (fx (A(20), 55(20), 2(20)) A" (20)

+fn(’t(#cl):#(#n):3(50))#'(’0)) = (foeb0z® (s0) + f22*+V(80) + fucpou'™ (s0))

F ' .
= gewat S (As0), #(s0), 2(s0)) — (12edon™(s0) + FEA**D) () + f2u(*+1)(s0))

—(£2s$02'® (80) + £22*¥+V(s0) + fuadonu® (20))

2+
PR TRl (A(fo))-#(’o}- =(80) — (k+ 1) 3. dos™ (20) — fOu(*+1) (s0)

—fOx(MH+1) (50) — FOA(MHI) (4 ) _ 10 doz® (o)

+1
= ;H f(A(s0), mo, z(s0) — f22(*+1) (8g)) — FOA(R+1) (4,) — fﬂ,q!fu:c“') (20)

= Paga{do, -, 0u—1; F) — S dodr—:.

So
0

Pp(®, -, ®p_2; F) = Pi(do, - $r~3; )
| FPet1{do, 15 f) — fO bodr—1
which is (3.5) for n = &. |
Multiplying P (®o, -+, ®r-2; F) by ¥o = (0,¢,,%0), where ¢, € X* is uniquely given
by & /3 = —¥0f3ab015 2 = —¥0 /20 (See Theorem 2.1 in [5)), yields

WoPu(®o, -, ¥x-2;F) = ¢, Pi(do, -, bx-2; ) + Yo(Pus1(Pos -, br—1; f) — foxbodr—1)-

Noticing ¢, /3 = ~¥of2: 00 and f;és_1 = ~Pi(do, -, Prx—2; f) we have proved (3.6) for
n =k and ul*}{s;) # 0 from

iﬂ-Pﬁ(QOi' "y Qk—E;F) = ¢0Pk+1(¢0: w8 :ék—l; .f) ‘-)é 0.
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Q. E. D.

Note 3.1. In the product space Y = IRx X x X the kernel N(FY) is spanned by & =
(0, ¢u,¢1). We normalise @ by L®o—1=0whereL € RxX*"xX*. V = {y € YlLy == U} is
a suitable complement of N[F,?) Choose L = (0,¢,0). ®; = (0, ¢, bi41)7,1=1,2,---,n—2,
indeed belong to V because ¢; € Vp.

4. An N-Parameter Nonlinear Problem and Its nth Extended System

We conzider an n-parameter nonlinear problem

f(‘llﬂll"'l#ﬂ-llz) =0 (4.1)

where A, p1,---,t4p-1 € IR,z € X, a Banach space, and f is a crt! mapping from
Mx---xRxXtoX.
i, e

"Suppnse (Ros 1oy * *y Bn—14s Zo) is an {n+ 1)th degree fold point of (4.1) with respect
to A. Again we emphasise that uy,, -, un—3, are fixed and y;,---, 4p-1 are not regarded
as functions of s. There are ¢g = z’(30), '+, ¢n—1 = 2{"}(o) satisfying (2.17) and (2.18).
We introduce the first extended system of {4.1)

bo¢ — 1
Fl(“i:"'iﬂ'ﬂ—llyl)E f
fsd

where {, € X*, 4y, = [l,z,é)r €Y, = IRx Xx X, and F! is a C™ mapping from
R X--- X IRxY, to ¥;. By Theorem 3.1, (614, - ; Bn—10,¥1,) i8 an nth degree fold point

n—1

of (4.2) with respect to u; provided (F} )° & Range (F}! )°, where

0 (4.2)

Yie = (Afh T, ¢0)T- (4.3}

B2o5° "y Bn-1, are not fixed and ug, - -, 1 are not regarded as functions of s. There are
&4, &1, -+ -, BL_, satisfying (2.17) and (2.18) with corresponding spaces and notations. And

&) = g+ (5) = (0, s, #i41)T, i=0,---,n—2. (4.4)
The second extended system of (4.1)

;0 -1
FZ(#Q:"':Fn—Ily?)E F? =0 (4'5)
F,}lﬁl

is the first extended system of (4.2). I; € Y* is chosen (0, £, 0) lateron. y3 = {1, ¥1, ®1)7 €
Ya=IRxY; xY; and F? is a C™"! mapping from IR x - - - X IR xY3 to Y5. Again applying

n-—=2a



272 Journal of Computational Mathematics Vol. 7

Theorem 3.1 yields that (p2,, -, ftn—1,,¥2,) i# an (n — 1)th degree fold point of (4.5) with
respect to pg provided (F3,)° & Range(FZ )°, where

y2, = (B1,> ¥1,, o), (4.6)

B36:° "y fin—1, are fixed and us, -, po—1 are not regarded as functions of s. There are
o3, @3, -, D2 _, satisfying (2.17) and (2.18) with corresponding spaces and notations. And

2 = y,(:"'l](sg} = (0,®!,®}, )7, i=0,---,n—3.
Likewise, the third extended system of (4.1)

L9 -1
F3(us, -\ pin—1,¥3) = F? =0 (4.8)
F, @

is the first extended.syatem of (4.5). & € Y, is chosen (0,£,,0) lateron . ys = (u3,y3, ?)7 €
Ys =R xY;%XY; and F? is a C™"2 mapping from IR x --- X IR xY;5 to Ys.
_ e jpt——

n—3 '
Applying Theorem 3.1 again yields that (us,, ', #n—1,,¥s,) i8 an (n — 2)th degree
fold point of (4.8) with respect to us provided (F3,)° & Range(Fy,)°, where

Y3, = (uﬂut Y20, Qg] (4'9)

Again pg,, ', ln-1, are fixed and pq,- -, pgn—1 are not regarded as functions of s. There |
are O3, D3, -, 93 _, satisfying (2.17) and (2.18) with corresponding spaces and notations.
And |

‘@? = yg-'-l)(’ﬂ] = (ﬂ, @?l ‘I}?-l-l]! 1=0,---,n-—-4 (4'10)

We define the (n — 1)th extended system of {4.1) recursively

tﬂ_ﬂ@n—ﬂ A §
F* Y un—1,¥n-1) = Fr-2 =0 (4.11)
Fn—l @n-—.—ﬂ

Vn—2

which is the first extended system of F*~23(u, _2,4n—1,¥n-2) = 0. Loz € Y'_, is cho-
sen (0,4,_3,0) later on. y,_1 = (ppn-2,Yn-29""3)T € V,,.y = IR x Y,,_a x¥,_, and
F*~! is a C* mapping from IR x Y,_; to Y,_1. Applying Theorem 3.1 again yields
that (#n_1,,¥n—1,) i8 2 second degree fold point of (4.11) with respect to p,_; provided
(F2-1)° & Range(F7~1)0, where '

Ha=-1
Yn—10 = (#ﬂ“?u: Yn-2¢, ‘1’3“2)- [4-12]

There is
@n R = y:;--l ("ﬂ) = (0: ¢g-2l @T_g)' (4'13)
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satisfying

gn-l (F““ )ﬂq:g-l@g-l £ 0

Vn—1¥n-1

where ¥G~* € Y, is given by Range (F*71)° = {y,,_; € Yo_,|¥2" 1y, _, = O}.

Un-1
Finally, the nth extended system of (4.1) is defined recursively by
tn_lq,n—l e
F*(yn) = Fr=t =0 | - (4.14)
E=

where 5,3 € Y, _, is chosen (0,£,.2,0) later on, y, = (p,._l,ﬁn_l,tb"'l)" ey, =
RxY, 1xY,_; and F™ is a C! mapping from Y, to Y,,. By Theorem 3.1,

yﬂu = (pﬂ—lulyﬂ-—lu 3 QE-I) (4‘ 15)
is a regular solution of (4.14).
In summary we obtain
Theorem 4.1. Suppose (F:;i)o ¢ Range [I":i)“,i =1,---,n—1. An (n+ 1)th fold
point (Ao, 14, -, in—1o, To) of (4.1). with respect to A corresponds to o regular solution y,,

of the nih cziended system (4.14) of (4.1) where y,, 53 given recursively by (4.15), (4.13),
(4.12), (4.10), (4.9), (4.7), (4.6), (4.4) and (4.3).

Because F™(y,) = 0 is no longer a singular syste}n, Newton’s method can be used
for solving (4.14). But the nth extended system it too complicated to solve, and should be

simplified.
In the extending procedure we can define polynomial operators
{ = Qu(®; F) = (Fi )%, =0, - ,n-1 | (4.16a)
5= Qi{%0 - B3 ) = Bi(95, . ¥j_si F) + (F}, )08}y,
j=2"*.’“;£=0’-”’“-3—? (4116b]

where F? = f{, P? =,k =0,---,n—1, and (F;;)“ means F;_. 18 evaluated at the corre-
sponding fold point. For simplicity we drop the symbol ( )° below.
Lemma 4.1. Under the condstions of Theorem 4.1 there ezist

Zi—l"I’j-"l

QI(QEI:“':Q;'-j.;F] = QJ'(@E)_I:"':‘I";:':%;FHI) ’

QJ';FII@E}_II' ..,@.}—l;p—l] | (4.17)
J‘= 1:2|' ”rﬂ;"‘ S 112!”'1"'_'.1.'
Proof.
0 0 £y 0
F}. 8, = . B 0 &' |, vi=1-n-1
F:li_-llri-; ¢:J_.l ‘F;i-i Fi-lq’:}-l F;Fi-,i. @1_1
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| So
& 1 |
Q:(®}; F*) = Q. (@4 1; Fi-1) , Vi=1,--n—1,
Qz(d4~1, &4 1; F1)

which is (4.17) for the case 5 = 1.

Generally we have

0 0 &4 {
F®;_, = ok B 0 &3 (4.18)
B Bi-N" i, ot
and
0
P;(®!,--- ,cp:f_n;p") = | Py(®51,- . il 1) (4.19)
Piya(®5H, - @T P — Fi- L @ 10ic)

from (3.5). Adding (4.18) and (4.19) yields (4.17). Q.E.D.

Theorem 4.2, The nth exstended system of the n-parameter nonlincar problem
F(A g1y -y pin—1,%) = 0, which satisfies the assumptiions in Theorem 4.1 , i3 equsvalent
fo a reduced system of order n

fodo — 1
f
fzd0
lod
J2d1 + fzadodo
£oda
fzp2 + 3fzadod1 + fz2xBoPodo

= 0. (4.20)

zﬂén—ll
Qn(?-"ﬂr" g '1¢n—1;f)

Proof. Generally we take

ti“_"(oizi—lsu): t=1--,n~1

At the regular solution y,, of the nth extended system {4.14) of (4.1), applying repeatedly
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Lemma 4.1 and (4.4), (4.7), (4.10), (4.13) and using the abbreviation Q% we have

F*yn,) = (£n—1®8~1 —1, P71 Fr—lgp—! )
= (£n-2087% — 1, (La—2®5 7% - 1,F"2,Q77?), (L2975, Q17 =Q2_2))
= (Ln-3®27% — 1, (L3572 — 1, (Ln—3®3 % — 1, /" 7°,Q17%),
(Ln-3®77°, Q“"SQE"?')) (tn-s‘I’““a (tn-aﬂ’““a‘ QT3 Q“*E'),
(£n—-333 3, B3 3))) S e

= (£0¢'0 o 11 (£0¢1 o 1: (!0¢0 = " (£0¢ﬂ i 1: G (‘tﬁéﬂ s 1?

(£O¢D -1, f, Q?]: [£0¢11 ?: Qg)]r
- (lobnmas (loPn-0,Q%_ s Q0s): loPn—3:@5,Q23)) )

(€081, (ob1, -, (tods, (Lo$1, Q3. Q9), (L092,Q5,@9)), -
o [tﬁtl“’ﬂ--ﬂ: (£D¢n~3: ?1-3: anl.-—ﬂ): (£0¢n—2rQﬂu2: QE—I]) m )))1

(msh (to1, (fo, -, (o, (tod1, Q3 @), (fo2, @3, R3)),

.- (£0¢n—3: (£O¢n—3: Qﬂ-—s- Qg-—i): (tﬁ‘#n—n,qg_m QO_I))’ - )) ‘
(30452. (Lodo, -, (Loda, (Lod2, Q3,Q3), (£042.Q3, Q%)) -~

T
% (to'ﬂsn—i: !‘O‘i'n—i: Q?;-m 1) (Co¢n-—1.Qﬂ_1,Q )) )))) (4.21]

By deleting the same terms, the right side of {4.21) is just the evaluation of the left side of

(4.20) at (Ao, B1gs" "y Bn—10s %0, $0, P21, * s Pn—1)
On the other hand, if there are Ag, #41,," ' *, Brn—105 Z0, 0, * -  ; Pn—1 satisfying (4.20),

then inversing the procedure in (4.21) we obtain

= (-t (s (s Gt (e s 90, 0 80
------ ,(0,(0, $ns5, $n-4), (0, 6n-4,8n-3)) - -)),
(0,0 (00,060, 0,80, . 0.0, bacs) O bacsrtl) ) ).
(o,( (0,1 (0,(0,60,62), (0,1, 42)), -+~
(0,00, 6n—1s n-3), 0, 4n-s,4n-2)) ) ) (0 (o,- -, (0,(0,61,42), 0, 42,45).
1 (0,(0,6n-3,8n-2), (0, 6n-2,6n-1)) )} ) (4.22)

which is a regular solution of (4.20). Q.E.D.
Note 4.1. If the Banach space is a finite dimensional space (its dimensions are m),
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then the dimensions of the nth extended system (4.14) of (4.1) are 2"(m + 1} — 1. But the
dimensions of the reduced system (4.20) of order n are greatly decreased to (n+1)(m+1)—1.

Because of the regularity of the reduced system (4.20) at the (n + 1)th fold point, we
can use Newton’s method to solve it. The similar algorithm with [6] can reduce a problem
of solving one linear system of (n + 1)(m + 1) — 1 dimensions in Newton’s iteration to a
proL..m of solving n + 1 linear systems of m dimensions with the same matrix.

5. Numerical exampléa

Ezample 1. An exothermic chemical reaction in an infinite slab can be described by
the boundary value problem

f(A, 1, z) = 2" + Aexp(z/(1 + pz)) = 0,

z(0) = z(1) = 0 -

where z is the dimensionless temperature, A iz a rate parameter and u is related to the
activation energy.
In [6], we computed a fold of degree 3 in this two-parameter nonlinear problem. It is

1
Xo = 5.22059, po = 0.24578, z() = 4.89655

which corresponds to the loss of criticality in the exothermic reaction.
Ezample 2. An axial dispersion problem in a tubular non-adiabatic reaction with

the first-order exothermic reaction can be characterized by two partial differential equations
(see {7] for details)

8y 1 3%y dy
3t Pe, 2% Oz

+ Da(1 — y) exp{8/(1 + 8 /7)),

(5.2)
of 1 8%¢ 84
S _ P _ _p
5% FPeabdt 8z T BDa(1 —y)exp(8/(1+8/7)) — B(6 — 6.)
with the boundary conditions
z=10:; Pﬁy}(y=a—y. Pgﬂxgzﬁ’
0z oz
(5.3)
s oy _ 08 0
PE=Si: 8z Jz ‘

Here y is dimensionless conversion, y € [0,1);6 is the dimensionless temperature, Da 18
Damkashler number, 4 is dimensionless activation energy, Pey is the Peclet number for axial
'mass transport, Pey is the Péclet number for axial heat transport, B is the dimensionless
parameter of heat evolution, and §, is the dimensionless cooling temperature. All parameters

are positive; f, can also be negative.
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We are concerned with the multiple steady state solution of (5.2), (5.3). Instead of
(5.2) we consider

1 &y dy
5% 4 Bal1 — g -0
P dad g a(1 — y)exp(6/(1+8/7)) =0,
(5.2)
i S el BDa(1 —y)exp(8/(1+8/7)) — B(6 — 8.} = 0.
Peg d2? dz 5
To discrete (5.2)' we use the central differences on the mesh points z = 34,7 = 0,---, N,

where Nh = 1.We choose N = 40.
Fixing v = 20, Pe, == 10,Pegy = 5,B = 15, we have a nonlinear problem with 3
parameters Da, 5, 0.. The following is the family of the folds of degree 3 along with 4..

. Da £ u(0) ¥(z) s(1) 00 6(z) o)
—0.1 .18408 3.59639 .037 .352 .688 .520 2.156 2.831
0 16982 3.54926 .034 .316 655 .501 2.045 2.927
2 04320 3.00272 .015 .195 .608 .865 3.091 5.405
& 01386 253719 .008 .148 .591 1.269 4.306 7.616
6 00578 2.04955 .006 .122 580 1.586 5.352 9.528

The fold of degree 3 at 6, = —0.1 can be chosen as the initial guess for the fold of
degree 4. Finally we compute the fold of degree 4 as follows:

Da = 0.18434, B = 3.59766, 0.=—0.10147, y(0) = 0.038,
1 1

y(3) =0.358, y(1)=0694, 6(0)=0525 6(3)=2.189,

0(1) = 2.845

which corresponds to the organising center of the 3-parameter nonlinear problem with fixed
v = 20, Pe, = 10, Pes = 5, B = 15 in (5.2)', (5.3).
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