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Abstract

L Whumatudy the oscillation of a physical system near ity eguilibrium anfl 1gnora dissipative .
offects, we may assume it is a linsar Hamiltonian system (H-system), which possgsses a spocial
gymplectic structuzre. Thus there arises a question: how to take this structure into account in the
approximation of the H-system? This question was first answered by Feng Kang for finits dimensional
H-systemsli-4],

We will ir this paper discuss the symplectic difference schemes preserving the symplectic
structure and its related properties, with emphasis on the infinite dimensional H-gystems.

In the first section we propose the notion of symmetry of a difference scheme, and obtain the
equivelence between symmetries and the conservation of first integrals., In the second section we
discuss hyperbolic equations with constant coefficients in one space variable. This kind of H-system
possesses not only a symplectic structure, but also a unitary structure. Our result is that a difference
scheme is sympleetic iff its amplification factors are of modulus ons. In the third section we discuss
symmetric hyperbolic equations with constant coefficients in ‘several 'space variables. Although the
antisymmtric operator of the symplectie structure is not invertible in that case, wo obtain a similar
conclusion. In the fourth section, we propose the notion of muliiple-level symplectic difference
schemes Finally, we derive the generating function for K-symplectic transformation, and construct &
DS for a hyperbolic equation with variable coefficients using the generating functions.

§ 1. Symmetries of Difference Schemes

a) Oonsider a linear Hamiltonian system with guadratic Hamiltonian H (z) ==
1

_T e
2zAz.

-1
dt =-J 142, (0)

I,
where J —[ {.)I 0] and 4 is a 2n X 2n symmetric matrix, and a difference scheme

=g (T A2, (1)

Definition. We soy (1) 48 a symplectic difference scheme &f the malrées
¢=p(J14) is a symplectic mairiw. |

Now we perform a canonical coordinate iransformation z— w:z=Pw, and the
H-system written in the new coordinate w ig

& _ 7-1P* 4Pw - 2)

and the scheme (1) i8
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w™ = P (J1A) Pu®™. | (3)
Now we construct the difference scheme for the H-system (2) ’
o w"tt=(J2PTAP)w”. (4

Then there arises a' problem: Is scheme (3) equivalent %0 soheme (4)? The

answer leads to the notion of symmetry.
" Definition. We say a scheme (1) é¢ énvariant under & group G of linear

symplectic transformations ¢f
P-1(J1A) P=¢(J ' PTAP)
for all A symmetric and all PEG.
Another question of interest is: If a quadratic form f (2) ==-%- 2"Bz is a firsh

integral of the H—system, is it conserved by scheme (1), i.e.,
| | f@) =fE")
for all 21 =ch(J14)2™? :
Ezample 1. Euler’s mid—-point scheme __
| | oM+l _ g J LA (z"’"” +27™) /2), (5)
‘where 7 is the time gtep, is symplectic and is invariant nnder the fnll symplectio
group S,(2n). All the quadratio first integrals are conserved by the scheme (6)™.

Theorem 1. Let the quadratic form f(2) ==-%—- 2" Bz is @ first integrab of the H~
sysiom (0), G =exp (tJ2B) is the phase flow of the H-system with Hamitonian f(2),
the soheme (1) ée sympleciso. Then f és conserved by (1) ¢ff (1) é8 énvariant under the

phase flow G*.
Proof. By definition,

(G PSP A)E = $((@) T 2AGH) = p(J2(G")Ax"), (62
f is & first integral of the H-system. By the Noether theorem, (G¥)TAG*=A, Thus i
follows from (6) that | __ |
(@) -1(T A =¢(J14), or (L) F =GP '4).

Taking darﬁaﬁva at §m=0 and making use of -d%- 5 "dGi—J ~1B, we obtain

(H(J ;iA) VB (J-2A) = ($(J*4) YOI qS'(J' AT 1B = JJ "_1B = B,
Thus the symmetries imply conservations. ) |
Now we aggume conservations, i.e, (¢p(F 24))"B(J*4)=B. Then
JB((J4)) =$(T2A)T B,

and
& (J~2A)exp(J2Bt) =exp (JiBO)STEA).
Example 2. The generalized Enler scheme
7t 1= ch(zJ "1 A)2™, where ¢, (A) is the p—th diagonal Pade approximant of expA,
is invariant under S,(2ny. Hence all the first integrals of quadratic form. are

conserved by the difference scheme™: 4. .
b) We will generalize the above notion to the nonlinear Hamiltonian system:
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r i (0)

Suppose we have a symplectic difference scheme derived according fo a certain
rule: |
2Pt = hyin, (2™) (1)’
where ¢;..p, i8 a nonlinear symplectic transformation (locally). Now we perform a
nonlinear symplectic transformation z=§(w). Then the H-system (0)" written in
the coordinate w is |

dw  rq
.&FJE“

where H (w) =~ H (8(w)). -

Now the scheme (1)’ written in the new coordinate is

‘w-m+1 'S_1ﬂ§6°lg (wm) 2

Definition. We say the schems (1)’ és yrvarsant under a group G of sympleotio

gransformations, ¢f
S_10¢J-1_E"ﬂﬂ=¢,;-lg., Vﬁg G G.
- Theorem 2. Suppose f is a first integral of the H-system (0), and @ is the
phase flow of the Hamiltontan function f. Then f is conserved up o G oonstant by the
scheme (1)’ |
fodbrm,(2) =f(2) +e, cisa constant,

¢ff the scheme (1)’ s dmwariant under G*.

The proof will be given in subsection c.

Remark. If the scheme has a fixed point, i.e a point z, such that

¢J“H.(z) "'5,.

then the constant ¢=0, This is often the case in practice.

Egample 8. Fuler's mid-point scheme

+1
P JLH (-?.'i:"_.)

18 invariant under any linear symplectic transformation. Thus every first integral of

quadratic form are conserved by this scheme. .
Example 4. The staggered explicit scheme for separable Hamiltonian function

H(p, ) =U@)+V () (cf. [1])
S8 = =V (@),

_1-_ (g**1H1/3 _ ghHU/) [T (14H1)
is invariant under a canonical transformation of the form
AT 0
[ 0 A4 ] '
Thus the linear momentum and angular momentum are conserved by the scheme.

¢) The Proof of Theorem 2.
We will work in the general context of a phase manifold P (cf. [B]) with a
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symplectic 2-form w. Recall that a function f on P determines a Hamiltonian vector
field J7df guch that

Qf, B>=w(z, Jdf) VYaETP,

First we assume ihe symmetry, changing the notation ¢g,=@sus for
-CONnvenience,

(Gt) _1""@:-1#3 oGt == Pr-aqeydHe
fince f i a ﬁ.rst integral of the system (0)’,

(@) ' dH=d(H-G*) =dH,
Thus

Gfr “?5.r—1dH = ‘;f’.r-lﬂﬂﬂ G*.
Taking derivative at =0, a € P, we have
| J3dfocbyaam (@) = (Pysan) o 1df (@).
"Then for & € Ty P, ¢ =P s1n,
w(J1df (a), (¢ ) =¢"w(J1df (a), (¢71),2)
=w((P).J1df (a), 2) =w(J T df ¢ (a), o),
(79 df (@), &) =<df (@), ($7)ad> = (7)., T df(a))
= (@, JMdfop(a)) =<dfp(a), o).

‘Hence

((¢7)"df —df) ($(a)) =0,

d(f”'it’) —_df—O,

fo¢p=F+¢ (¢ constant).,
Now we asJume the conservation
Josran=F+o.
"We can prove that a

(‘ab-i’-‘dﬂ ) -J k. df = J 1 df “ﬁbx-ldﬂ'_.

The phase ﬂows of the vector fields Jidf and (drem)d dfod7hms are G
braano@od7im respectively. Therefore

"¢J—’¢H°G 9 J-ldHt

§ 2. Symplectic Difference Schemes for Hyperbolic Equations

Because the H system freated here possesses a unitary structure, we will make
upe of the language of complex number.

) Consider the phase space R™ with & canonical coordinates py, ¢ We can
regard it as an n—dimensional complex space C", with the coordinates z,==p;+4q;.

Recall that an nXn complex matrix can be realized as a 2n X 2n real matrix. On

the other hand, a 2n X 2n real matrix 4 can be complexified into an nxXn complex
‘matrix 0(A4) such that .

c(Az)=0(4)c(z), VzER™
iff A is of the form



92 ... 'JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 6

P

4, —-B ‘ |
[ “ E v c(z) =p+iq.

By Ay

In particnlar, O(J3l) =TI.4. '

- A symplectic matrix can be complexified iff it is an orthogonal matrix at the

same time, and O(4) is a unitary matrix. On the other hand, a complexifiable.
matrix is symplectic iff it is unitary

U(n) =8p(2n) N O(2n) =Sp (2’&) NGL(n, 0).
b) Consider a hyperbolic equation with periodic houndary condition:
ou  ou ~ (D>

3t O

], C(A) == A1+£B1, L = |:

3.'15 ? the ﬂymplectm form is m(wl q;} L wﬂwdm-=
1

and the Hamiltonian functional is H (u) = j w? d W:Lth functlonal darwatwa H,

=y, So (7) ig an. mﬁm’ﬁe dlmenmona.l H—aystem (ef. [6])

- : kg —QE—::I
- ZepE,

Using mmpléx" Pourier expansion fur the real periodic u(=z, t), we have

u(s, ) = Sou(t)e™, o4ty St-=Sikos.

Now consider a difference scheme approximating (7):
Py (B)u*=Py(E)u" (8):
where P,(A) and Py(A) are funcmons of tha form .
S @) kare integers

and Z is the shift operator: (Fw) (@) =u(z+k); A is the space step
Expand the functions «", «*** in Fourier series

WS o, wtim gt
and substitute them into (8). Then | . B o o
Pi(ﬂm)ﬂ +1"=P2('Em) Bge: % = _ 5

Hence the transformation «®— u"** can be complexified. From the discussion im:

subsection a, we have
Theorem 8. The difference scheme (8) is symplectéc ¢ff the amplificatdon factors:

ars of modulus one

Here the antisymmetric operator ig D=

i Pa(e™) /Piﬁa""‘) | =1. o 5

¢) Consider the follnwmg hyperbohc sjrstem with periodic boundary Gﬂndl‘blﬁn
where U= (uy, «=, u%,), A i3 a constant real symmetric matrix, the antisymmetric:
operator is D=1, E}Bcn , the H functional is %- J U"AU dz, and the symplectic two—-

form is
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e

' | ‘ .mCU: V)HJ.UTDV&'B. Bl S
Wo have gimilar Fourier expansions as in subsection b, but with complex vector
coefficients O instead. Now congider a difference scheme -
P (BYUr =Py (B)U™ o (10)
where P3(1), Pa(A) aTe nXn mairices, their elements are functions of the form
Let O%, O3*! be the Fourier coefficients of U*, U*** respectively, then

P (MO = Pa(e™) 05
Theorem 4. The scheme (10) ie symplectio 4ff the amplification matricas
- PP

are unitary.

§ 3. The Case for H;ﬁér_bolic' Et;[uations in
' Several space Variables

i

a) Congider an equation

oY

Here the H Bpéra;ﬁdf is D— -‘%— +2 -é-%, which ig not invertible. Therefore the notion

ou _ ou
ot 3.n+2

of canonical transformation needs reconsideration.
b) Consider a scalar hyperbolic equation in goveral periodic space variables

_.._.aU 3 ] a LN 3 3
O s

¢ Fee- A, ¢ . and the action of D on %%
: ory Omy
ig Deet"Z=4 A« K¢'¥'%, with the notations
A= ("A‘i‘! TRy Aﬂ)! K':‘(kl- . kﬂ) i-A'Kr';Aiki_i'""!"-Aﬂkn-
We say an index K is resonant if 4-K =0, otherwise it is non-Tesonant.
-~ Now the given equation is & H-system with Hamiltonian functional H (U) =

Let antisymmetric operai;.ui' D =4, -

1 jUﬂdX and symplectic form (U, V) = J U DV dxX.

2 | |
A linear bounded émvertible transformation I ¢ & symplectio

Definition,
§ransformation’tf |
1) o(TU, TV)=w(U, V) holds for ab U, V;
2) ¢f DU =0, then TU=U. ;
¢) Consider a difference scheme S
' P (EYU™ = Py(E)U™ _ (11)
where-P; (), Pa(A) are functions of the fﬂm | |
'  Sanbe e Sat
with the notations E=(EBy, -, By, BU(X) =U(X +hie); h=(hs, *:*, hs). Then
' " Py(H)eE = Py ) E X, |
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Now assume that U™ =3 021 EX [J? S gk X, Substituting them into (11),
we have |

Pi(eﬁ-ﬂ)aﬁ+1=P’(am-H)OE-

Theorem 5. The scheme (11) ds symplectéic iff | (P1(e™H)) 1Py (eFH) [ =1 ¢f
K és non—resonant and Py(eFT) = Py(¥H) otherwiss.

Proof. Suppose the condition of the theorem is satisfied. Denote the matrix,
(P1(e™)) "1P3(e**) by Fx,

U™ =3 ByeXX, U™ =3 Fy By o,
V™ =30ge™, V=T FrOge'®%,
U, V") =3 Im(BxCx) (4-K) (2m)",

o (U™, Ynil) - Eﬂ Im(BxFg¥F gCx) (A K) (2m)",

Ky
If K is non-resonant, FeF x=1; otherwise 4K =0. therefore
M{Um, V’") _m(Um-!-:l! Vﬂl'l'i) i
If DV* =0, then V“""FRUE&‘E'I, where R is the set of K satisfying 4«K =0, =+
=
R i I"I“ . : i
x%e F xoxﬂ V".

The converse is eagy to prove.

§ 4. Multiple-level Symplectic Difference Schemes

a) We first congider a H-system

B ms
= i,

Let v(¢) =z(t—1%); then

d | % 0 JIN\/0 A\/z
F[H(ADE A0) _,
' 0 J _ |
J1 0 j]
Oonsider a 8-level difference scheme of the form
; g+l ¢12a__ qb ﬂzn-'-.‘l o 0, (12)
By introducing a new variable o =22, (12) can be written in the form f

e

Definition. We say a difference scheme (12) is symplectic ¢f

% Bt & 0x gl e &t

After a short computation, we can prove

Lemma 1. Scheme (12) és symplectic 4ff ¢y is an infinitesimal symplectéo ma-
brie and ¢y=1. .

For example, the following schemes are symplectic,

P b (2 LA 2 — 1 m )

where the antisymmitric operator is [
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e

where

4”0 (3') =2,

m lﬂkﬂ'

Pnlh) =2 2 Hr DT

b) A real vector z&R* can also be regarded as a complex vector ¢(z). Then,
from

i — 21 =0
we have .
e(2Y) —e(2) —e(2*™) =0.
If matrix ¢ can be complexified as J(¢), the above can be writien ag
() —O(p)e(2”) —e(?™) =0.

Lomma 2. The necessary and sufficient condition that an bn finitesimal symplectic
matriz con be compleified és that it s an infinitesimal orthogonal matric, and the
complerified matriz is an infinitesimal unitary matrés.

Lemma 8. A complex mairés 48 an infindtesimal symplectée matriw ¢f ¢ i on
dn finitesimal undtary matriv.

The proofs of these lemmas are easy.

¢) Consider a three—level difference scheme for %tu—==%:

Wt 2 Py (B)ur— Pa(B)uw™=0.
It is easy to prove that it is symplectic iff P(E) is a centered differencing P(E™1) =
—P(E), P(E)=1. ‘7 T
Note that the well known leap—irog scheme is symplectic. Another one withe
sccuracy O(z*+h*) is I - B t = "

1-'»"*:"(‘-“);5_“" (@) Eéh‘(“” (0+28) — 8 (@+h) +8ur(w—h) = (2 — 2h))

—=—Tia-(u"(m+2h)—-2u'_‘(m+h) +2ﬁ“(m-—h) —y*{z—2h)). S S

36h
d) The above notion can be generalized to the non-linear H-system .
%_=J*1H,.
Oonsider a three-level difference scheme " » _
e'_za+1'_._¢1(2‘n)'_¢ﬂ(zn—1)_o_ | | (18)
Introduce 2 new variable ¢*=2""*, then ' ™ A "
' 2+ = by (27) + Pa (v,
= -

w : | s : a1, ) ;
e say (18) is symplectic if the Jacobian Q= E ICAT N satisfies

PR LT R

. Theorem 8. Scheme (D) is symplectio 61 %ji- is an énfinitesimal symplectio
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matriz, 293 _7.

For example, the leap—frog scheme -
M — 20T H, (2™ —2"1=0
48 sympleoctic, ¢ e

§ 5. Symplectic Schemes Based on Generating Functions

We will extend the construction of symplectic difference schemes based on the
‘gonerating functions in [2], . T OB
Suppose K ig an invertible skew—symmetric matrix. We say » transformation 7"
is a K-symplectic transformation if itg J acobian matrix is a K-symplectic matrix.,
Lemma 4 A4 K—symaplectio transformation, not too Sfor from. the ddentity, can
-be given by a generating function ¢ of Eiflé-r type . R - J | } o
=T ), K(G-w)=g, (LEL),

Proof. There exists a'.'n{in—sling'ular:ﬁiatrix P s.t., ‘PTKP_H.J . Lot z=Pow, 7 =

Puw. Then the transformation z2—>z=P"ToP(2) is a J-symplectic transformation,
‘Wwhich can be given by a generating function é: |
T _: z4+2z\
Letqb (w) =_,§§ (Pw); then from above, £ .
~ w+w
- EEe-s(R)

b) Now we are going to construct a symplectic scheme for the following

hyperbolic equation with variable coefficient a () -
R ou o ,

[ W s
We firgt discretize in the time direction (cf. [2]),

(12~ 67D+ 5 D) w1 = (124 67D+ 72D 1>, Dme 2,

where ¢, = -g%- i3 the variational derivative of
b (1) =6fjm(12 - 6sD-+D% 'y do.

We approximate % by P,(E)— ———%-(E—BE+BE‘1—E"), $() by &,
= 6| ua(12—6+(P; (B) @) ++3(Py (B)a)") “uds, P,(E) — (B - 21+ E). Then
(¢, (u) gives rise to a symplectic iransformation ¥*— u**! by

' = 2 L ' '8¢‘" 'lﬂ"+1+€£“
v =PyE) g (L)
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or,

Thig is sympleotic and of accuracy (z*+h*).

(12— 67 Py (BE)a-+7* (P (B) a)®yu™™
= (12+67P; (B a++v* (L3 (E)a)*u™.

. n
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