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Abstract

This paper deals with an inverse problem of a system of ordinary differential equations whose
cocficient matrix is the so-called compartmental matrix. This problem arises in a variety of areassuch
as pharmacokinetics, biology, ecology, economics, and so on. A numerical method applicable to the
cases of non-unique solutions is developed, by which the projection of the starting value of iteration
onto the manifold of solution can be obtained.The convergencs of the method is proved. A fow examples

- &re examined, which shows the effectiveness of the given method. |

$ 1. Introduction

In recent years, a simple and effective mathematical model, called cOmpart-:
mental model, ‘has been widely used in a variety of areas™, It originated from
pPharmacokinetios (which is still one of the major fields for uss of the ocompart-
mental model up to now), and was then appllied gradually to other fields such ag
biology, ecology, medicine, chemistry, and even economics, 40 explore the quanti-
tative law of transfer and exchange of mass or state. In biological and medical .
problems, it is used for explaining the processes of distribution, absorption,
excretion or metabolism of medicinal, or physiological, or biochemical ‘mass irt
organisms. _ _

In this model, a system is considered to be made up of a finite number of parts.
Kach part is assumed to have a specified volume and a uniform distribution of mass
(or a same state) at any time. The compariments interact with one another by
exchanging the matter (or state). Exchange also ocours with the environment. To
this exohange a cerfain law of conservation applies. A part satisfying the conditions
mentioned above is called a compartment, and the whole system called compart-
mental gsystem.

For instance, in pharmacological problems a part of human body which is
homogeneous in drug density is taken as a compartment. (It is possible that
different organg belong to one compartment, or one organ belongs to more than
one compartment). The drug can diffuse between different compartments through
biological membranes. Compartments are infused with drugs from environment by
taking medicine or injeotion, and excrete drugs to environment through urine,.
excrement and sweat. The law of conservation of mass is valid,

In this paper the gimplest case, the linear model, will be taken into considera-
tion. The equations egtablished according t0 the laws of conservation are usually
of the following form:

* Received June 7, 1986,
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di ' 1.1)
x(0) == o, :
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where
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K, is the rate coefficient from compariment j o compartment ¢, with subscript o
denoting the environment; K,>0. Therefors, the matrix A has the following
properties: | |

1) Its off-diagonal eniries aré non—negative.

2) Its diagonal entries are negative.

8) It is diagonally dominant with respect to the columns,

l @i I ;;121 T
B
We call this kind of mairix compartmental mafrix.
In problem (1.2), F(#), #(0) and measurements of part or all of the compon-

ents of z(¢) - ‘ _
mi(‘!): =1, ety Wy =1 .7=1r 1oy T

are given. Our goal is to find the coeflicient mawrix A according to known datsa, that
is, to find the solution A of the following least squares problem: e
%% it A -A) |P=min. (@3
{=1 f=] : : Ac M, | | :
Here z(#, A) is the solution of problem (1.2) with coefficient matrix 4, and M, is
the set of compartmental mairices | S | |
M,={A|a,<0, a0 (#7), —au }Eﬁfh g, j=1, «-«, n}. (1.4)
jod ~_ - x
Thig ig . a nonlinear lesst squares problem. The most common method for
golving it is the Gangs—Newion method™, But, soma difficuliies arise: o i gl
The problem is ill-posed. Sometimes its solution 18 not unique. The examples
in § B will shiow the following pﬁséibilitiés in the case that the solution exists:
1. The solution is unique. - | |
2. There is a finite number of solutions e wa e e -
3. There is an infinite namber of solutions, which often form a ocontinuous
manifold. . |
For the third case mentioned above, the general Gaunss-Newbon method capn
not be used. ‘ | =
Even if the solution is unique, the problem is il1-conditioned, which oanses
rather large computational error. = : g% 8w o
T'o mitigate these difficulties, a numerical method is developed in this ‘paper.:
Suppose that a rongh approximation of the solution is known. Take it as the stariing
point of iteration. Then an iterative technique based on Tikhonov’s regularization™
is given 1 approximate the projection of the starting value onto the manifold of
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the solution. The convergence of the method is proved. If tho solution is unique,
the projection ig Just the uniqne solution. In the other cases, 1t iS reasonable fo take
it a8 an approximate value of the real solution. (In pharmacological problems. the
Starting approximate value mentioned above may be a so—called “animal solution”,
which can be obtained more easily than the “human body solution™, because all itg
components can be measured from animal experiments, Or, if we want to derive
‘the compartmental matrix A of somebody for a certain drug, and the compartmental
matrix A’ of another person for some other drug is already known, and these two
problems have the same model, then the known mairix A’ can be tazken ag an
tnitial approximation for the matrix A4.)

 In Section 2, the method and its realization are deseribed. The proof of the
convergenoce of the iteration is given in Section 8., Section 4 is devoted 0 actual
ohoice of the parameters in the method. Finally, in Section b, a few examples are
examined, whose numerical results show that the method ig leasible for wvarious

Cases,

§ 2. Description of the Method

Throughout this paper we will not distinguish the matrix 4 and the vecior
corresponding to it |
{@13, 0ty Gday Doty **, Bony ***y Aaty *°°, G }rs
{Generally, A should be considered as a vector rather than a matrix, exocept in
some obvious cases.) Let ¢y, 4):=Dx (3, A)64, where D (f, A) represents the
Jacobian matrix (with respect to A) of the veotor #(#, A). Then the formulas of
%he Gauss-Newton method are as follows:

.A.’+1=A”—I—3A,' p=0, 1’ eee,
T m » .
2220 o (8, A%) —2,(3) +y(4, A7) |2= min ,

f=1 J=i 1'+ﬁJE.H'

It is easy to prove:
Theorem 1. Lei F (%) be continuous on 0<ti<(0o0,A?C M,, A bs in & neighiborhood
of A%, and 2 =z (t, A?) be the solution o f the initial value problem |

[ d—m-=A’m-l-F, 0<t<C o0

(2.1)3:

- di (2.2)
m(oil _A_p} =T

and 0A:=A—A* Then y(i, A?):=Du(t, A?)3 A is the solution of ths problem

" dy .
—=A%+ 342",
{ di Y (2.8)

y(0, A?) =0,
This result makes it possible to geb .y (3, A®):=Dz (;, A®)6A by using the
numerical solution of (2.8). In fact, we can express the solution of (2.3) ag
follows: -

y(t, 4%) = 37 3 s, ® (s, 4%) (2.4)

k=1 }=1

where y® 9 (¢, A4®) (&, I=1, ;-1, n) are the solutions of
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::t g® D (F,” A?) = A? m.n(t Ar) +fﬂzen, | '-
_ g @ (2.5)
y® 0 (0, A?) =0 &
and ¢, the k~th coordinate vector. Then the values y“‘ D¢, A?) (4=1, ---, m) oan be
" obtained by solving {2.5) numeriecally, and, consequently, y (3, A’) ( j—l e, )
from (2.4). In such a way, the linear least squares problem (2.1) is reduced to the
problem

2 2[‘-’“1(*}: A?) —ﬂ’i(tj) -+ 2 2. Sty kth A?) |*=min (2.8)

. 1 ﬂAEH’
where 34 = {0} uxns
M?={3A|A*+3AE€ M,}.
- Introduce the notations
j=F—1n+l, & lI=1 0
i'=0G—1)r+4, G, seo, 0, jml, oee, m,

n'=n?, m=rXm

;ﬁd the m' X' matrix

G(A) = {ﬂw* (A)}: Gwr(ﬁ) "yi"‘n(tﬁ 4) (2 -7)
and the m'—dimensional vector

fE = {&;p 3 54# = i'E{ (tj) ’

(2.8)

o*={ab}, =b —-mf (3, A%). an

Then (2.6) can be rewritten as -
| jo?—2+0(4%)34]% —min | (2.8)’

dAcM?,

where |+ [ is the Euclidean norm of a vector.

As mentioned in § 1, in general, problem (2.6)" is 111—p0csad or at least ill-
osonditioned. A certain kmd of regularization techniques is necessary. Taking
Tikhonov’s idea for regularization, we choose the parameters «” (the principle for
ohoosing it will bé given in § 3 and § 4) and turn to the following least squares

problem
- Em"—w-&-a(ﬁ.’)ﬁfl|I3+a’ﬂA.'“—A“|] =min .,
sAcM®

Then we have the iterative formula
. AFE Mﬂ! P=0’ 1, see,
454G (L2, o), -
- _ A (2.9)
G (A2, &) = A?+ {07 (470 (A7) +al} {07 (4%) (z—a*) +a(A®— A%)}.
Now, we summarize 'li]lE proﬁadure of the algorithm mentioned above as

follows:
" 1) Select a starting point A°C M,.
2) With A4° (gp== 0,1, ) find numerically the golution of the initial valus

prﬂ'blam ;
{ r=A%z+F,

x(0) =ag
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and denote the obtained solution as @?(3, ) (j=1, «-+, m).

8) Forall £, =1, »-+, n such that af; #0, solve numerically the initial value
problsms |

{ s;{l.i}__dryﬂﬂ.i}_}_mfeh
g5 (0) =0
to get y®V(2,, A?) (4=1, ---, m), that is, get O(A4?),

4) Choose regularization parameters of >0, and solve the least squares normal
equations _
{OT (A9 O (A?) + a?I}84 =07 (A%) (6 —a*) +a? (A°— A?) (2,10)
to produce 3A4. '

5) A?*!is obfained from A= A?-}-3A.

6) It is required that the matrix A’“ keeps the oomparlimental form. If not so,
alter it in such & way:

1° If a certain off-diagonal entry is nﬁgahve let it be zero.

2° If a certain diagonal eniry is non-negative, or although it i3 negalive, iis
absolute value is smaller than the sum of the entries in the same column, then le
it be negative sum of those entries. | - |

7) Repeat 2)—6)}.

Ag will be seen in § 3 in the above procedure, 6) is necessary o ensure the
oconvergence of the iterative process.

~ Of all steps mentioned above, two require a great deal of computational work:

1) The numerical solutionr of the systems (2.5) of ODEs: Wﬂ select their
computational method according to the following prineciples:

1° The method must be slmpla and fash, since the number of systems is quibe
large,

2° Appropriate accuracy of computation is necessary, since inverse problems
are generally ill-conditioned, -

8° But high aceuracy methods are not necessary, because measurements are
usually inacecurate. -

Therefore, fast methods of moderate acouracy are suitable for our. pro'blem. In
our calculation, the extrapolation based on the Euler method has been taken™,

2) Solving the system (2.10) of algebraic equations: Uonsidering the number
of operations and storage, the QR-decomposition is preferable™*

§ 3. The Convergence

First, notice the following important properties of the comparimental matrix:
Lemmal, If A€ M, then the eigenvalues M of A satisfy
" Re <0, g=1, s+ m,

Proof. It is valid because a compartmental matrix is diagonally dominant,

and its diagonal entries are negative,

Lemma 2. If A€ M, then oxp(id) és bounded fm' aﬂ t=0.
Proof. Let Ay, Ag, <**, As be the eigenvalues of 4, and J its Jordan normal,
form, and § a nonsingular matrix to reduce A to J, i.e.,
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et |

- 7
SAS = J = e 8 L
] T

Then .
let4|g= | S¢S s <O e o

There exists a certaln 4o, 1< io<r, such that

[e]a=[e"*]a
Let the eigenvalue in J, be A,. Then
| e’ ]2a<<O exp (¥ Re Ay,). _ - -
From Lemma 1, we can obtain | |
e ] s
Therefore, et s <O,

The boundedness of exp(£4) with other norms can be obtained from norm equiva~
lence. | . ' |

In the proof of our convergence theorem some results of the continualion
method will be uaed Let the homotopy defining the contmuation process he given
in the form

H(z, t) =0—G(z, t)=0, 1[0, 1]. (3.1)
We have the following. kL

Theorem™. Suppose that G: D% [0, 1] R*X R'— R* is Frechet—differentiable
with respect to the first variable and that iis Frechel—-derivaiive 0,G (x, 1) és continuous
on Dx [0, 1], Assume further that (3.1) has & continuous solutéon =: [0, 1]->int (D)
with known initial point 2°=2(0), and that p(&,@(m(t), t)) <1 for all $€[0,1].
Then there exists a partition of [0, 1]

Om gty < hglom <=1
and éntegers my,+++, my_y such that the entire sequence {o"*} defined by
w"H'J‘“G(m"l', t;), kﬂo, 1, e, mi—"‘l, 'i-’"l, 2, = N""'l,

ml.ﬂ_mﬂ, -m'l-!-:l.,ﬂ_ I,m;’
I G 1), k=0, 1, s
i lim a7 P e (1),

Definition. A Junctional @(z) is called quasi—monotone in domain S §f &t has
no local extrémums én 8 except global minimum.

- The iterative process described in § 2 is not continnous because of the procedure
6). We can change it into a continnous process, if the constrained leask squares
problem ig considered (requiring inequality constraints (1.4) to be satisfied). But
In both cases, the proof of convergence is complicated. For the sake of simplicity,
we will consider the nunoonstrained least sguares problem and give proof under
the sironger assumption that (eﬂnhnuﬂus) 1tera1uon (2.9) keeps A?(p=0, 1, =)
gompartmental matrices, -

For brevity, denote 0(4) =0, G(A‘) G* ¢" ig the veotor replaemg A,” in (2 8)
with A% and »(4) veclor replacing A? with 4, and soon. -
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—_— P = = — = s

In the following disoussion, we will only use the Euclidean norms of vector
and matrix, and simply write them as {-| instead of [+ |s.
Theorem 2(Convergence theorem). Let F:[0, oo0) & Rt R in (1.1) be
continuous on [0, o), and A" saiisfy g
. '&;_m'=0 " L. - L y )
(i.6., A is a point on the manifold of solution. We denoted this manifold by Mj.)
Further, lot A* be a projection of a eertain A° on My

[A*— A°| = inf | A— A°%|
AcM,

and the projection és unique, Asswme that in a neighborhood S of A® the functional .
B (4, &)= |o(4) —a|*+a|d —A°|°

és quasi—monotone for every a>>0. And assume that the iteration (2.9) keeps A?(p=0,
1, «-+) compartmental matrices. Then there exists a naighborhood S(4", )8 of 4"
~and @ sequance of posiivve number {a?}, e®—>0(p—>00), such that for any A€ S(4°, &)
the sequsnce {A?} defined by (2.9) remains ¢n S and converges io A" |

Eal ok ‘ lim 4% = A",

; Prroa

g, Howh s
Proof. 1° The entries of matrix J(A4?) are

. ' ¥
.EE‘J_ ﬂ:mr.—-ﬂ-{ﬂg'-.[“ emfr—;}F(g)gkdg}dw. | (3.2)

0
According to the hypothesis, ¥ is continuous. From Lemmas 2, ¢4’ (}—7) and ¢©""7%
‘are bounded, So the integrals are well-defined. Again,in the expression of G (4% a),
‘matrix OF(A?)0(A4%) +al is positive definite when «>0, so { OF(A?)( (A?) +al}™>
exists. Therefore, G(4?, a) makes sense. - - : ’
" 29 Now we give the expression of Frechet-derivative 0.G (A, &) of G(A, )
with respect to the first variable 4. i '
9.G(4, &) =I+D(C"0+al) O (z—w)+a(A*—A)} .. . . ...
+ (070 +al) " {DO* (#— ) — 070 —al}

- -

A ; :

= D(070+al) {07 (@ — 5) +a(4°— A)} + (070 +al)*DO* (z— ),

, - o (3.8)
where D denotes the Frechet-derivative of the eurresmnding matrix with respect @
the veotor 4, which is a tridimensional tensor. For example, write the veotor A
into A= (ay, a3, ***, aw)"; then

L EE M(A)u(af’”fﬁ)- i, sty o, we o, T

O,

By the general formula of Frechei-derivative of the inverse of mafrices, we have
D(O%0+al) t= — (00 +aI) *D(0*0+al) ("0 +al)™* o

= = (070 +aI)"*(DO%-0+0"D0) (CTO+al )™ | (3.4)

Substituting it into (3.8), we obtain the expression of 9,G (4, «). d4G(4, &) exisis

and is continuous with respeot 1o A and « for all ¢>>0. If the solution of the original

problem is unique, then CTC is nonsingular. In this case, 04@(4, o) exists and is

continuous also for a=0. - - ' -

| 3° Consider the equation
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H(A, o) =A—G(4, &) =(0"0+al) {0 (2 —-2) +alA’~A)}=0  (3.5)
which is satisfied by the fixed point of the iferation A" =G (4% a). When a—»c0, ik
has the solution A = A4° From (8.8) and (8.4), .G (4% o0)=0. Therefors,

B4 H (A% 00) =T —9,G(4° o0)=1. B o B o
- 4° For the convenience of disoussion, introduce the Ghanga.ﬂf variable |

g et . ™
s .e., alv) - 1.

Then 7 varies from 0 10 1 a8 « varies from oo to 0. After that transformation (8. 5)
is reduced to

- H(A, v)=A-G(A4, a(7)) =0, | (8.6)°
It oan he proved that there is a continuous solution of (3.5)" when v moves on _'
[0, 1), In fact, (4° 0) satisfies (3.5), and H (4, 7) is continuous, and o.H (A, 7)
éxists on an open neighborhood of (4° 0), and 8, H (4, 7) is nonsingular and
continuous at (A°, 0). By the implicit function theorem, there exist open neighbo-
rhoods 8y and Sy of A° and 0, respectively, such that for any 7€ S, equation (3.5)”
has a unigue solution A‘“=-h(fv) € 84, and the mapping J h: Sg— R¥ is continuous.
Again, taking a #>>0 in S, neighboring #=0, we have A*=%(%). From (3.8)

O.H (A", 7)=I— — 4G ( A7, a(z)).
If we can prove (we will give this proof in 6°) that p(8.G (47, a(z))) <1, then the
matrix 8,H (47, %) is nonsingular, and consequently, the previous procedure can
be repeated. In this way, we will obtain a continuous solution curve :
A*=h(¥), =€ [0, 1)

of equation (3.5)’ with initial point 4°=A(0). ,

B° We prove that the end point of the continuous solution curve mentioned
above is A" when z—1. That ig, for every sequence {7p}, 7y—>1 (p~>c0) (i.e., ap=
n(fr,) —0), the correspnndmg sequence of A2, A?=h(zy), ha& limit A®

lim Af=A4*,
P

In fact, since (4* 1) (€ [0, 1)) is the solution of (3.5)’, it satisfies
F(A%, ) =07 (A?) (2—2(Z?)) +alz) (4°—A?) =0. (3.6) .

Bo it is a oritical point of the funectional
@ (4, v) = |o{4) —2]*+a(=) |4 - A°|*
Suppose that the radius of neighborhood § in the assumption of the theorem is R |

Take .A° such that|4°— A*|<R/3. Then A7 neighboring 4° which was given in 4°
must be in 8. According to the assumption that @ (A, «) is quasi-monotone in S, Aar

is a global minimizer of (4, ). Thus
a(r) ,[A"—.A“H”(;{F(AT 7y <®(4", v)
| = et sl ) | 4 A% =a(x) |4 - A0,
So | A7 — A°] < | A"~ 4°].
This inequality and thE selection of A? ensure that for all z€ [0, 1), A* remaing in
8, i.e., the sequence {A?} is entirely in S. It has property = ;
- [A7— 4% < | A*—4°). | 3.7
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This means that {4?} is bounded, and therefore, has a convergent Eubsequenea.
Denoting the ﬂubsequenue also as {4?}, we obtain -

lim Z?=B.
Taking limi$ in (3.7), we have . -
F e B, 1B—A%|<[A*—4°].  (3.8)
Moreover, |2 (4%) ~ 2| < B(A?, 7,) KD(A", 75) =alry) [4"— A°]2,
Let p—>co; then ay—0, |
| ﬂm(B) - #[2=0. | . 9)'

By the assumption of the theorem, A" also satisfies (3 9), just like B, and it has the
smallest distance to A°, and such a solution is unique. So the equality in (3.8) is
valid, and B=A".

From the above discussion the limit of every ﬂonvergent subﬂequenca is 4"
Therefore, the sequence converges, and its limit ig A*,

11]2!1 A’==A*

6° Now we prove that on the curve A=k (7), v€ [0 1],
| p(24G (4, a(7))) <1.
From (8.8), at every point of this curve |
.G (4, a(z)) = [0 (A)O(A) +a(x) I1"1DOT(A) [z —x(4)]. (3.10)

Sinﬁe DOT(A) and o(A) are bounded, it is obvious that we only have to disouss the
ocase that « is not very big. Now we estimate every column of the matrix 8.G (4,
(7). In the formula (3.10), DOT(A) [s—2(4)] iz a matrix. Take any one of its
oolumns and denote it as d(4). Suppose that the corresponding colamn of matrix
G (4, a(v)) is Zg which is the soluiion of the follawing system of algebram
equations

[OT(A)O(4) +a(v)I]za=d(4). (3.11)
Consider systems ‘ _
[OT(A")O(A") +a(r) I]zs=Qd(4) (3.12)
and | |
OFT(A")C(AY) 2" =Qd(4) - (3.18)

where Qd(A) € R(OT(A")C(A")). R(OT(A"O(A")) is the range of values of the
matrix 07 (4")0(4"), and Q is the orthogonal projection mairix on the subspace
.R(O"' (AMHC(A") ). Wb have |

7] <lza—za] + [2a—2"] =+ 2" (3.14)
Introduce the notations

10(4)—=04") | =k, [d(4A)]=n.

Firgt, we make the estimation of |z*|. Considering the normal solution (mini-

mum-norm solutlon) of (3. 13), we obtain

- [2*] <} {O7(4%0 (A*)}"‘ﬂ [ | =Oy. (3.15)
Heore 0y = [{07(4")C (A*) rH-
Secondly, estimate [za—z"(. Let rank{0T(A")J(4")} =k. The pomtwe eigenva~
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lues of the matrix are Ay hg2 oo =My >>0, and the sorresponding eigenveciors are
“1_5 o Uy,

OF (A" O (A uy=Apy, =1, - k.
By (3.12), (3.138), ;
2= {OT (A O(A") t+al 1-10T (A0 (4%) 2",
Writing 2" in terms of the Tasis consisting of the above eigenvectors

k
& =§ ﬁfu';i-.l |
3 |
e By
Fﬁ gﬁ"i Za E ?“:F- _!_ﬁ_'u'!!
Therefore, . Lo
$ W ﬁﬁ;{ :
Fu—" C o= ?Uj'_l"ﬂ .
It follows that
< Hz*[l%-ﬁ—i i . (3.16)
k K

) Finally, we estimate |z,— 7. From (8.11), (3.12), |
T {0M(A)0(4) +al} %) = {07 (A)O(A) +al}za— {07 (AN0(A") +al}z
| _ {07 (A)0(4) —O"(AN0(4")}4 .
- (I-Q)d(A4) —{07(4)0(4) —07(47)0(47) } 2
- (T — Q)d(4) — {07 (4) [0(4) —0(47)]+[07(4) - 07 (A")10(4AM )}
whioh leads f0

nzn—z;H%Mﬁ . Mah 122]

o o
considering the boundedness of the matrices I —Q, 0(4") and 0(4). Further,from
(3.15), (3.16), - 1 | |

[7. —2a] < M;n 4+ Mjh (zz—2"] 4 2" 1)

{'Mm + Mh ( ! an+ 0 < .&1;'201 h?]-i-'(M;-l—MﬁU;h)-g-.
| |

& o %
Sinoe A=h(7) sabisties (8.6) and (3.7),

' 107(4) [ -2 (A)]]
. i v v
Moreover, n=1d(4) | <|DO*(4) [z—az(A)]].
It is readily showed from Lemma 9 that there exists a constant (J4 such thatk

| DO” (Aj#l;é ~a(A)1] <0, | |
|07 (A) [z —a(4)]|

Therefore,

lra— 22l < 20L byt (M + MOWOHI A= LT B CELy

I

Substituting (3.15), (8.16) and (8.17) into (3.14),

|2a] <Oun +%-an a M?ffi_ et (M + MO0 L2 &L (3:18)
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So long as 4% is close enough to 4", & and % can be small enough, so that

qul!<%.

It follows that 10.G (4, a(z))] <1.
Then we have ' |

p(04G(4, & (7)) <[0.G(4, ()| <L1. -
7° Take a closed domain D, such that DS and A=h(v)CD when =€ [0, 1].
On the domain I’ the hypothesises of Theorem ™ are all satisfied. (The continuity of
the matrix 9,0 (4, a(v)) at =1 is a consequence of 6°.) Applying this theorem,
the desired conclusion oan be obtained, i.e., there exisig a sequence {a®}, a’—>0 (p—>
©), and a corresponding sequence {A4%}, such that | ”‘

. lim AP= 4",
Prboo
which completes the proof.
| §4. Choice of {a?}

The questions about the prerequisites on the parameters {a?} for ensuring the
convergence and about the existence of such parameters have been discussed in
Theorem 2. However, that result did noy provide us with the aotual valnes of these
parameters. This problem will be settled in the present section,

It is easy to prove that the condition number of the system (2.10) of linear

algebraio equations is

. fnta®
Cond oo

where A; is the smallest eigenvalue, and A. the largest eigenvalue of the matrix
OT(A7)0(47). It is a noninereaging function of a?. When O*(A%)0(4?) is singular,
the condition number is infinite, if a?=0.

Therefore, from the consideration of stability, we can not gel the “projection’
solution A4*, which corresponds to o =0. We can only get its approximation,

From the disoussion in the preceding section and this section, the following WAY
of determining the regularization parametbers is proper: |

1} a° should be rather large. The reasons are: (2) to ensure the convergenoce of
the iteration (see Theorem 2); (b) 10 produoce a faster iteration in approximating the
needed solution, when the solutions are not unique; (¢) to reduce the condition
numbper,

2) Deorease of gradually,

8) When a given small value ig attained by of, stop deoreasing a?.

In the numerical experimenis with the exampleg shown in § 5, we changed the
parameters as follows (of course, it is not a general regulation for the choioe of'
parameters): Choose o as 2 or 4; then reduce « Successively at a rate a/4, until is
equals 0.0001. After that, keep & constant..

§ 5. Numerical Examples
In this seotion, a fow artificial examples are constructed, by which the resul is
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obtained by using the method described above are compared with the theoretical

golutions.
Egample 1 (Unique solution). Two-compartmental model. The input F(#)

and the initial value =(0) are

F()={—e¢2 ¢NT z(0)={0, 2}7.
One of the components of the solution is known: :

21(%) =te"".
Find the coefficient matrix 4 and another component z(%).
The exact solution of this problem is
A=(d; __; ), wq(1) =e "4~ %,
In computation, we take m =24, and
Aum(-—-ﬂ.gﬁ 1.2 )
0 1.7

and the times of iteration is 8. (From then on, the resulis can hardly be improved.)
The comparison between the obtained resulis and the exact solution for 4 and xa(#),
regpeotively, is presented in Table 1 and Table 2,

Table1l, A4
L2k 314 Qa1 | o
Exact sol. - 1.0000 1.0000 0.0020 — 2.0000
Our resiilts —0.9956 1.0016 0.0000 —2,0035

Table 2. x,(%)

t ; 0.1 0.3 0.5 0.7 0.9 1.2 1.6
Exact sol. 1.7236 1.2896 0.9744 0.7432 0.5719 0.3919 0.2497
Qur results 1.72232 1.2871 0.9727 0.7392 0.5674 0.8378 0.2395

t 2.0 3.0 4.0 5.0 6.0 8.0 10.0
Exact sol. 0.1537  0.0523 0.0186  0.0067 0.0025 0.0003 0.0000
Our resulis 0.1514 0.0514 0.0184 0.0067 0.0024 0.0003 0.0000

Eaagmple 2 (Two sdlutiuns). Two-compartmental model. There is no outpud
from the first compartment, so that the mairix A is of the form

" " A = [-—.Em {15 :{-
1  Qag
It is known that .
: ) ot _
_ s 07 »
F(t) i 26"ft6"-—%6_2* : m(O}_s b |2 mi(f)’tﬂ .

This problem has two solntions:

—a3 2
o 29 .A=l: 3 _3], mg(t)=%(g"+2fe‘*—g"“);
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-1 27
2, A= R O Gt At
G 3J .
"The following A°® were chosen, respectively, in numerical experimenta:
1-2.9 2.2 ~0.95 0.8

2.8 —3.2 ] [ 0.9 —2.2]

‘The results for the first solution are (iterative times=T7)

Table 3. 4
11 . 21g | a1 Gag
First sol. —3.0000 2.0000. 3.0000 —3.0000
Our results - 3.0072 1.9798 3.0072 - =3.0224
~ Table 4. z,(¢)

; 0.1 0.3 0.5 0.7 0.9 1.2 1.6
Firstsol: - 0.1335  0,8182 0.4226 0.4736 0.4865 - 0.4667  0,4036
Our results 0.1337 0.3181 0.4217 0.4705 0.4833 0.4613 0.3961

: 2.0 3.0 4.0 6.0 8.0 100 12,0
First sol. 0.3292  0.1730  0.0823 0.0161 0.0028 0.0005  0.0000

Our results 0.3201 D.1627 0.0740 0.0123 0.0014 0, 0000 0.0000

The results for the second solution are (iterative times=6):

Table 5. .4
a11 1 O Gao
Second sol. —1.0000 0.6667 1.0000 —~9.58333
Our results - 1.0026 0.6528 0.9825 -2.2167
Table 6. z43(¢)
¢ 0.2 0.4 0.6 0.8 1.0 1.2 o B
Second sol. 0.9226  0.3815  0.3714  0.3711  0.3438  0.8157  0.2417

Our results 0.2245 0.3359 0.3778 0.3784 0.3560 0.3223 0.2458

+ 2.0 3.0 4.0 5.0 8.0 8.0 10.0

Becond sol. 0.1755 0.0710 0.0270 0.0100 0.0037 (.0005 0.0000
Our results 0.1773 0.0690 0.0246 0.0082 0.0035 0.0000 0.0030

Ezample 8 (Infinitely many solutions). Two—compartmental model. It is
known that : |

r 4ot 0 ,
F(¢)=_4(2_m_,], m(o)=-[2],‘ 21 (£) =4t~

This problem has an infinite number of solutions. In fact, the matrices whose
eniries satisfy the following relations

l Zy1Gng — 2&51‘!‘ Tga = 3
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are all solutions, One of them is
-2 2
A_[ . } .
‘Taking m =382, and the initial point of iteration |
Ar_._:[-Ls 1.8 7
0.8 —4.6 |

we obtained (Iterative times=9)

Table 7. A4
MM
G171 SRR ¢ ST Qa1 (aq
One of sol. - —2.0000 - 3, 0000 1.0000 : . —=5.0000
- Our results —2.0138 1.,9901 1.0004 -—4,9314

Table 8. (%)
Tt e ————T

t 0.2 0.4 0.6 0.8 1.0 1.8 1.6
One of sol. 1.6375  1.3406  1.0976  0.8987  0.7338  0.6024  0,403%

Cur results 1.6330 . 1,3504 1.1155 (.9136 0.7479 0.6134 0.4104

3 2.0 3.0 4.0 5.0 7.0 .0 110

One of sol. 0.2707  0.0995  0.0366  0.0133  0.0018  0.0002  0,0000

Our results 0.2745  0.1043 ~ 0.0373  0.0L34 0.0017 0.0002 0.0070

Conclusion. This work is an attempt to compute inverse problems which have
not unique solution. Obtained numerieal results exhibit that the given method has
a fair acouracy and hence is applicable in some cases. But its requirement for initial
point seems to be slightly siricter. Widening the domain of convergence and
heightening the acouracy will be the subjects of further work.
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