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Abatract

In this paper, we mainly discuss the elvolution of initial small disturbance in dis-
crete computation of the contour dynamics method. For one class of smooth contour,
we prove the stability of evolution of initial small disturbance based on the analysis
of the convergence of the contour dynamics method with Euler's explicit method in
time. Namely, at terminal time T, the evolving disturbance is going to zerc as initial
small digturbance goes to sero. The numerical experiment on the stability of contour

dynamics has been given in [5, 6.

§1. Introduction

It is well-known that vortices play a very powerful role in nature. A description of the
study on the vortical phenomena is given in detail by H. J. Lugt|l|. But it is not enough for
- humankind to underatand the vortices, and to make use of vortex flows. As the mystery of
vortical motion has not been pictured clearly, much work has been ddne by experiment to
simulate the vortical motion. In general, it needs both much time and high cost to complete
the experiment. Among the numerous simulations for vortex fAows 12|, N. J. Zabusky’s
work for simulating the evolution of piecewise constant vorticity areas in two dimensions for
inviscid incompressible flows is most fascinating not only in numerical methods but alse in
mathematics [3]. Here we discuss the stability of his method in some sense for a class of
physical models. |

This method, contour dynamics method, is applied to finite area vortex regions
(FAVR'S) of piecewise-constant-vorticity for the Euler equation in two-dimensional invis-
cid incompressible flows.

The incnmpfesuible, inviscid Navier-Stokes equation in two dimensions is

‘b.t:l: -+ 'nbyy = o, (2)
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5l 1L =T ﬁ == N

and

u = ¢y1 v = —Yz, (3)
w= —ty + Yy | (4)

where w is vorticity. Let

K, (2) = '.illr _E = K(z '), (5]

z=(z,y), 2 =(&n) (6)
2= (z— €7+ (y-n)’ . (7
0= iwik (8)

The velocity can be denoted in terms of vorticity:
. " U(s) = K x wlz) = [ K(z - lz')dz" (9)
R

For incompressible inviscid flows, Kelvin’s theorem enssures that the vorticity is constant
along the path of the fluid particle. So we can mark the trace of the fluid particle for

simulating the vortex Hows:

R—t =K X w[z). | (10]

In [3], N.J. Zabusky proposed the contour dynamics method mn which the vorticity w(z)
is approximated by piecewise constant vorticity areas @(z} with polygonal boundaries. For
convenience, we only consider the single constant vorticity area. Chosen N-fluid-particles on °*
the contour are connected by a closed broken line; hence, an N -polygonal-boundary constant
vorticity area is constructed. So we can follow the motion of these N-particles to simulate

the motion of the contour. The semi-discrete equations of motion of the fluid particles are

the following:

A5,
F? = K x @ = K(%;) x @(z;}, (11)
j-: 1121"':N-
Denote
H = m?x|zj+1 ~ zjl, (12)
h = min lz;4+1 — 25, (13)
2
ZiyN = %5
"and
H/h < M, (14)

where M, is a positive constant.
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In this paper, we consider the smooth contour

() | I':2z= Z(s(t),¢), | (15)
s{t) = S(t, s0) (16)

and |
0 < s(t) < §(t), 0<t<T. | | (17)

S{t, s¢) is the arc parameter of the contour at time ¢, sy is the arc parameter of the initial
contour. We assume that the contour has the following properties.
1. The contour iz a measurable simple closed curve.

2. Z(s,t) has continuous derivatives on s up to third order, and
Z{e) (s, )| < Ms, a=0,1,2,3 (18)

where constant M3 18 independent of t.
3. 2z (s,t) is continuously differentiable on ¢.
We know tHat the rotating elliptic invariant model with the following elliptical contour

k(a + b) cos(2nt + s} + %k(u " b) cos s,

z=1
y = $k(a+b)sin(2nt + s) — 5k(a — b)sins

has these propertities [7], where n = @ _T_bb)g'{ﬂ, and k is some constant.
For r = 2cos{fy — $), we can get:
| 1 . P11+ ¢2 $1 + $2
ol ] _ : T
= ral 2 glin( P ol cos By g (19
where

pr=(r1, 1)y P2 = (ra,é2), (20)
r1 = 2cos(fg — ¢1), re2= 2sin(fy — ¢2). (21)

This property is an important condition in [4] for the proof of convergenre of the contour
dynamics method with Euler’s explicit method. There 18 also a good example analyzed in

8]-

§2. The Continuous Case

From now on, we consider the regions of piecewise constant vorticity w(z,t) with

FAVR'’s, which are contained in a ball

Br(0) = {z| |2] < R}. (22)
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For the initial value problem:
42 — K x w(Z,t),

(23)
th:ﬂ = 4o
we study its initial small disturbance problem:
dZ _ '
Ht— —KXW(z,t), (24]
Zly=0 = Zo.

We get the following conclusions as paper (6] does.
Lemma 1. Suppose Z(s,t) is the smooth contour of equation (28), and Z(s,t) the
solution of equation (£4). Then, there exisis t,, such that

1Z(s, t) ~ 2(s,t)] < Rfe, for0<t<t,. (25)
Lemma 2. Let 6(t) = max|Z(s,t) — Z(s,t}},6c = 6(0). Then we have got the

estimate of error §(t) :

ﬂﬂg&+/

0

tﬁ[f)(l‘“"l'ﬂglll f?)]d‘r 0<t <ty (26)

where 1,1, are positive constants independent of t.
Lemma 8. Suppose 6(t) is a nonnegaitve continuous function, A(t) a positive con-

tinvous function, n,k, m, Ry, R are nonnegative constants, and

k<R, - R <R, 6(t)<R,.
If

t

to 5(1.)
then there exisis lo < t;, fortg <t < Iy,

6(t) 5 k+m ]dr, Lo E { E ty | (27)

k {*xp[-—mft: A 7)dr)

1 :
() < Rexp {1+ —[1- exp(-m i A(r]dr)]} —] (28)
Theorem 4. Let the l'm'ti:ﬂ small disturbance of (24) be so small that
1Z(s,1) - Z(s,8)| < R/e (29)
for 0 <t<t;. We have the ezpression
_ . ‘
8(t) < Rexp [(n:/n2)(1 — ¢')] (R?) - ¥ 0Lt S £T, (30)
where t5 1s the mazimum value of t which satisfies the follouwing inequality:
¢
5n+f E(t][n1+rjgln 1’5[ ))dr Rfﬂ (31)
0

‘and the smaller the tnstial disturbance 8o 18, the larger the termanal time 5 18,
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§3. The Discrete Case

We solve equation (23) or (24) with Euler’s one step method:

=2+ Atk xo™,9=12,---,N; n=0,12---, M. (32)

Let _

f1 = Atgo + [1 + ¢ At]e + czAt[eln 1],

o 1 1

9n = (D1 + Daln 5)At + (D3 + DyIn g ) H,,

Hh=ﬂ?1|ﬂ4—3H=

n=0,12--- M
and

gy = (.D1 + D3 1n El-f)ﬁ.t -4 (D5 + DgIn HIE)HS"H:T,

>

r(g,) = Tﬂg.}._ﬂ‘T.,

As the paper [4] did, the estimation of errors at n-th step is defined by induction:

fn = m;g.x |Z (35, nAL) — 2;‘[ (33)

Theorem 5. For smooth contour Z(s,1),0 <t < T, of the initial disturbance is so
smiall that |

 r(gy) +r(de) < 1/, : (34)

then when At, Hy are sufficsently small, the evolution of inittal disturbance ts dependent on

both initial disturbance and discrete errors:

fn S 7(gr) + r(de), (35)

where
1
$e = [1+c1At]e + c2Ateln =

and € 1s the mazsmum absolute value of the initsal small disturbance.

In (4], we proved the convergence of the contour dynamics method. Therefore, when
At and Hy go to zero, the discrete solution of equation

Z3H = 77 + AtK x o™,

. (36)
Z? = Z(s5,0), 1=12, M

is convergent.
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Now we consider the evolution of the initial error in the following Euler’s explicit
method
+1 _ 7n n -~
Zp¥t = 2% + AtK(Z22) x &",
22 = Z(s;,0), (37)
321, 2 vie N

Consider the scheme with initial errors {e,}:

P+l =22 + AtK(Z7) x a",
ﬁ;-} = Z{sy, 0) + &5, (38)
7 = 1,804,058

We know that when At, Hy, ¢ are sufficiently small, the solutions of both schemes (37), and
(38) are very close to the solution of equation {10). Hence we get the following result:

Theorem 6. Let
4 fo > max |2} — 27|, (39)
5 _

[

which 18 the upper estimale of errors |?:"__;" = i’f] at n-th step by inductive defirition So we

can get the equation for f,:
n (40)

Then . "
fa<0(==)"" (e+ (o) i (41)

where
1 =exp(Tm + Tn21-InT|),
vie) =¢e(n +ngln %):

& = max|e;|,
3

f}zT *‘C 1.

Ezawmple. For a rotating circle invariant contour (V-State problem}, ¥ fluid particles

are chosen on the circle

Put
z,;. = cos(y — 1)8,
y; =sin(y -~ 1)8, 5=1,2,---, N,
§ =2n/N.
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We solve the equation:

dZ,
?EL T K(ZJ] X @,

Zilt=0 = Z(3;,0),
j — 112: T ':N

with Euler’s explicit method:

Zr+l = 70 + AtK(Z7) x w®,
Z_F - Z(.S_f,{)).

We get the discrete solution as follows:

z?t! = R"*lcos67F1,

y;}+1 i R"+1Qm§?+1
where
g+t Py 07 — Af”,
0% = (5 — 1)4,
sin A® = cAt/V1 + c2At2,
R™*! = R™/1 4 c2AL?,
P = \/i[ﬂ —cos 70 + /1 —cos(y — I]H],

2[cos 70 — cos(y ~ 1)8] - %{sin 76 + sin(7 + 1)6}

= (2“')_1 Ef:l

{1+ %(1 + cos 8) — (cos 58 + cos(7 — 1)9]}1}2 '

So, for the circle contour, the method is convergent and stable.
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