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Absatract

In this paper, a new algorithm for the eigenvalue problem of matrices is given.
Namerical examples show that it could be a remarkable approach for practical purposes.
Some open problems are listed.
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§1. Introduction

The prevalent technique for obtaining the eigenvalue of matrices are based on either
(a) a factorisation of the matrix A into special factors (say LU, QR) leading to a matrix
sequenice {Ax}, which is isospectral with the matrix A and, in a sense, tends to some limit
while k goes to infinity, or (b} Jacobi-like methods, power method and others.

To solve a system of linear equations, a new factorization and splitting procedure
(QIF) is proposed in (1}, which is more convenient for parallel computation. Recently, a
more detailed analysis for this factorization is given in [2].

Based on QIF, an algorithm for the eigenvalue problem of matrices is given in this
paper, which is essentially a block LU facforization. In §2, the QIF procedure is briefly
introduced. §3 iz devoted to the algorithm description. The proof of convergence is given
in §4. Several numerical examples are presented in §5. They show that the algorithm here
could be an attractive method. Finally, some open problems are listed in §6.

§2. QIF Factorization

.

L.et A be an n X n matrix. Now we consider a factorisation of the form:

A=W2Z (2.1)

* Received December 19, 1987.
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where W and Z have the matrix form:

1 0 0

£11 21,2 Z1.n
Wai 1 Wan 22.2 Z2pn~1
w=| : wy, 1 . 1z={ 0 X 0
Wa-1,1 | 0 Wo-1n
£ * 1 1 “n,l Zn.n
(2.2)
where the elements of W and Z are given by
1, 1=3,
Wi = wqy, (t, 7) € D, (2-3)
0, otherwise

and

Zig = { 0, ('::J.) € Dr1 (2.4)

z; y, otherwise,
D={Gi)E=2|(n+1)/2 and j =i~ 1) or
i=[(n+1)/2),  ,(n—1) and y=1+ 1)}. (2.5)

By substituting (2.2)-(2.3) into (2.1) and cnmpariilg corresponding terms of the ma-
trices A and W Z, we have
(i) The elements of the first and last rows of Z are given immediately by

Z1,4 = Q14 and Zni = Gna 1 = llzl R LT
(2) Then the sete of n X n linear systems given by:

Z1,1Wi 1 t Zn iWin = Gi,1,

(2.6)
Z3 nlWi 1 + ZnnWin = Gin

are solved to get the values of w;; and w;, fort=1,2,---,n—1. This completes the first
stage and calculation of the outermost ring of matrices W and Z. The remaining elements
of W and Z are computed in a similar way. Totally (n — 1)/2 such steps are needed to
compute matrices ¥ and Z. -

In [2], a necessary and sufficient condition for this procedure without permutations is
presented. A pivot strategy is discussed there.

§3. QIF Algorithm Description

Let A; = A. The algorithm is similar to the QR method except that QR transfor-
mation is replaced by the QIF factorisation method in 82.
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Denote

Ay =W 2, (3.1)

where Wy and Z; have the form as in {2.2);
A_l:.|.1 — Zka. : (31.2)

Assume A, is a nonsingular matrix, and 8o are W and Z.
Now, our algorithm can be written as follows:

(1) A, = A.
(2) For k= 1,2, -+, do,
Ai: = wkzk »

Ak+1 = Z;,Wk {EE::”) .

(3) If ( m)agﬂ |u(:':+1)| > e, then goto (2] else goto (4)

where ¢ is a given accuracy tolerance, say 1072, and D is shown in (2.5).

(4) Let L'=[n/2],G = | ¢  Zm-i+l fori=1,2,---,L
Zn—i+l Zn-—$+1n—i+l

to solve det(G; — AI) = 0 to obtain the eigenvalue pairs. I mod(n, 2) is not 0, then
TEESTNEYSY is the last eigenvalue.

§4. Convergence of QIF Algorithm

In this section, we always assume that QIF factorization of a given matrix can be
done successfully.

d.1. Definition and preliminaries. |

Definition 1. A matrz is ¢ W-matriz or Z-matriz if it has the form as sn (2.2}
respectively.

Lemma 1. The product and snverse of W-matriz and Z-matriz s still a W-matriz
or Z-matriz,

Lemma 2. The QIF factorization of matriz A is unigue sf A ss nonssngular.

The proof of these lemmas is straightforward and hence is omitted here.

4.2. Convergenve theorem and its proof.

Theorem 1. Let A be a nonsingular matriz of order n. If A; = A and {Ax}(k =

+++) s the matriz sequence defined by the QIF algunthm in §3, then A, 15 ss08peciral
w:th A.

Proof. On the basis of our algorithm, it follows that

Ay = Wi 2,
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and
A1 = ZiWy = W;lAka. (4.1)

By induction, the proof is completed.

Theorem 2. Let A be a nonsingular matriz of order n. If its etgenvalues A1, Az, -, An

satisfy
[Ar] > [A2| > - > |An| >0 (4.2)

and the corresponding right-hand eigenvectors are
T1,Z2s" " ") Tn-

then, with the assumption that z = [z1, 22, , Tn] has QIF factorization

{Ay} converges to a Z-matriz while k — o0.
Proof. From (4.1), it follows that

Ay =W Ap Wi = W Wi b Ag—aWe_ oW1 = = ﬁ"{la‘iwk (4.4)

where

W, = WaW, - Wi,

Denoting Zy = Zp_1Zy—2 - Zy, 1t 18 easy to get

AF = ﬁ"k Z.'k . (4.5)

Therefore, Wy is the W-factor of AF?s factorization. Using (4.3) and A = X AX"! with

A = diag(A1, Az, - - An), We obtain

A=W,Z AZ "W, (4.6)

In order to make the subsequence argument more transparent we shall assume for

simplicity that n =-3 hereafter. Thus

11 %12 Z1,3 | vi,1 Y12 N3

_ 1 _ v _
X=| 221 222 %23 |» X =Y =| a1 133 ¥23
za1 Za,2 %33 V31 ¥2,2 Y32

By the algorithm in §2, we obtain

1 0 O

W, = 4511'52
0 0 1

(4.7)
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where W, is a W-factor of X (see (4.3)) and

Z2.1 £2.3 Xy i1Z1,3
x3,1%3.3 ' xr2.1 £2.3
61 - 3 fﬂ — [4‘8)
1,1 Z1,3 . 1.1 *T1.3 |
I3 1 X33 Z3,1 Tas
We also have
Ak 0
AF=X Az Y = (fi;) (4.9}
0 A%
where
= Z Arzisimij'! 1:! J = 1: 21 3. (4‘ 10)
i=1

After some algebraic operations , we have the expression of factor Wi in (4.5) as

1 0 0 I
We=| m(k)] 1 na(k) | (4.11)
0 0 I
where
J2,1 f2.3 Nnaifia
fa1fas 21 fa3
m(k) = , m2(k) = : (4.12)
fin Jis ha ha
fan fan faa fags
Substituting (4.6) into (4.4), yields
Ap = (WIIW ) ZAZ7 ) (W™ IWL) . (4.13)
Using (4.11) and (4.7), we obtain
1 0 0
WiWe=|m-& 1 na—6& | . (4.14)
0 0 1

To obtain the expected conclusion, what we should do is only to prove

im (1 (k) - &)=0, i=1,2. (4.15)

Due to |/\ | < 1 and | ‘ < 1, n;(k)(s+ = 1,2) perform like 0/0 while k goes to

infinity. Conmdermg k as a cnntmunus variable and using L’Hospital rule auccesswe]y, we

can prove (4.18). This completes the proof.
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§5. Numerical Examples

Ezample 1.
1 1 0 0 O 10 1 2 3 4
1 2 1 0 0 1 9 -1 2 —3
A=|101 3 1 0], B=1]2 -1 7 3 -3
0 0 1 4 1 3 2 3 12 -1
0 0 0 15 4 -3 -5 -1 15

The two matrices given in this example are symmetric with well-conditioned eigen-

values. After 16 iterations, the resulting matrices are

4.066329 1.000000 .000000 .000000 028869
000000 1.396981 1.000000 .253980 -—.000001
Ajg = 000000 000000 .253843 .000000 000000 |,
000001 -—2.925703 1.000000 3.644405 -—.000002
5,389012 000000 .000000 1.000000 b5.638444

15.626360 —.030843 2.000000 3.337678  .756950
000002 0.385128 —3.670016 —.182145  .000000

Big = 000000  .000000  1.655266 000000 000000
000000  .256873 —2.614020 6.975264 000000
—1.362161 —.400391 -—5.000000 —1.844194 19.457980
respectively. It i1s very easy to obtain their eigenvalues.
Ezample 2. In this example

5 6 0 -2 -3 8
A is still a symmetric matrix, of which the eigenvalues are
ALQ —_— —1.593735, 33.4 - 4.55990, Aﬁtﬂ = 16.142745.

The iterative result is

16.142750 3.182151 —2.000000  .000000 —.661227  .000000
000000 4.455086  5.050735 —1.417750  .000001  .000000 .
000000 .000000 —1.508734  .000001  .000000  .000000
000000 .000000 —.000001 -1.598736  .000000  .000000
000000 —.000003 6.025439 —6.822022 4.455992  .000000
000000 2.810211  .000000 —2.000000 —2.355618 16.142740
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Ezample 3.
O 4 -1 3 2 1
—4 0 7 0 1 3
A= 1 -7 0 2 9 1
-3 0 -2 0 -4 5
-2 -1 -9 4 0O 1
-1 -3 -1 -5 -1 0

It 18 & skew-symmetric matrix. After 50 iterations we have

24.013300 3.450934  —1.000000 3.000000 -5.291408  78.573320

000000 24.573290 3.633369 13.171040 12.398500 —.000001

Agg = .000000 000000 —18.936540 —46.808870 .000000 000000
.000000 .000000 7.762646 18.936590 .000000 000000

—.000001 -—53.913680 -9.604937 —32.648360 —24.573280 —0.000001
—9.230482 —-5.684251 —1.000000 —5.000000 —.604436 —24.013350

From Ago, the eigenvalue computation is simple.
Ezample 4.

—-1.750 -0.500 16.5 —4.50
—2.000 -3.000 46.0 —13.00
—6.375 3.750 —6.75 2.75
—21.25 14.500 —44.5 15.50

A=

This matrix has the eigenvalues X; 234 = 1 and a nonlinear elementary factor (A —1)%.
After 120 iterations, it follows that

1.32398200 —5.00000000 16.50000000 —.33515920
00000034 2.01772100 —3.30319200 -.00000020
00000010 33519230 —.08556835 —.00000006
25398720  14.50000000, —44.50000000 14386950

The convergence is acceptable. It is pretty slow.

Alﬂﬂ =

Ezample 5.

—41.250 21.500 —27.500 11.000]

P —72.500 31.000 12.000 1.500
—-55.125 39.000 -—135.750 44.000
—159.75 124.500 —476.500 152.000J

It has eigenvalues Ay 3 =144, Ay =2+ 3:.

—8.124342  21.500000 —27.500000 541634
0.000000 —1.999967 1.333379 000000
—.000000 —7.499605 3.999048 000000
—205.862800 124.500000 —476.500000 12.124370

A =
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.
So we could compute its eigenvalues easily.

Up to 30 numerical examples have been computed. All, except two, are convergent.

The failure cases are

Cass 1.
—34.750 17.500 -—17.500 17.500

-75.500 33.000 6.000 3.500
—21.375 18.750 —81.750 25.250
—44.250 52500 —290.500 87.500

Its eigenvalues are A; 2 = 1= t, Azq =11

Case 2.
3 2 1 2 1 4 1 2
2 1 3 1 2 2 1 4
0 3 1 2 1 2 1 3
A=0011 2 1 3 1
" 0o 0 0 100 3 1 4 1
0 00 O 107 2 1 4
0 0 0 O 0 1 2 3
0 00 O 0 0 3 2

Here, the QIF factorization without permutations breaks down.
§6. Conclusion and Open Problems

As shown in §5, this algorithm could be a remarkable approach for matrix eigenvalue
problems. After one (or two) eigenvalue(s) is obtaned, the matrix can be reduced into a
matrix with smaller size. In this way, the algorithm would be more economical.

Some important problems are still unknown:

1. Necessary and sufficient condition of the convergence of the algorithm.

2. Accelerating technique for this algorithm.

3. Relationship between it and other algorithms.

4. In [3], the relationship between TODA flow and the QR method is deduced for

some cases. We can ask whether there is some special flow which 1s a generalized form of

this algorithm.
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