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MINIMIZATION PROBLEMS*

GE REN-PU ( B A#) |
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Abstract

This paper is an extension of [1]. In this paper the descont and ascent sogments are introduced to
replace respectively the descent and ascent directions in (1] and are used to extend the concepts of
&S-basin and basin of & minimizer of a function. Lemmas nand theorems similar to those in [1] are
Proved for the filled function o : -

1

E B3, 7, 0= ——Jrs exp(~ lo—a3|3/0%), (0-1)

which is the same as that in [1], where #} is a constrained local minimizer of the problem (0.3) bslow
and

F@)=f@+Zule@ |+ 3 wmex©, —e@) (0.2)
is the exact penalty function for the constrained minimization probiem |
min f(2), .
ﬂubm to ' ﬂi(ﬂ-'r) -D, 1“1, 2, ey ﬂ‘l’, | (0-3)

- C(2) 20, f=m'+t1, e, m,

 where g, >0 (=1, 2, +++y m) are sufficiently large. When #7 has been located, a saddle point or a

S EI—.

minimizer % of P(z, r, p) can be located by using the nomsmooth minimization method with some
special termination prineiples. The 2 is proved to bein & basin of a lower minimizer 13 of F(z),
provided that the ratio p?/[r+ ¥ (2})] is appropriately small. Thus, starting with # to minimize

F (), one can locate 23. In this way a constrained global minimizer of (0.3) can finally be found and

termination will happen.

§ 1. Introduction

Many existing methods for constrained minimization problems are only used for
finding a constrained local minimizer. This paper develops a method which can be
used to find the constrained global minimizer. This method is based on two existing

methods. One is the nonsmooth exact penalty function method, which transforms a
constrained minimizafion problem

min (z),
&
subject to c(2) =0, ¢=1, 2, -+, ¥/,
ci(‘m)?O: é—m,—l—l, see, M

e T L Tl
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Hrr— v A=

into & nonsmooth unconsirained minimization problem™

niin F(a)=Ff(z)+ z.m les(@) | +‘=_§m;¥1 wymax [0, —e ()], (1.2)
where ;>0 (¢= 1_,- 2, ses, M) BTO suﬁcié-ntly large and F(«x) is not differentiable on
the surfaces . y B b _ -
| G;(m) =0, g1, 2, e, m. ‘ (1*3)
The other is the filled function method for finding global minimizers of a
continuously differentiable function™, which can be extended to the monsmooth

4

minimization case. Here the nonsmoothness means that the objective function has

no continuous gradiend. | |
Thus, in Section 2 an extension of the filled function method to the nonsmooth

cage is developed. Section 8 gives an algorithm which uses the extension above t0
gsolve the constrained global minimization problems. Section 4 is & brief discussion.
This paper is closely related to [1]. Therefore it is not necessary o repeat the
game context and only the different points will be mentioned in this paper. ;
By the way, it is still assumed that the functions f(z) and ¢;(x) in (1.2) and
(1.8) are all twice continuonsly differentiable.

§ 2.-The Global Minimization of a Nonsmooth Function
This section is concerned with the problem of finding a global minimizer of a
nonsmooth function. The definitions 1 and 2 in [1] should be changed in the

following way. | .
Definition 1. A segment o3 —my i8 said io be o descent segment of F(z) if the

smequality o %
Fluy) <F(amst+ (1—0)2y) <F(Bas+ (1— B)a1) < F(2s) (2.1)
holds for 1% @2 and any o, S mt*ﬁsfy@n_q bt - . T
0<a<B<], | ; (2.2)
If the imequality opposite o (2.1). holds, then @y — g 15 swid to be an ascent saymeﬁt of

Deflnition 3. Suppose 2% is a minimizer of F(w), where F(z) is a nonsmooth
function. The S-basin of F (z) at @7 8 @ connected sol 8%, which contains w1 and n.
which for any point & the ssgment w1 — o I8 G descent segment of F(z), provided o+ 7.

Definition 8. Suppose #} is @ minimizer of F(w). The basin o f F(x) at ©1 is &
conmected set Bt which contains the S-basin 81 at o and for anwy o€ By there exist &
finite number of points @, & By (=1, 2, ==+ m) (it s allowed that z=a,) but 2, €081,
such that the inequalities | | » ._

| Fa) < F (a1t (1 — o)) <F (L1t (1= Bwy) <F(w1) (2.8)
hold for i=1, 2, -, m, Go=a, 0<ou<Bi<1. If ot is a mawimizer of G(z), then the
hill of G{(z) at o} is the basin of the funciton —G(z).

 -These definitions clearly imply the following lemmas.
Lemma 1. There ewists a descent route which leads any « € B to descend 1o 3.
Lemma 2. Suppose B} is the basin of F(w) at v1. Then the imequality
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SRS o P L | T

F(a) }F(ﬂa) a0 F VB

holds for any point = € B} and z+# 2. ' )
Lemma 3. The smallest radius of the S=basin of F(z) at o] is not zero if 7 is

an @satated minimizer of F(z). :

Suppose F(z)is a continuous function from R" to0 B but nonsmooth as deﬁned
before and

 P(@)->+oo as o] >+eo. ' (2.5)
This assnmptmn allows us only to investigate a closed bounded domain £, which

contains all global minimizers of F(a). It is a.pparent that there exists = oonstant
M b such that :

F(z)=M, for z€Q. SRR},

Assume a minimizer 2 of F(m) hag been located. Now the task is fo ﬁnd another
mlﬂlmlﬂﬂl‘ zy of F'{z), which satisfies the 1nequ&11ty i)

F(:ng)agF(a:l) (2 T)
or to deelde whether 2] is already a global minimizer. | 5
-Definition, 4. A4 function P(x, r, p) is called a filled functwn of F(m) at :vl
if P(a, v, o) has the following properties:

(i) 2 és @ mawimizer of P(w, r, p) and the whole basin of F (a;) at z1 becomes a
pari of @ hill of P(a, r, p); . -

(ii) P(z, r, p) does have minimizers or saddle points in the basins of some lmq'
manimizers of F(a), but has no minimizers or saddle poinis im the basins of higher
minimizers of F () for some parameters r and p.

It will be proved that the function

P(a, 7, ) =gy B~ lo- AP 28

is a filled function of F(z) at o} under some mild conditions on parameters r and p
and the function F () as well..

‘Theorem 1. Suppose 27 is a -minimizer of F(m) and P(z, r, p) is defined by
(2.8), where r i3 a constant but perhaps a negative one, such thmt o o

r+F(21)>0. | (2.9)

Tken z; 98 & mazimizer of Pz, r, p) and the whole S—bwsm of 83 w a¢ part n_f an
S—hill of P(z, r, p) regardless of p.

Proof. By Lemma 2, from F(z)>F(a}) for € B}, val, it f{}llowa tha.t the
me-qua.llt}r 1 . 8

Pz, », P)

1‘

1 &« 1 Cmreh
rTF (@) TTEE L\ e) _(?;1?);

holds for z € B}, #+* 7. This proves thﬂ.t 2y i8 a maximizer of P(m T P
Aﬂsnmemmlnﬂl Then -~ . . . 2

éxv(' lo— 232/ 0") <—

U{¢+F(m1){a'+F(am+(1—m)m1)<:a'+F(ﬁm+ (1 ﬁ)ml) - (2.11)

holds for 0<a<8<1 and therefore, k o
1 | 1 : i & ek

FFFlaatr A=) r+F('Bm+-€1L—-B)m}'}?Q b M
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On the other hand, since

ax-+ (1—a)mi—m‘{.==m(m—-m§), s .4 .2 £2,18)
hence 2 I :
Thus oxp(~oi|z—ai|¥/p?) >exp(—Bla—ail¥/e®). ~ (2.14)
N , Plaz+(1—a)aly r, p)>P(Ba+(1-B)eL, 1, p) - (2.15)
1.0, .
~ P(aa+ (1—a)ai, 1, p)<—P(Ba+(1—8)21, 7, p)- (2.16)

Thlﬂ proves that the S-basin 8] of F(2) is = part of an §-hill of P(a, r, p).

To prove that the whole basin B} of (=) is a hill of P(a, r, p) we first prove
the following elementary lemma.
Lemma 4. The function of one variable

p(0) = [|@( @y — ®a) + (22— 27) [ (2.17)
é8 monotonically increasing for >0 of |
(21— wa) T (2a—21) >0, (2.18)
Proof. It is apparent that |
o' (&) =2 2y — @+ 2 (21 — 2 (B3 —aD)>0 (2.19)

is implied by (2.1%).
Now we have the following theorem. .
Theorem 2. Supposs x1— mﬁ is an ascent sagmam of F(z) and

— )" (22— a1) >0, N R
r+F(ma)>0 o | (2.21)

Then o, — 24 18 a dounhill segment of P(x, r, p) regardless o f p
Proof. That @3—ws is an ascent segmant of F(m) means that for 0<<a<8<1

one has
F(29) <F (ot (1—a)as) <F (Bay+ (1— B)ms) <F(z1). (2.22)
Thus,

1 el 1 _
-'rﬂr(mﬁu—a)éﬂ)>r+f(ﬁmi+ﬁ—3>wg_)f | (2'2?’)

Furthermore, it follows from the identity
o+ (1—a)zs— o1 =0 D1 — iﬁg)"]"‘(ﬂ}g — 1) (21.24)
and Lemma. 4 tha,t when (2.20) holds one has |
oxp(~ laz + (L= @)an—i|?/6") >oxp(~ | Bt (1= Bam—ai|/6). (2.9
Therefore, from (2.28) and (2.25) it follows that |
Plozy+ (1 —a)w—ai, r, p)>P(Brst (1-B)ma—ai, 7, 0), (2.26)

that is, @ — o5 i8 a downhill segment of P(z, r, p).
Even some downhill segments of F{) can be downhill segments of P(z, r, p),
provided the ratio p?/[r—+ F{x1)] is ﬂpproprmtely small ag shown in the following

theorem.
Theorem 3. Suppose the segment Ta— zy 68 @ downhill segment of F(w), then

" the inequality |
S P (ag) <F o+ (L-a)a) <F (Boy+ (1~ B)an) <F (52) GRSt
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holds for 0<a<B<1, and

Nl o | (21— @0) " (wy —27) |
(21— 23) (w1 —y) <O and e ¢ m1|| =c,>0, .(2.28)

where ¢1 8 @ fized constant, Then the ssgment of we—my 18 also a downhill segment of
Pz, r, p), provided

pﬂ 21)01 ke 30!
ES G ; o
whera | | |
D=min|o—ai|, |oF(z)|<L, 2€4%, (2.30)
eE 8] :
and
F(mg) > F (7). £ . {2.81)
Proof. Note that
oz + (1—ﬂ)ws—-m1=rx(w1—ms)+(ma aa) (2.82)
It is required that
1 u e T _ *a -ﬂ
ﬂ‘-l-F(ﬂmi‘F' (lﬂm)mﬂ) SR “ﬂ-ﬂ?rl" (1 ﬂ)mg ml” ’KP)
’ 1

. < exp( — | Bmy+ (1— Bloa—ai|¥/p"). - (2.83)

r+F(Boy+ (1— B)ws)
1t is easy t0 see that
F(Bas+ (1— B)mg) F(awy+ (1~ ﬂ)%)
r+F(azy+ (1 — ) za) .
éﬂxp[(m B) (o1 — mﬂ)T[(ﬂ'-‘l‘ .8) (5131 mn)+2(mg—m1):| ] 1. (2 34)

P
The exponentml variable ig always positive provided (2.28) holds, because

(a—B) (21— 22)T[(a+B) (11— 23) +2(23— 1) ]
= (a— B) (@1~ 29) [ (a+ B) (21— @2) +2(@3— 21+ 21— 21)]
| = (a—B)(a+B—2) o1~ 2| *+2(a— B) (#1—22)"(#1—21)>0,  (2.35)
gince a— 8<0, a+B—2<0 and (a4 —a9)% (#1—2;) <0. Therefore inequality (2.34)
is implied by the inequality |
o’ < (ﬂ‘ B) (21— — )" [(ﬂ'!'B) (mi“mﬂ) +2(Eﬂ_m1)3 . (2_35)
r+F(ap:i+ (1—aj)as) F(Boy+(1—B)wa) — F(awy+(1—a)wa)
Note that in nonsmooth analysis we have
im 2 (Bzy+ (1—B)as) — Flow+(1—a)wa) | o (%4 —29)T (2.37)
B—ru B—a . gesP(@) g

where 8F (z) denotes the subdifferential of F(m) at  and ¢ is an element of 2F (),
z=a(x— %) +az (g0 [2]). Thus, the right hand side of (2.36) has the limit case

; - — 21— @) (@ — 1)
a:l'—}-f.-}l?'(m)'g max (@, —29)7¢ (2.88)

gEPF ()
Sinee 5 — 24 is a descent segment of F (=), hence %3~ g is a ascent segment of F(m)
and so it follows from (2.37) thab

max (3?1 o ﬂ?g) Tg>'0 (2 “'39)

geaFia
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From (2.28) it follows that S,
W (@1~ )" (0—23) = (21— 29)" [0+ (1—)ma~ai]
| = a2y —xal® -+ (21— 22) " (22 - 1)

= ﬂ?i—ms"ﬂq-'.(.-’ﬁs"—.im'i.-l'ﬁ;—iﬂ;) | |
= (a—1) | @1~ 3| + (21— 22) " (21— 21) <O (2.40)

and {2.40) gives

124 (g~ )T (m1 — 1) < (D1 — a) " (2~ 21)

— | @1~ 22 i &
(¥ L, o < (@q--23)T (24 —21) <0. (2.41)
Thus, o ,
— Wy —2g) (2 —2]) > —2(2y — Ta) (24 —27) = 0. - (2.42)
From (2.28) and (2.30) it follows that
1 | (21— @) " (@1 — 1) | > || 21— @a| Dex * 2 = [2:48)
| 0L .’ﬂ:lﬂE (ml—mg)TQQUml—-mg“L, _ (2 .4:4:)
gEBN () | '
where |2F (&)[ is defined as | |
[8F ()| = max [g]. & w o (2.45)
| | P | | pESF )
Then (2.88) and (2.36) are implied by e e b |
o’ o’ 2De¢y | 18
r+F(a1) g'a’ﬁ—_F(@ Bl (2.40)

Note that here 2D¢,/L is a fixed number regardless of z1, 2, «t. One can choose P
and r 0 make (2.46) hold and therefore (2.36) and (2.38) hold.

Theorem -3 is proved now. £ SRR

Theorem &. Under the assumptions in the above theorems, P(=z, r, p) cannot
have any mindmizer or saddle point in the basin of =1 provided inequality (2.29) holds.
Furthermore, suppose oz S & minimizer of F(z) and

Flon)>F(23). (2.47)

If (2.29) and (2.9) hold, then there are no minimizers or saddle points of Pz, 7, p)
in the basin of F(®) at 5. - B | -

Proof. Theorem 1 shows that the whole S—basin 87 of #(x) at =] is a part of
S-hill of P(z, r, p) and there are no minimiéars_ or saddle points in 87. In the sets
B\S: and B} the inequality = 9 N
FP(z)>F(«?) | ‘ -1 (2.48)

holds. Thus, (2.29) and (2.9) imply that P(z, r, ) has no minimizers at least
along the direction x—ai and so P(x, r, p) cannot have any minimizers or saddle
points in both Bi\S7 and B; according to Theorems 2 and 3. The proof is complete.
Theorem 4 shows that one cannot locate the minimizers.of ¥F(z), at which the
values of F (o) are larger than F(z]) by using the filled function method with the
filled function P(=, r, p), provided (2.29) and (2.9) hold. |
.. However, can one find the minimizers of F (&), at which the values of F(z)
are not greater than F(a7)? This is equivalent to whether there do exist ‘minimizers
or saddle points of P (s, r, p) in the basins of some lower minimizers of F(z). The
following theorem shows that it is possible under some conditions.
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Theorem §. Suppose wa and 2y are such that (2.28) hohﬂs and Tg—xy S &
downhill segment of F(w), that is, (2.27 ) h-olds T hen - |

(i) If o
| r4F{avi+(1—a)za) >0 | - (2.49)
and . - e . ; -
- ¢4+ F(Bzy+ (1—B)wa) (B—o) (w3 —22)"[(B+a) (@1 —ma) +2(wa—21)] )
r+F (azy+ %l——m)wh) :?EEP( P )’
(2.50)
then ze— x4 98 an uphill segment of P(z, 7, p).
(ii) If | | -
1 | r+F(z)<0, (2.51)
i _. |
Pz, r, p)<0. . (2.52)
(iii) If S
r4 F(z)—>0%, (2.63)
then e ' .
| P(z, 7, p)—>+2. - (2.54)
Proof. (i) To make bos |
_ , Plamy+(1—a)as, 7, p) >P(Bx1+(1—B)za, 7, p), (2.55)
i.e. . |
1 . oy + (3 —a@)wa— a1 |
r+F{avy+ (1~ a)xa) XP( = o )
1 | B2y + (1 —B)wa—a1]° |
T FBot (A—Byma) ( . ) | (2'.56)

is equivalent to requiring

r+F(Bos+(1—B)2s) (B=a) (@1=20)"[(B+a) (21~ 20) +2(2a—2D)]
T+F(M1+(l*ﬂ)mg) a8 XP( o* )

‘ (2.67)

(ii) and (iii) are obvious by the definition of P(, r, P
Plz, v, p) is downhill in the direction #—g; for such # that o

F (m) >F (@1) . (2.88)

provided the ratio p?/[r+F (ml)] is appropriately small, while P(w, r, p) becomes

uphill in the direction #—aj when F(2) < F(z1) and r-{-F (z)—>0F. Therefore it is

certain that there exists a minimizer or a saddle point z of P(w, r, p) in the basin

of a lower minimizer of F(z). The # can be used as an initial point to0 minimize

F(%) again to obtain a lower minimizer g of F(z). If F(z) has only a finite
number of minimizers, then one can finally find a global minimizer of ¥(x) in this

way.

As in the ﬂmooth case, when the ratio p*/ [:r—i—F(ml)] is too small, even a
»glohal minimizer of F(x) might be lost as stated in the following theorem. Its proof
igs the same as the proof of Theorem 3 except that # and 2" should be used to replaoce
&y and a4 respectively.

- Theorem 6. If the choice of the parameters r and p makes

¢ _(u=B)(@—a")[(a+B)(z—2") +-2(s"—aD)] (
0L r-]—FCm") F(ﬁﬂ:—l— (l ﬁ)m ) F"am-i—(l—m)m ‘) — u.,_2.59)
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where o is a global minimizer of F (@), then o" — & is always & descent segment, where
és an arbitrary point on the segment z* — 3. Therefors P(%, r, p) has no minimizers
or saddle points at all even én the basin of z°.

The theorems in this section give an algorithm for finding a global minimizer
of & nonsmooth function F(«) and so an algorithm for finding a constrained global
minimizer of a constrained minimization problem. They also tell us how to adjust
the parameters r and p. The detailed algorithm and some practical consideration will
be described in the next section. -

§ 3. The Algorithm and Practical Consideration

First we describe the algorithm and then make some explanation. The
algorithm is as follows. . |

1. Minimize #(z) from en initial point «1 in & by the nonsmooth minimization
method. Denote the minimizer of F(z) by 2i. Bet M8 =0.

2. Construct the filled function

2 A N 12/ 02
Pl )= g (- lematle) B
and minimize it from an initial point near 23, for instance
| oz =a1-+8e;, O3>0, (3.2)

where e, is the first ooordinate and & is a preset number.
3 If the minimization sequence of P(w, r, p) goes out of O, then change an
initial point, for instance

xy =y — 081, 00 (3.8)

and if this happens again and again, then change initial points
gt B, §2, B g, Bl (3.4)
in tarn. If all the z, in (8.2) 1o (3.4) have been used but all the sequences go out

of 2, go to 9,
4. Try the following criteria for terminating the minimization of P(a, r, p):
a. Plo, 7, p)=P(4-1 75 p), OT -
b. P(m, 1, p) <0, then take z; as .
c. Minimizé P(ozyz+ (1—a)d4.1, 7, p) With respect to « and denote the.
minimizer as omm. 1 anin<<1, take z; a8 z: if apwm=1, do next k.
"~ d. Minimize P(omy+(1—a)@u_s, 7, p) With respect to o« and denote the
inimizer 88 . 1E o << 1, take @y a8 & if anm=1, do next k. Here it is set that

By_1=[1— (zp— 20-1) (@ — 21)] (@1 — 21) +21. (3.5)
o, Fay)<F(zl). | )
5. Minimize F{&) from the initial point z o obtain another minimizer s of
6. If Fz3)<F (&), set 2«2, and go to 2. |
7. If F(23)>F(a]) and MS<NS, a preset integer, enlarge p* and r-+F (o3)
'but make the ratio p?/[r -+ F (#2)] smaller than before. Set zi<=zz, go to 2, but use
the first initial point | '
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o3+ (2 — 1)/ oz — 23] (8.6)

8. If F(w3)>F(z7) and MS8>NS§, stop.

0. Decrease r+F (z}) to increase the ratio p?/[r+ F(a3)], set MS<MS+1, go
to 2.

By the analysis in Section 2, a stationary point z of P(z, r, p) is a minimizer
of P(z, r, p) at least along the radius direction a5—=], and P(=, r, p) will ascend
only when z has been in a bagin of a lower minimizer of F(=). This can be
expressed by criteria a, ¢ and d. Since the fact P(z, r, p) -<‘.0 implies rr-l—F(m) <0,
that is, F(z)<F(z7), it is the criterion b.

That all the sequences of minimizing P(z, r, p) go out of the domain Q is
caused by either a too small ratio p*/[r4-F(z1)] or by the fact that 23 is already a
global minimizer of F (). In the first case, for a little larger ratio p?/[r+F(21)]
another lower minimizer of F{z) can be found. In the second case, for a little
larger ratio p®/[r-+F (27)], a higher minimizer of ¥ (&) can be found. Therefore,
when all sequences of minimizing P(z, 7, p) go out of £, this ratio should be
increased a little bit by decreasing 7+ F (7). We do not increase p? to increase the
ratio p?/[r+F(2})] because Theorem § shows that a smaller positive r+ #(a7) is
preferred to a larger one when F(a}) is close t0 a global minimum of F(x). This.
argument is nged in steps 7, 8 and 9,

§ 4. Conclusion

The purpose of this paper ig to find a method for finding global minimizery of
a nonlinearly constrained minimization problem, We have seen from the above
analysis that the filled function method for finding global minimizers of a smooth
function of several variables can be extended to the case of finding global minjmizers
of a nonsmooth function. Since a nonlinearly constrained global minimization
problem can be transformed to a nonsmooth minimization problem via the exact
penalty funotion method, the filled function method can also be used to solve
nonlinearly constrained global minimization problems.
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