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Abstract

In this paper, the generalized ‘nversion theory and ite application in inverse scat-
tering problems are discussed. An iterative solution of joint inversion of parameters

+

describing the earth structures and sources is given and a numerical example is also
ghown.

Introduction

The inversion problem is a quite active field of research in geophysics. Many geo-
physical pmblems-are#regarded as reconstruction of the spatial dist;ibutiun of some physical
parameters from the ;mages of the model space in the data space [1], [2}, |3]. The reconstruc-
tion of the earth structures from the reflections observed at the surface is just one of this
kind of problems. Based on the generalized inversion and by applying Born approximation,
an iterative solution of linear inversion of reflections has been obtained by A. Tarantola et al.
3], [4], (5}, [7]- Their reault of the first iteration just corresponds to the classical migration.
It is also possible to regard the source function as an unknown parameter. An iterative
solution of simultaneous inversion of parameters describing the earth structures and sources

is obtained in this paper.
§1. Theory

The inversion problems in geophysics are generally ill-posed. In particular, when we
attempt to discretise model parameters not at the beginning of formula establishment, but
at the last step of calculations, the general inversion theory based on the matrix algorithm
would no longer be sufficient. The gene;'alized ‘nversion method provides the basis for solving
this kind of inversion problems (3], [6]. |

1. Data space and model space

The functional space which consists of all acceptable models is called the model space
and represented by M; the vector space which consists of all observable data is called the
data space and denoted by D. The real line is represented by R.

Let the weight functions of M and D be Woa(r,r') and Wy(r,r') respectively.

The norm of the model space, || [|a : M — R, s determined by

fmllae = § [ dr ] dr*m(r)wm(r,r')m(r')}m, me M. (1.1)
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The norm of the data space, || ||p : D — R, is determined by

ldlo = { [ ar [ aratiwas Md))", deD (1.2)

Define the scalar products of the model space and the data spaceas( , )u:MxM — R,

and
{Elrﬂz)u =[dr/dr'ml(r)Wm(r,r')mg(r'), m,, m, € M; (1.3)
( , )p:DxD— R, and
(d1,dg)} = _/ - _[ dr'dy (r)Wy(r,r')d2(r'), d;,d,€D. (1.4)
We have ;s I
“.d.."D = (ild}ﬂl é = D: (15)

“i‘_ﬂ_"M e <1n_1 "_‘)Ml EE,M'

Let the dual spaces of model and data spaces be denoted by M and D respectively.
From the definition of scalar products, the elements in the dual spaces can be correlated

with the element# in the original spaces.

ﬁ‘l(r) = [dr, m(r: r')ml(r): m EM, 1, € f'?;_

(1.6)
3.5} = f dr'W,(r,@)d,(r), d, €D, HeD.

Introduce the definition of transposed operator [3], [6]: the transposed operator T
of the linear operator G : M — D, maps D into M and meets the following relation:

(Gm,d)p = (m,GTd),;, me MdeD, meM, deD. (1.7)

The introduction of the transposed operator will play an important role in the generalized
inversion theory. It allows us to compare the inversion problem of functionals with that of
discrete parameters in ‘many cases. : ~

If for G : M —+ D there is an operator G* : D — M and it meets (d,Gm)p =
(G*d,m)n,d € D, € M,G" is called the adjoint operator of G.

If a symmetric linear and positive definite operator C,, : M —+ M exists, it is called
the covariance operator of the model space; in the same way, Qd': D —. D is called the
covariance operator of the data space. Their inverse operators always exist. If the weight
functions of M and D, W, (r,r') and Wy(r,r'), are just the kernels of Col and C3' re-
apectively, we call the scalar products defined in this way the natural scalar products 6].

Throughout this paper, we shall define the scalar products in this way. Thus, we have
m=Cnlm, meM, meM, d=Ci'd, deD, de (1.8)

D.
Consequently, M and D can be regarded as the image space of C~Yand €3 !
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Suppose the nonlinear operator ¢ : M — R. The gradient operator of ¢ 1s an

operator, denoted by 7, which maps M into itself, and the relation between 4 and the
Frechet differential operator of ¢ 18

3¢
1=Cnl3-) ) mMEM (1.9)

The Hessian operator of ¢ is f : M—M,

a3
_}lﬂ_ﬂ_'l-— ( _)El_=!_ﬂ_u! m, my € M. (110)

2. Generalizsed inversion

1) Generalised least square criterion
With a nonlinear operator f : M — D, the forward problem can be written generally

d=f(m) deD, meM. (1.11)

¥

dy, €D represents the observed data and C, is the covariance operator describing the
measured errors. Because the inversion problem which we meet is essentially ill-posed, it is
necessary to introduce a priori knowledge for models. Such a priori knowledge for models
can be described by an a priori model m and a covariance operator C,, representing the

o

discrepancy between m, and the accetable solution [3], [6]. The inversion can be reduced to

looking for an m,,, € M, which meets (1.11) and makes minimum the objective functional

S(m) = $(11(m) ~ donld + 1= I (112)

(1.12) can be rewritten as

S(m) = H{(L{em) ~ dop) TG () — o) + (2 = )T C ()} (L9

(1.13) implies that the solution we are looking for is the nearest to the a priori model m, in
¢he model space and its image in data space is the ngarest to the observed data.

2) Optimal approach to inversion solution
From (1.13), the gradient operator 7 and Hessian operator H of the objective func-

tional S(m) can be obtained:

v, = CnCTCT (£(my) = dobs) + (e = 1) (1.14)
where G, is the Frechet differential operator of the operator [ at my;

H, = +C,GEC7 Gy + Crmdi Ca (f(mi) — dobs); (1.15)

where

-'ll: e (3:1]&:&,,'
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If f is a linear operator, J;, = C, (1.15) can be rewritten as

H, =I+C,GiC;'G,, (1.16)

where [ is the identity operator.
Thus, the inversion solution, which makes the objective functional $(m) minimum,

can be obtained by means of the gradient method,

m, ., =m, +a,Am,,

Amy = -7,
7D
Am, = - <n’-n’ A ,
pal i T
(1.17)
oy e {ﬁmnllﬂ)
o {Am,, H,Am, )’

H,=1+C,G,C;'G,,

T 1 '
ln = (—mn & Hl-p) — ngng—d ("_lnha - f(m.n))'
2
Some techniques accelerating the convergence can be adopted in the iterative pro-

cesses. S{m) is of quadric form for linear problems; therefore, a minimum point will always
exist. But the situation would be different for nonlinear problems. Under that condition,
even if the iterative processes converge, it is necessary to justify that the solution obtained

is what we are looking for.

§2. Application of the theory in the inverse scattering problem—
simultaneous inversion of parameters describing
the earth structures and sources

1. Forward problem
We start from the accoustic equation

1
p(r)

1 6% :
[r— + div(

e orad)|U(r,t) = S(z, 1), (2.)

where
k(r) : incompressible modulus, p(r): density,

S(r,t) : source function, U(r,t): displacement function . |

When grad p(r) = 0, we have

[1:5)2

CZ(!__) ati = vz]U(L t) = S(Lt) _ (2.2)

where C(r) is the velocity distribution function.
Considering a point source at r = rg, the source function can be written as

S(r,t;r,) = 872C%8(r — r,}S(t) (2.3)

—1 ") —a
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where § is the Dirac sign.
With a velocity perturbation close to a constant velocity Co,

C(r) = Co + be(r) (2.4)

and ||6¢c(r)]] << Cop, the reflections generated by the velocity perturbation c{r) can be
obtained by replacing {2.2) with {2.3), {2.4) and by using Born approximation |4, |7]

by =G bc+G,b3. [2.5)

The kernels of the operator G, and G, are respectively 7], [8]

1 Iz — 5l + iz — £l
G.(r;, t; = "t — —=————— :
de(r) lr — rll + [z — |
G : t- 5 tl — - 5” 2 -f_ - - —_— — .
ratirll) = [ e &

where r, is the position yector of receivers. The kernels of corresponding transposed opera-

tors G5, and GT are respectively

T o 1 e =gl 4 - ol

QG‘(K |r-irt:r-.|) = “r: — L" ' "f — .f.._“S [t Co 3 (28]

| Ee(r') I — rll + I — el
GL(t'|r;,t;r,) = fd;’ = s - (t - ——— ———=221). 2.9
S( I ) ”f"'ﬁi"'”f‘"tnll ( ( Cﬂ ]) ( )

With |
§m = ( gi ) : (2.10)
Ce 0

-Qm - 0 Ql ) ] (2'11)
G, =(G.G,) | (2.12)

Su= G, bm. (2.13)

(2.13) gives the solution of the forward problem.
2. Inverse problem
The objective functional is

S(6m) = - {(5u“ -G, 5m)TC (6u° — G,nbm) + gg,;lsm} (2.14)

where §u® is the observed wave field, and C,, 18 the covariance operator of observed data.

Using the results of §1 , the gradient and Hessian operators of S(ém) are

q=ém-C,GrC." (v - G, 6m), (2.15)

r —fn —u

H=I1I+C,GrcC. 'G, (2.16)
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m

respectively, where

H = ( . L. ) - (2.17)
H., .= I+C.G, C:lgﬂ

H,=0.G67Tc.'a,,
ﬁ-m o C,GTC:IQ, (2*21]
g'—ll = £+ Q.QTQ;IQ;-

It is easy to find chat H_, and H,, are operators adjoining each other.

Let v = 0. We can obtain the solution of the inverse problem based on (2.15),

sm=H"'C, G C;'6u° (2.19)

=~ =2

where H ! is the inverse of the Hessian operator. We have

g (B Ba), a0

By Bn

E.'Z? - (Eau T chH_lH .)_ll

Blﬂ = _H-::IHcInBZZ-I
o = o 2.21
By, = —ﬁﬂﬂuﬁﬂl, ( )

B, = E;cl o ﬁlaﬂacﬂ;clr

Thus far, our discussion has not involved the discreteness éc(r) and §s(t). It is difficult
to use directly the form of the solution obtained above. In continuous inversion problems
we will be faced with the calculation of the kernel of the inverse operator of H, which
is nearly impossible. Even if the parameter of the model is made discrete, the kernel of
the operator H is a high dimensional matrix; the calculation of its inversion takes much
computer time and occupyies much memory space. Therefore, it iz appropriate to use the
optimal method to obtain the iterative solution of the inversion problem. The application
of the pre-conditioned conjugate gradient method can obviously accelerate the convergence

rate [6], [7]. The formulas for iterations are
Smgy, = dmy + arAmy, Am, = —-_}li'_y_n,

{.M"f ’Zﬁ;}M | »

Am, = —M~y + :
padiine MY, 1% yIu

(2.22)
v, = 6mg — C,,GrC ' (8¢ - G, my),

=~ m—m——u

e Am 1 7 }M
1k+1=:r_k+ak-&ﬁmh -Ii:l“!'gmgigulgml ak:‘{a(mmr

where M is the pre-conditional npera.tur., the choice of which should be as near to H™' as
possible under possible conditions of calculation. For discrete model parameters we can take

M = ( diag H)™".
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The problem treated in this paper involves two unknown functions & c(r) and 6s{t).
Therefore, it 1s suitable to use the relaxation technigue in the caleulation. In this technique,
one parameter, for example §s(t), is fixed. Then by applying the pre-conditioned conjngate
gradient method, the optimal value of the other parameter 1s searched for. This process 18
repeated alternately until the satisfactory result is obtained. |

3. A Numerical example

A numerical example has been made by applying ihe method mentioned above. The
synthetic seismograms are calculated on the basis of formula (2.13). Then, these gelsmo-
grams are regarded as the data used for inversion. A pulse function is chosen as an a prior
source function. |

Figs.1a, 1b and 1c show the real model, real source function and a priori source
funciton respectively. Fig.1d shows the synthetic seismograms. Figs.le, 1f, 1g, 1h, 11 and 1)
are the results after the first, fourth and eighth iterations regpectively. In every iteration, the
source is iterated three times and the model is iterated six times. It can be seen that after
four iterations the muZlel and the source function are already quite similar to the real model
and the real sﬂurce-hfun?tinn. This fact is partially due to the very short source function in
our example. |

This work was carried out In Laboratoire de Sismologie, 1.P.C. Paris, Universite de
Paris 6. The author i very grateful to Prof. A. Tarantola for his support and his very
helpful suggestions. The author is also indebted to Dr. A. Nercessian for his hearty help.
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