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Abstract

The Galerkin methods are studied for two-point boundary value problems and the
related one-dimensional parabolic and hyperbolic problems. The boundary value prob-
lem considered here is of non-adjoint form and with mixed boundary conditions. The
nptipla.l"t':rrder error estimate in the max-norm is first derived for the boundary problem
for the finite element subspace M C Si41 ,+1(f) with 0 < & < 5. This resclt then
gives optimal order max-norm error estimates for the continuous and discrete time

approximations for the evolution problems described above.

§1. Introduction

Galerkin methods for the two-point boundary value problems with Dirichlet boundary
have been studied intensively in (2], [3], [4], |7], etc. and a series of significant results have
been achieved. In this paper, our emphasis is on the boundary condition of mixed-type. In
Section 2 an optimal order L™ estimate for Galerkin approximations is derived. This result
18 then applied in Sections 3 and 4 to the single apace variable parabolic and hyperbolic
equations, respectively, to get the optimal order L*° estimates for continuous and discrete

time Galerkin approximations.
Consider the following boundary value problems

Lu = —(a{z)u') + b(z)v + d(z)u= f(z), zel=(0,1),

- (1.1)
a(0}u’'{0) — aou(0) =0, a(1)u’'(1) + oyu(l1) =0;

and the initial-boundary value prublems-

¥+ Lu=filz,t), (z,8)€Ix(oT]
a(0)u’(0) — oou(0) =0, a(1)u'(1) +o,u(1) =0, (1.2)
u(z,0) = up(z), z€l,

L
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and
gi% - Lu = fa(z,t), (z,t) €I x (0, 4
a(0)u'(0) — gpu(0) =0, a(1)u'(1) + ou(l) = 0, (1.3)

u(z,0) = uo(z), 3%(2,0)=wui(z), z€L

For problem (l,i), assume that
(i) a(z) € C*(I),b(z) € C°(]) and ¥'(z), d(z) € L™ (I);

(1i) o¢,o1 2> 0 with o2 + 0% > 0 and there exist constants ag,a; > 0 such that

0<ap<afz)La, Vz€E I (1.4)

(iii) for each f € L?(I}, Problem (1.1) has a unique solution u(z).
Problem (1.1) can be posed as

Blu,v) = (f,v), Yve H'(I), (1.5)
where P -
' B(¢,¥) = (ad', ¥') + (b4',9) + (dé,¥) + (4, 9),
(#9) = [ ovz (1.6
(6, 9) = 00$(0)4(0) + o16(1)¥(1).
~  The adjoint problem of Problem (1.1} is the following:
L*w = —(a(z)w')’ — (b(z)w)' + d(z)w =g,
 a(0)w'(0) — (6(0) + 00)(0) =0, (1.7)
a(1)w'(1) + (8(1) + o1)w(1) = 0.
Problem (1.7) can be posed as
B*(w,v) = (g,v), VvE H'(I) (1.8)
where
,B*(4,9) = B(¥,¢). (1.9)

From the theory of O.D.E.’s and Green’s function expression of the solution of the
boundary-value problem ([1]), we can assert that there exist C and C* such that the following

hold:
1. For each f € L2(I), the solution, u(z), of Problem (1.1) satisfies (1.5) and

Hellgay < Cliflleaen-

2. For each ¢ € L2(]), Problem (2.7) and thus Problem (1.8) have a unique solution

W and |
Wiz € CFlala -
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3. Green’s functions G(z;2) and G*(z;2) for Problem (1.1) and Problem (1.7) exist
and G*(z;2) = G(z;z). Also, Vz €[0,1], we have

B(4,G*(,2)) = ¢(2), Vé e H(I). (1.10)

Note that the bilinear form B(g,¢) on H (1) x H'(I) is not necessarily symmetric

or coercive. By use of inequalities

1 1 1 1
v?(0) E””'”i:m 2 5""”%'-'{:}: v?(1) + E"”'Hiﬂm > ~llvllagn, (1.11)

we see that the bilinear form

B(¢,9) = (a¢', ¢') + (¢, ¥) (1.12)

is symmetric, positive definite and bounded on H Y1) x HY(I).
Partition [U, 1] using 0 = z4 < Ty < - < zy =1and let I, = (I"_l,I,'),h,* —
Ti—%i-1,8=1,2,.-- N h= [max h;. Assume that this mesh is quasi-uniform, i.e., there

exists a constant By > O such that
H}_ﬂ;xhifhj < Fo. (1.13)
Let M be a finite element space of the following form
M=Mf={u:v€0k(f),uEP3(l}), t=1,2---,N} (1.14)

where Pg(J) is the set of polynomials on J of degree at most S, and 0 < k < §. The space
M C H**YI) and it is of class Sk+1,5+1(7) ([6]). For k= 0 we denote M 2 M, = M.
The Galerkin approximation Problem (1:1) is defined as follows: Find U € M such
that _
- B(U,V)=(f,V), YWeM. | (1.15)

Besides the usual Sobolev-Hilbert spaces H'(I) and their norms || - | Hr(1) we need
the space ([3], [7])
| Wfﬂ[l)={u:u{i}EL°"(I], 1=1,2,---,q}

and its norm
g

vltwe () = " o' )| pe ).

=0

We adopt the abbreviated notation

F-lle =1 lerery, Bl =0 Naroqsy.-

The letters C, C; will denote generic constants with different values in different inequalities.
We will give optimal order L*® error estimates for the Galerkin solution of Problems

(1.1), (1.2) and (1.3), respectively.



386 Journal of Computational Mathematics Vol. 7

e —————————————————————————————— e —

Contrasting our discussion with [7] and [8] one sees not only that the boundary
condition considered here is more complicated but also that the conditions on the coefficients
b(z) and d(z) are weaker and the subspace M is more general. Also, the treatments for
Problems (1.2) and {1.3) use a different approach.

§2. The Optimal Order L Estimate for Galerkin
Approximation of Problem (1.1)

The solvability of Galerkin procedure {1.15) is not obvious since B(4, ¢) is not positive
definite.

Theorem 1. The Galerkin F.E. equation (1.15) has a unique solution U(z) for h
sufficiently small ([2]).

Proof. It is sufficient to show the uniqueness. Suppose that Ui(z) and Uz{z) are the
solutions of Problem (1.15). Set £ = U, — Uz. Then

B(¢,V)=0, YV eM. (2.1)

2 » :
From the preliminary descriptions 2° in Section 1, for £ € H L{I) there exists a unique
function v € H?(I) such that

Blv,u) = (v,€), Yve H'I). (2.2)
Take v = € in (2.2). Then

I€))° = B(§,v - x), Vx€M.
~Thus

I€l* < Cliglls inf llv = xls < Cabli€lhllvllz < Cahll€le €Nl 1€l < Cahllella.  (2:3)

Since
B('E: 'E) = 0,

we see that

(ag’, &) + (§,§) = —(b¢', €) — (44, §),

1613 < gl - el + H€i),
1€l < ClI£I-

Substituting this into (2.3) one gets

€] < Calléllh, (2.4)

where O is independent of h. Hence for A sufficiently small we get 1€]| =0, ve., Uy = Us.
Lemma 1. Let u € H3Y1(I). Then there ezists C such that

lu— UL+ hllu= Ul < CAH ullgsnny (2.5)
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for h sufficiently small.
Proof. Since

B(u—-UV) =0, YW e M,

we have, as the derivation of mequality (2.3),

lu —U|| < Cohflu - U),.

(2.6)
Note that
B(¢,¥) = B($,9) + Bo{o, v)
where
By(#,¢) = (b¢',¥) + (dg, ¥).
We see that
lu =V} <CB(u-Uu-U)=C[B(u-U,u— U) — Bo(u~U,u—U))
=C|B(u- U,y - X)~ Bolu— U, u- U, ¥YxeM
. <Gl =Yliflu = xl + = U, Ju - 0]
By (2.6),
Mu—Ully <Gy inf Jlu - x|, + Cahfju ~ Ul
XEM
Thus for h small enough,
lu — Ull; < Cs Jnf flu—xlls < CA®Jlullgssiqyy. (2.7)
The conclusion follows from (2.6} and (2.7). | .
Lemma 2. Let u e H‘q“(}') and subspace M = M,. Then at all knots {z; f__n,
(v = U)(=:)] < CAS M lul g vy, | (2.8)

provided h 1s sufficiently small.

Proof. Let G*(-, 2) be the Green function of

the adjoint problem (1.7} and z [0, 1]
be an arbitrary point. By (1.10},

Bl($,G(.2)) = 4(z), V¢e H'(1). (2.9)
Take z =z, and ¢ = u - U in (2.9). Then

(v -~ U)(zi) = B(u—U: G*(-,2:)) = B(u— UG (,z)-x), xeM.

Thus |
(w = U) (=) < Cllu— Ul inf G*(,m:) - xs. (210

Note that G* (-, z,} € H'(I) c C°(]), 6*(,, z:) € H?(0,z;)NH?(z;,

1) and there is a constant
¢’} independent of z; such that

”G‘('! Ii]”ﬂ’[ﬂ,lil i ”G*(',I")”H!(:h” < cll : = O: 1: Ty .
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We can construct a piecewise linear interpolation x* to G*{-, z;) so that x* € M, and

Anf 167 (s z) — xlly < 167 (h 2:) = X7l
= ”G*("mi) o xt"Hl{ﬂ'.Ii} + ”G":Ii) = x'”ffllzi.l}

< CR{IG* (s m) lua0.e0 + NG (5 zi) a2 (a1 } S C2h

From (2.10} the lemma follows. |
Noting that, at boundary points z = zo = 0 and z = zy = 1, Green functions
G*(-, ) and G*(-,zn) belong to H?(I), and recalling that M = M, C Sky1,5+1(f), one
imimnediately gets from (2.10) |
Lemma 3. Letue H5YYI) and M = M with0< k < 8. Then

I(v — U)(z3)l| < CR™  lullgserery, 7=0,N (2.11)

for h sufficiently amall.
In order to derive the estimate of ||u — U||p=(s), let’s define some projections W and

Z of u in some sense ‘and estimate |7 — Wz o), |u — Z]lLe (-
Let W € M and be defined by

B(W-—uV)=0, ¥YVeM. (2.12)

Clearly, W exists and is unique.
Lemnma 4. Let u € H *(]). Then

U~ Wl < CR T luasery (2.13)

for h small enough .
Proof. Since E[cﬁ, ¥) is positive definite,

W -W|? <CB(U-W,U-W)=CBlu-UW - U)
= C{B(u— U,W —U) ~ By{u -~ UW —U)}
= CBolu—U,U - W).

Integrating by parts gives

Bo(u—-UU—-W) = f{b(u _UY U - W) + d{u ~ U)(U - W)}dz

< Clllu—UllzeanllU = Wlipean+llu - U |U - W]i}

< Ci{llu = Ullz=qory + |lu = U}V - W]l
where 81 is the boundary of I, i.e., z =0 and z = 1. Thus

|U - Wi < C{llu—UJ| + max |(u— U){z;)[}- (2.14)

3=0N
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The conclusion of Lemma 4 follows from Lemmas 1 and 3.

Now we use another projection, Z, of u into M .Denote
M= {v:veEe M and v(0) = v(1) = 0}.
Let Z € M such that Z = u on 37 and
B(Z-uV)=0, VVeEM. (2.15)

It is easy to see that Z exists uniquely.
Lemma 5. Let u € H3*1(I). Then

U - Z]|, € Ch5+1||u”Hs+1“]. (2.16)
Proof. Set
Z~-W=n+§
where n{z) € Pi(I) and 5{0) = Z(0) — W(0) = u(0) — W(0), n(1) = Z2(1) - W(1) =
u(1l) — W(1). Thus § €M. Note that
\6z < cB(8,6) =CB(Z-W —n,8)=CB(u—W —n,6)
= —CB(n,6) < Cunll.[16]}1

and
Inllx < Ca(In(1)} + [n(0)]) < Cah™* {lullgs+1(ny- (2.17)

Then we get
100, < Cah”FH ullgs+2(y- (2.18)

Hence from (2.14), (2.17), and (2.18),
U= 2l < U = Wil + W = Z|y < I = Wlls + Inlls + 18l < ChS+ ullrenry.

Since Z is a Dirichlet-type projection of u into M, applying the result given in [3] we
see that under the assumption (1.13), the following conclusion is true:
Lemma 6. Let u € W (I}, Then

lw— Z||eoir) < CA™H|ullwsery)- | (2.19)

Using Lemma 5, Lemma 6 and the triangle inequality we obtain the following optimal
order L°® estimate.

Theorem 2. Let u and U be the :olution of Problem (1.1) and Problem (1.15)
respectively. Suppose that u € Wt (]). Then there is a constant C independent of h, u

and UV such that
" lu = Ullpeiny < CR M ullws+ia (2.20)

provided the mesh parameter h 1s small enough.
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Remark 1. If we take M = MZ, then the condition (1.13) can be dropped out (]7]).
Remark 2. If the coefficients b(z) and d(z) in (1.1) satisfy the additional assumptions

(i71)

d(z) 2 do > 0, ”b:“Lm(n < 2dpay,

then B(¢,¥) is positive definite on H 1(I) x H'(I). In this case the restriction on the size

of h 1 not needed.

§3. Application For Parabolic Equations

The results obtained in Section 2 can be applied to Galerkin approximations for the
one-dimensional parabolic equation with mixed-type boundary conditions to get the optimal

order L™ estimates.
Rewrite Problem (1.2):

%% = é%(u[m) g—g) - b(z]—g-‘é — d(z)u + fi(z,t), (= tyeIx (0,‘T],
a(0)u'(0) — oou(0) =0, a(L)w'(1)+oyu(1) =0, t€ [0, T}, (3.1)
u(z,0) = uo(z), z€l.

Retain the assumptions given in Section 1. In addition, assume that f, € L2(I x[0,T]) and
ug € H(I). _
For simplicity we use notation u(t) = u(z,t), /i (t) = f{z,t) and L7 (X) = LF{0,T; X).
The continuous-time Galerkin approximation for Problem (3.1) is defined to be a
differentiable mapping U(t) : [0, T| — M satisfying

(3Z,v) + BU,Y) = (£1(8), V), ¥V € M, »
B(U(0) — uo,V) =0, WYV EM.

It is easy to see that Problem (3.2) has a unique solution U(t) for h sufficiently small.
In order to estimate |u — UllL=(L=(1)), we use an auxiliary function #(t) which is
defined to be a mapping: [0,T] — M for each t € [0, T) and satisfying

B(i(t) - u(t),V)=0, WEM (3.3)

where u{t) is the solution of Problem (3.1). From Theorem I we see that Problem (3.3) has
a unique solution @(t) for each t € {0, T| provided h is small enough. Also, #(t) is smooth
with respect to ¢ if u(t) is. Note that, from (3.2) and (3.3),

@(0) = U{0). (3.4)
Let ¢ =U — 6,7 = ti — u. Then

B0y pen- (L), vem T 03
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Take V = %tﬁ in (3.5). Then

|5l + (o5 52 (30) +{6.50) =~ (s + 4 e+ 50 50),

From this we have
ya {2 +e.0}<ofien+ |52}

Hence
o125 [*t6) + o, 5Ol + 00E(B)omo < O [ €13 (s)ds + | 2 . (3.6)
ot llL3(r2(1y)
Here we have used the fact £(0) =
Noting that a(z) > ag > 0 and o3 + 07 > 0, one gets from (3.6)
)< / d | :
€13 < ¢ | Neleds +ca| ST L (3.7)
Thus t 3
| 7
= (2= < €| 5 . 3.8
I€llz=z=y < €, S— (3.8)
Since the coefficients a, b, d are independent of ¢,
| 3
B(n,V)=0, VV M. (3.9)
Suppose that %% € L*(H®*Y(I)). Then, from Lemma 1,
< S+1 ;
" at ‘L’{L’{I}} - ” L2(H3+1(I)) 344

for h small enough.
By the definition (3.3), %(t) is a Galerkin approximation of u(t). Apply Theorem 2

In(&)lw=(2) = llu(t) — a(e)loqry < CA7FHlu(t)llwg+o(s)

and assume that u € L®(WS5t1(])). Then

||r;”Lun{Lnﬁ[;” < 8¢ e ”H"Lm[“ri+1{f”. [3.11)

Combining (3.8), (3.10) and (3.11) we have
' Theorem 8. Let u(t) and U(t) be the snlut:an of Problem (3.1) and Problem (3.2)
respectively. Suppose that u € L““(WS“(I)} and < -a— € L2(H5*1(I)). Then there ezisis a

constant C such that

(3.12)

| ou
_ e 541 - <
lu— Ul (L=¢n) < Ch [“ullb (wg+in)) + “ ET) L:{HH+1[I”]

provided h s amall enough.



392 Journal of Computational Mathematics Vol. 7

Now consider a discrete-time Galerkin approximation for Problem (3.1).
LetAt = T/J,J a positive mteger, and t; = jAt,7 = 0,1, ---,J. Adopt the notation
for the function g(t):

g9; = g(t_,-}, Ii+1/2 = (Q_f+1 g QJ'HQ: 319;‘+1;z = fg_,'+1 - g_f),’ﬁt.

Set J = {0,1,---,J}. The discrete-time Crank-Nicolson approximation for Problem (3.1)
is defined to be a mapping {U;}{ : J — M satisfying

(at'Uj-i-lf?lV) “+ B(UJ'-FI;’Z:V) = (fj+lf‘3:v): YV € M: J = 0: 1: s *:J e 1:

(3.13)
B(Ug—'u{),V) =‘D, YV EM.

Let ti(t) be defined still by (3.3) and let 5 = u—u,£; = U; - @;. Then

(at€j+l/?lv) + B(€J'+1f2:v) e _(atni+1f[2 2d EJ':V): | WweM, ;=01 ,J- 1,

(3.14)
where ({8])
#
¥ du 1 Lt 3%y
Ej = Qwujyiy2 (at)ﬁuz_"'iﬁ? j (ﬁ)(1+1 T){t; — r)dr (3.15)
Use V = 6;&}“;2 1N (3.14). Then
-
1 $j+
oy {[o2 <5 = |13+ or(Ehs = et + ol = o 5.16)
%

< C{ll&;+1115 + I1E;)1F + IIEJ-fII2 + 18en5+172(1°}-

Summing the above inequalities up for 7 = 0 to 5 = m{< J — 1) and noting that
£0 = &li=0 = 0, one gets

1/20 2 2 2
] p + o) £m+1‘:l:=1 -+ gﬂ£m+1 l#=ﬂ

m+1

< cf Z l&513a¢ + E(ME,IF +[18en54172]%) At}

Choosing At small enough, we apply the Gronwall inequality with discrete form to get

J=1

[ms1llf <C Z(HE, I*at + Hatﬂﬁl;’z” At). (3.17)
J=0 |
Note that
At < | |
; 18en;+1/2(° 5 Nesiniom
Z 1E;[I2At < U At
L3(L?*(I))
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Then

3 u (j—2 an
| H +H It

“f”f,m(ﬂl[f]) < C{ (3.13)

L"'IL’HH}

where the norm

By estimates (3.10}, (3.11) and {3.18) we obtain
Theorem 4. Let u and {U;} be the solution of Problem (3.1} and Problem (3.13)

: 3
respectively. Suppose that u € L= (WS*1(1)), 3% € L3(HS+'(I)) and %—tg e L2(L2(1)).
Then there exists a constant C such that

14 = Ullgeo ooy,

3.19
; C[hgﬂululh‘m{wi”““ ks L’{H***‘{I])]_i-mg_ %)LHLW}J o
for h and At sufficiently small.
) 4. Applic#tinn For Hyperbolic Equations
Cm;sider Problem (1.3), that is, the problem below:
0% = L (a(=)3) - U 2 — d(a)u + folzt), (n,0)€ Ix[0,T)
a{0)u'(0) — oou(0) = 0, a{l)u’(1) +oyu(1) =0, teo,7), (4.1)

u(z, o) = up(z), %%[I,O]=u1(:r), zel.

As in Section 3, keep the assumptions given in Section I. In addition, assume that
f2 € L*{(I x [0, T]) and up, u; & H(I).

The continuous-time Galerkin approximation for Problem (4.1) is defined to be a
twice differentiable mapping U(t) : [0, 7] — M satisfying

(ZY.V) +BW,V) = (f(),V), WeM, te(oT)
B(U(U) a0 H{],V] - ﬂ, [42)

B(%%(o) _ ul,V) =0, VVeM.
Let 4(t) be defined by (3.3) and set £ = U — #, 9 = & — u. Then

(5

28 v)+Biev)=-(Z0v) 43

812’

Take V = g—g in (4.3} to get

BEUISE] + |75 + o18tems + cnleco)

ail +vent+ | 5}

<cf
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Note that £}i-g = 0, %—t{h:g = 0. Applying the Gronwall inequality we have

(4.4)

”a ” ¢l < C"at? L3(L3{1))

Therefore we obtain the following

Theorem 5. Let u{t) and U(t) be the solution of Problem (4.1) end Problem (4.2)

respectively. Suppose that u € L= (W2 Y{I)) and ‘;t“ S Lz(HqH(I)) Then there ezists a

constant C such that

(4.5)

a2

N P 1541 G
fu ~ Ullpee(reo(ryy < CA' [““"L wgrn ¥ ” L‘IHS‘”[”}]

provided h s small enough. |
Finally, consider a discrete-time scheme for problem (4.1) ([5]). Define for the function

g = g(t)
gy.1/4 = 1(5’3+1 + 2g9; + g;-1),
6:9; = (941 — 9;-1)/28t,  3}g; = (gj41 — 20; + g;—1) /Bt .
A discrete-time Galerkin procedure for Problem (4.1) is ([5], [8])

(4.6)

(BEUJ!V) E & B['Ujllf":v) = (fj'.lfi:v)t vV € Mr J — 1:21 ' ”lJ B l:
B(U{} — tp, V] = 0, (47)
B(U, —u},V)=0, VYV eM,

where

u; = uy + Atu; + o (z,0). - (4.8)

2
Here, term %?5‘-(9:,0) can be evaluated by the equatiun and initial conditions in (4.1).

Using the auxiliary function %(t) as before we get
(386, V) + B{&;174,V) = ~(87n; + E;,V), VW eEM, 7=1,2,--,J-1, (4.9)

where { = U — ti,n = & — u and ([5])

E; = 3%u; ~ (%),-.uf .113 hm [r|][3—-—2( ﬂ) ]Z;(,+ rYdr.  (4.10)

Take V = 6 &, in (4.9) and note that

(BEEJW&EJ') = ﬁ?("atfj+1fﬁllz = “3!‘51'—1}’2"211

(ﬂ(gé)_,-ilﬂ‘gtfj) - 2%T{“ﬂlﬁ( J+112” " Uﬂgﬁ,; 1;2}

”i'fi.lf-l ‘51—'5:']:::.- 2 Qi_t”l{ f+1,':z|: =z, } t =0, 1
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We get
2%?{ 18e€51/2ll? — 19ei-17al" + Hﬂlﬁ(g'g)ﬁl{ﬂ uﬂ R "ﬂlﬁ(g_g)_f—lfa”z

+UI('5_?+1;2|==1 = 5;2'- 1;2|:==1) T 00(E?+1;2|:=ﬂ - f?—1;2|==0]} (4-11)
g 8
< Jssl? + {1 (35) I+ Newal® + haemsl® + 1Es1?
Summing up (4.11) for 7 = 1 to 3 = m(< J — 1) and noticing

6&517 < 2 (135412l + 196€5-1717)

we see that for h sufficiently small

"ﬂlL”{H‘IIH < Cl{“‘atflm“z + “ (g'g)”z"z + & 2le=1 + Ef;zh_—.n}
| (4.12)

2
+C'2(Z"3 ,h||2¢t+&t “ at* lL’(L’lIH)’

where the norm

"9”1‘,:{}{} = 1< {J 1”9.11,’2"1’

Note that
1;ﬂ|=1 s ”5112”me < C"flﬁ"l

Also, one can prove that ([8])

1617200 + [|8e€1 /2l < CAE {“ 312 ”mml} ” ot ”me{m}

We have

L’[L‘{I}J)]'

, (4.13)
Theorem 8. Let u and {{/;} be the aaluiinn of Problem (4.1) and Problem (4.7)

23w
respectively. Suppose thatf u € Lm(W5+1(I)) L"“(H""“(I]) e L=(L?(I))

SRR L e =T R

Bt

and ‘; ¥ e L2(L?(I)). Then there ezists a constuni C such that

; %y
lu = Ulljeoqgooqayy < C[h*““(llullz,mtwgﬂun 5 || 5z

Eul

NE
_B?"melm] at> lpe(ra(r))

m——

'Iu ]
L’lL’[f}l)

‘ (4.14)
a
¥ ha_f.f

+At (|

provided h and At are small enough.
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Remark 8. According to Remark 2 in Section 2, we can choose a constant A large

enough such that -
A2 5 [Pim(n — inf (2
and define the auxiliary function %(t) ([8]) by
B(a(t) — u(t), V) + A(@(t) - ut),V) =0, YW M.
In addition, define the initial functions, say,
B(U(0) — uo, V) + A(U(0) — up, V) =0,

B(%(0) - u, V) + (5700 - w,V) =0, Y eEM

Then the restriction on the size of & can be dropped.
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