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Abstraoct

An aggregate regional forecasting model class belonging to the general family of Space-Time
Auto Regressive Moving Average (STARMA) processes is investigated. These models ara characterised
by autnrag}-essife and moving average terms lagged in both time and space. The paper demonstraies an
iterative procedure for building a BTARIMA model of a precipitation time series. Eleven raingage
sites located in a watershed in southern Ontario, Canada, sampled at 15-day intervals for the period
of 1068 to 1980 are used in the numerical analysis. The identified model is BTMA(l). The model
parameters are estimated by the polytope technique, a nonlinear optimization algorithm. The developed
model performed well in regional forecasting and in describing the spatio-temporal characteristica
of the precipitation time series.

§ 1. Introduction

Time series analysis for modeling and forecasting of hydrologic variables is a
valuable and important step in water resources planning and management. In
hydrology, the selection of models for analysis of time series is essentially based on
simulation and statistical decision theory (Salag et al., 1980). A flexible clags of
empirical models is the general family of autoregressive moving average (ARMA)
processes (Box and Jenkins, 1976). These models have proven very useful in
‘hydrologio analyses (Hipel et al., 1977), but since they are univariate, they are
applicable only to single series of data. In consiruecting an appropriae dynamie
gtoochastic model for a given one-dimensional time series a three—stage iferative
procedure is usually followed. This is commonly referred to as the Box—Jenking
method (Box and Jenkins, 1976). |

There is an inereagsing interest in hydrology to develop empirical spatio-
temporal models in the context of hydrologic regional analysis and forecasting (Perry
and Aroian, 1979; Pfeifer and Deutsch, 1981; Mohamed, 1985). Naturally, an
alternative to univariate ime series modeling is mulfivariate time series modeling
(Anderson, 1958; Hannan, 1970). An appropriate class of formal models for
deseribing space—time hydrologic data sets is again provided by linear stochastio
difference equations. These models attempt to simultaneously degcribe a set of N
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observable time series. When thege IV time series represent spatially—located data, the
interrelationships and the spatial correlation (Cliff and Ord, 1973) between the
different spatial date sets can be faken into account and thus a better system
deseription should result. The gpatial domain is ineorporated in the modeling
procedure by using a hierarchical ordering of the gpatial neighbors of each location
(Besag, 1974).

The objective of this paper is to develop a gpatio—temporal precipitation iime
series model from the general class of space—time autoregressive moving average
(STARMA) processes suitable for regional hydrologic analysis and forecasting. The
methodology is essentially an extension of the Box—Jenking model-building
procedure to take into account the spatial effeot of existing time series over
hydrologically homogeneous areas. In other words, the watershed is considered to be
homogeneous with respect i the gpatial and temporal variation of physical and
hydrologio characteristios, climatio variables and system response,

The paper is organized as follows. In Seotion 2 the three—siage iterative model-
building procedure is developed. Specifically, in the identification stage a
preliminary analysis of the data is performed to select a tentative spatio—temporal
model. The order of the STARMA model is chosen based on the estimation of
gspace—time aufocorrelation (STACEF) and space—time partial autocorrelation
functions (STPACF). The second stage covers the parameter estimation of the
selected tentative STARMA model. The third stage of diagnostic cheoking deals with
the adequacy of the fitted STARMA model, since the goal remains to obtain an
adequate but parsimonious model with the smallest number of paramefers meeting
certain gtatistical accuracy criteria. If any inadequacy is found, the three—stage
iterative procedure is repeated. Section 3 desoribes the dala environmeni and,
finally, in Section 4 a hydrologic application is discussed.

§ 2. Starima Model-Building Procedure

An extension of the Box-Jenkins univariate ARIMA process into the spatial
domain leads 1o the formulation of the general family of STARIMA models (Martin
and Oepper, 1975; Cliff and Orb, 1975; Bennett, 1975; Hooper and Hewings, 1981;
Pfeifer and Deutsch, 1980; Mohamed, 1985). The general form of the STARMA

model ig

i r m
Yu=ay+ 2 N buLticw— 2 2] ulatisn, (1)

k=, =1
where y;; i8 the time series at time ¢ and at site ¢, ¢=1, 2, -, N, p and ¢ are the
temporal orders of the AR and MA. terms, respectively, I and m are the spatial
orders of the AR and MA terms, respectively, ¢ and 4 are parameters of the AR
and MA terms, respectively, with spatial lag s and temporal lag %, I, is the spatial
lag operator of lag s, and a4; are normally independenily distributed white noise
residuals with

' Ela;] =0
and
o?, for ¢=4, k=0,

B [ﬁaﬂﬁt-k}] = { (2)

0, otherwise.



No. 3 SPACE-TIME ARIMA MODELING FOR REGIONAL... 251

s =3 =LA i, S e Pk

The spatial lag operator L, of the space—time model may be defined such tha.t

Lgyﬂ='z Wizl st for 3:7"'0 (3)
where wy, are a set of weights scaled so that
N
E Weig == 1 . (4)

for all ¢ and w;;, nonzero only for 4 and 7 sites being s th order meighbors. For s=0,
equation (38) becomes Loy, =y;. The weights may reflect physical characterigstios of
the obgerved time series and follow a hierarchical ordering of spatial neighbors
based on distances between the observation sites in the watershed.

The STARIMA model class expresses yi as a weighted linear combination of past
observations and errors, which may be lagged both in space and time. These models
can be nsed for regional forecasting. The STARMA model class collapses into the
ARMA model clasg in the absence of spatial correlation. Two special subclasses of
the STARMA model are of note. Models that contain no autoregressive term (p=0)
are referred to as space—time moving average (STMA) processes of order m in space
and ¢ in time

» T

Yie = G — § ig O o Liyige ;.- (5)

When ¢=0, the clags is referred to as gpace-time autoregressive (STAR) process of
order [ in gpace and p in time

Yu= Gyt E E qbahLu%(r-m (6)

=0 ==l

2.1. Identification of the STARIMA model

Identification of a tentative space—time model is carried out through the
analysis of historical data. For a given data set, both the degree of nonsfationarity
and the order and fype of representative models can be decided by studying the
shape of the appropriate correlation functions. A brief deseription of the STACF and
STPACF and their characteristics for 1den13.1fy111g STAR, STMA and STARIMA
models follows,

Space-Time Autoocorrelation Function (STAOF). In a multivariate framework
the STACF expresses the covariance between random variables lagged both in time
and space. An estimate for the STACF at spatial lag s and time lag % is given by the

following equation:
:=§1 g[“#’u (;‘4 (WissBict—y ) )] . G

Eiﬁkuf”[m(zwﬂ N

where #z; =y, —y with y being an estimate of the space~time grand mean given by

Fr 55 ®

Other equations have also been used to estimate STACFKF (Martin and Oeppen, 1975;
Pieifer and Deutsch, 1980), but the resulis have been unsatisfactory either due to
- smoothing effects caused by ihe spatial lag operator I, or due o a change in one of
the means with changes in the spatial lag, or even due %o variations in the

Top ™
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normalizing factor with the time lag k.

Space-Time Partial Autocorrelation Funetion (STPACF). The STPACK may
be expressed by extending the “aonventional” definition of Kendall and Stuars
(1967) to the gpace—ftime series. To compute the partial autocorrelations it 19
necessary o caloulate the symmetrioc space—time autoocorrelation matrix 0, (Fig. 2).
This matrix estimates the intercorrelations between gl pairs of lagged variables
Wiplit—g DA Wissit-—k)s where b, §=0, 1, --+, L are the spatial lags, 9, k=1, 2, ==, P
are the time lags, and 4, j=1, 2, **; N refer to the spatially 1ooated variables. These
correlations may be expressed by the extonded notation [rhp) and the matrix Cy
may be computed by repeatedly solving the following equaiion:

T N N N :
_5.‘.\ g[@(wmﬂm—m)][ﬁ (wmmm_;ﬂ) -_”
| Tag™ 7 Tt_i;-l o = aq1i/ar T N X 5179 ? (9)
zig[z (Wﬂnﬁﬂ)] ] [z; E[E (‘wmﬁﬂﬂ :]
where v=max(g, k). Thus the space—time partial sorrelation between 2 and
Wipkit-%)y S8Y Woorw, 18 giVeD by
o

4’@:1 e — Cyosk (lﬂ)

-@aﬂwﬂahlﬁ) e |
where Ces 19 the cofactor of the estimated STACF [rool 1R the ocorrelation
determinant |O[. An advantage of this method is thab the order in which the
autocorrelations are written is ingignificant, SInce each partial autocorrelation 18
computed by assigning certain fixed values 0 .11 other lagged ferms. 1f & time series
i nonstationary it would require temyporal and/or spatial Jifferencing 10 achieve
gtationarity. For example, the first order temporal and gpatial difference operators

are given by

L VoY =Yit — Yis-1
and. | (11)

N
Vfu=Yi— g Wissl it

STARMA processes are oharacterized by distinet STACE and STPACFS.
Specifically, 2 STAR (I, p) process oxhibits autocorrelations that decay in space and.
$ime, and partial .atocorrelations that ocud off after p lags in Bime and 7 lags In
space, Alternatively, & QTMA (m, ¢) Process oxhibits autocorrelations that out off
after m~ lags in space and. ¢ lags in Hime and pariials that decay exponentially both
in space and time. Finally, the gTARMA (, », ™, g) models aTé characterized bY
STACKE and STPACFs that both tail off in time and space. Table 1 summarizes the
oharsoteristios of the theoretical STACK and STPACKS.

o 9. Hstimation of the STARIMA. model
Fatimates of the parameters Pa DA 8, of the tentalive model from the STARMA,

family of time series models can be computed by minimizing ihe residual sum of
. BqUAares: |

9, 0) = Ta-g 2;&#. (12)

The adopted Box-Jenkins modeling procedure requires that the errors du should be
pure white noise. Qinee the random erTors Gy &0 anobservable, a reoursive scheme
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is necessary to caloulate the ay; from the observed series z;. The commonly used
equations result from equation (1) and are given by

Gy = zg—- g g ‘;bauLuzm—h) = g g ﬁlkL:a'I{t—hJ- (13)

In the Box-Jenking time series modeling approach the parameters ¢,; and &,
are usually estimated by the maximum likelihood (ML) method (Box and Jenkins,
1976; Hipel et al., 1977; Pleifor and Deutsch, 1980). However, the accuracy of the
oconditional ML estimation directly depends on the record length 7’. Moreover, only
the STAR models are linear, whereas the STARMA and the STMA models are
nonlinear in form. Any nonlinear optimization technique such as gradient or
linearization methods, could then be used to estimate the parameters of the models,
In this paper the polytope method (Nelder and Mead, 1965) is employed from a
Package of nonlinear optimization techniques (Birta, 1983),

~ The polytope method, which is frequently referred io as the simplex method of
Nelder and Mead (1965), is an example of s heuristio procedure for solving the
unconsirained function minimization problem. The process begins with the
specification of a regular simplex which is defined in terms of (n+1) points in
n—space (henod®in 2-space the simplex is simply triangle). Through a sequence of
operations referred to as reflection, expansion and contraction, the simplex changes
shape and moves through the parameter space until it (hopefully) encompasses,
and then contraets upon, the minimizing argument «". Hach basic step begins with
a partioular simplex characterized by its vertices @, zs, **+, Tn, Tpy1 DA ends with a
new simplex whoge shape and loeation have been altered in responsge to the local
topology of the funection (Note: throughout this discussion, if v is a vector variable,
then the notation v, is used to denote a particular cceurrence of the vector » rather
than iis jth component). The process can be terminated either when the vertices of
the simplex become sufficiently clustered or when the function values at the vertices
are all within a preseribed tolerence. |

2.3. Diagnostic Checking of the STARIMA modsl

Diagnostic checking is performed in order 1o examine any inadequacy in the
selected space—time model (Box and J enking, 1976). In this paper the residuals
STACF and the Port Manteau tests are used to investigate the whiteness of the
regiduals. The cumulative periodogram test is also used o examine the presence of
any periodicities in the residuals. A brief description of the tests follows.

Anderson’s Test. This test is used to approximately assess the statistical
significance of departures of the residuals autocorrelation from zero. If the residuals
are Wwhite noise the autocorrelations should have a zero mean and variance—
covariance matrix equal t0 Iy and all autocovariances at monzero lags equal #o
zero. If any of the residuals’ autocorrelations are significantly different from ZOT0,
then the model building procedure is considered inadequate and should be repeated.
A model can then be identified to represent the residuals, which could be
incorporated into the original model o obtain a better updated model for the space—
fime geries. - :

Port Manteau Test. The whiteness of the estimated residuals of the fitted model

-18 tested using the equation:
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Q=Nérr§(&), o (14)

where ¢2{a) is the autocorrelation of the residuals au, N is the sample size and & is
the maximum bime lag. The gquantity € is approximately chi-square distributed

with (B—p—¢) degrees of freedom, where p and g refer 10 the number of parameters
i the AR and MA terms, respectively. The adequacy of the identified STARMA
model may be checked by comparing the stabistia Q with the tabulated chi-square
value #?(k—p—¢q) for a given level of significance. If Q<z*(bk—p—q), as is an
independent series resulting in an adequate model; otherwise the model is
inadequate. |

The Cumulative Periodogram Test. This test provides an effective means for
the detection of periodic nonrandomness. The cumulative periodogram of a while
noige series @, t=1, 2, ---, T, is given by:

P(F) = ger 23 1(FD, (15)
where |
I(F9) _%[(25, 008 szjt)ﬂ +(‘:21m,sin o Tt )’] (16)

with F;=j/N and o® being the variance of the residuals. If the residuals contain
any periodicities, the cumulative periodogram would show significant deviation
from the lines of the confidence limits at the specified level of significance; otherwise
the residuals should lie within the confidence limits and should be considered white

noise.

§ 3. The Data Base

The data used in this study consist of precipitation time series from eleven
(N=11) raingage stalions spatially located within the Grand River bagin in
sonthern Ontario, Canada (Fig. 1). The seleotion of the data sets is based on ihe
following oriteria: adequate spatial distribution 0 meet$ the areal coverage needs
of the model developmeni procedurs; gufficient and complete record length %0
satisfy the accuracy requirements of the three—stage iterative modeling approach..

Data were available for the period of July 1966 to June 1980. A time step of
15-days is used in this study, which is an accopled time gtep to preserve the
oharacteristios of the storm events in the precipitation time series. A poriion of the
data, i.e., 192 values, is used in the model-building procedure, and the remaining
144 values are available for the evaluation and forecasting phase. It should be
mentioned that there were a few missing values in the selected time series. In thoge
cases, the normal-ratio method (Linsley, Kohler and Paulbus, 1982), a simple and
widely used technique in hydrology, was adopted to “fill up the gaps” in the
precipitation data sets.

The watershed, 3480 km? in size, is divided into eleven subareas, one for each
raingage site, using the Thiessen polygon technique (Fig. 1). No altemp? is made
10 average eaoch time series over the subareas. As a result, every precipitation series
is assumed %o represent the corresponding subarea and used in the development of
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the space—time precipitation model. Based on the selected spatial ordering as defined
in Section 2, a hierarchical weighting scheme ig designed for the eleven raingage
stations (Table 2). In this study equal weights are assigned to the spatial
precipitation system. This is illusfrated in Fig. 8, where the || weighting
matrix W, of spatial order one is shown. It should be noticed that each Tow of

Fig. 3 sums to one and that nonzero entries correspond to the designed pattern of
Table 2.

§ 4. Regional Precipitation F orecasting

Initial identification of the precipitation time series suggests that the space-
time precipitation system is nonstationary. This ig indicated by the STACF and
BTPACFs of the original precipitation serieg up to spatial lag 8 and time lag 6
shown in Tables 8 and 4, respectively. First differencing in time is then applied to
the data sets to achieve stationarity, The sample STACF and STPACQFs of the
differenced series are presented in Tables 5 and 6, regspectively. The autocorrelations
are effectively out off after k=1, for s—0, 1, 2 and 3, and the partials decay across
k=1, 2, --.. 6 for s=0. In other words, the general pattern is one of decay for the
STPACF, whereas the STACF cuts off in time after lag one. These patterns suggest
that the differenced precipitation series are tentatively identified as an STMA (1,)
model of order one in time and three in space, which takes the form: | |

A " |
V2= 277 § 9-; allics—1), | (17)

where 8, 64, G4y and 85, are the parameters fo be estimated. The same model could
be referred to as a STARIMA. (0, 1, 1a) model by including the first differencing
into the model notation. |

The parameters of the STMA (1) model are estimated by using the previously
desoribed polytope estimation algorithm (Nelder and Mead, 1965). The results of
the parameter estimation are summarized in Table 7. In particular, three computer
runs of the polytope algorithm are made to estimate the four parameters using
different initial guesses. The results are the same for all the attempted runs and
suggest a global optimum. Table 7 also presents the initial and final estimates of
the residual sum of squares §. The three runs show similar performance, since the
final and minimized value of § is the same. :

In the diagnostio checking stage, the residuals are tested for whiteness and
presence of any periodicities. The residuals are generated by incorporating the
parameter estimates of the developed STMA (Is) into the appropriate form of
equation (13) for the model-building period. The whiteness of the generated residuals
is checked by using the Anderson and Port Manteau tests. For the first test the
residual STACKS are estimated and the resulis, along with the upper bound 1/+/N
for the residuals’ standard errors, are presented in Table 8. The resulia indicate a
lack of structure among the STACFs, which suggests that the generated residuals
are uncorrelated and consequently white noise. -

Similarly, the Port Manteau fest is employed to check for the whiteness of the
residuals and the results are presented in Table 9. In pariicular, a comparison of
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the Port Manteau statistic with the chi-square statistio at 0.05 level of significance
indicates that the residuals pass the test, which suggests that the generated
residuals can be considered uncorrelated. Finally, the cumulative periodograms of
the generated residuals (equations 15 and 16) are used to test for periodicities and
aro plotted in Fig. 5 along with the confidence limits at the 0. 05 level of
gignificance. Since the periodograms fall within these limits, the generated
residuals do not contain any periodicities. Based on the above tests the generated
residuals are considered uncorrelated and white noise. Therefore, the STMA (Is)
model passes the diagnostic checking stage of the model-building procedure.

T4 is felt that the parameter @s=0. 0007 is very small and could be omitted.
This suggests that an STMA (13) model would be ased to deseribe the precipitation
time series. Schematically the model id presented in Fig. 4. Estimation of the
STMA (I;) model parameters using the polytope method results in the following
estimates: o1 =0.9460, 051 = —-0.03896 and #,=0.04127 with the residual sum of
squares being §=0,1306 X 107. The STMA ({,) model would then have the following
form: |

vTZu == B — 0. 94605{(:_1) +0. 03896W1ﬂw{.(t_.1} +0. 04127W5£3¢(f..1) . (_18)

~ The diagnostio ohacks based on the study of the STACF, Port Manteau test and
cumulative periodogram concluded that ihe residuals from the STMA (I,) are white
noige and free of periodicities. Therefore, the STMA (I,) passes the diagnostic
checking stage of model-building procedure. | | |
Sinoce the objective of the Box—-Jenkins modeling procedure is always 10 develop
s parsimonious model with the smallest number of parameters meetling ocertain
accurady oriteria, the STMA (1) model has been accepted as the space-time model
4o desoribe the precipitation time series. - ' - | "
Finally, a validation procedure is followed, which is common in time geries
analysis (Box and Jenkins, 1976). Specifically, the forecasting performance of the
developed model is examined for the evaluation period of the remaining 144 values.
The mean and variance of the generated residuals for the model-building period
are estimated. These statistical parameters are used to randomly generate normally
distributed residuals for the evaluation or forecasting period. These residuals have
been tested for whiteness and presence of periodicities wusing cumulative
periodograms and the Port Mantean test and have shown to be uncorrelated and
white noise. Figs. 6 and 7 show plots of the obgerved and the computed series for
the model development as well as the evaluation period for two raingage data
gets. The plots indicate satisfactory performance for the developed space—time
precipitation model, which has already passed the diagnostic checks.

§ 5. Summary and Conclusions

Thig paper discusses the general clags of STARMA models and the three—stage
iterative procedure 10 build a space—bime precipitation. model for regional
forecasting. The developed STMA (1,) precipitation model of equation (18) performs
well in desoribing the spatio-temporal sirncture of the selected data sots. The
computed precipitation series are found %o compare well with the corresponding
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observed series for the model development and the evaluation period (Figs. 6 and
7). This space~time process is considered appropriate in modeling and forecasting
hydrologic time series that exhibit spatial correlation and can be used in simulation
and regional analyses. 9 o B A

In thig Box-Jenkins procedure a cruoial component is the identification stage,
The sample STACF and STPACFs appear 0 be quite successful in suggesting a
Space-time precipitation model, which approximates the information in the data
Sols with acceptable accuracy. In particular, the type and order of the model, ag
well as the degree of nonstationarity, were chosen by studying the shape of the
autocorrelation funections. Apparently the choice of spatial ordering, which
delineates the influence of one zone on another, can affect the form of STACF and
STPACFy and, consequently, can lower the adequacy of the identified space—fime
model. The selested equal weighting scheme of spatial lags reflects the physical
properties of the obgerved system sufficiently well, although eleven stations are nok
considered a dense raingage network for the size of the selected watershed.

One of the primary objectives of this study remains the development of
& Dparsimonious space—time model. The methodology described in this paper
wag sucoessfnl in showing those characteristios, since the developed STMA (la)
precipitation’ model ig a parsimonious model with the smallest number of parameteors
that minimize the residual sum of squared.

Table 1 Characteristics of _.tha thenratieal STACF and STPACF for STAR, STMA and STARMA mode's

Model form STACE l " RTPACE

L

STAR (I, o) Tails off Cuts off after » time lags,
i spatial lags

STMA (m, q) Cuts off after ¢ time lags, Tails off
m spatial lags

A P THE— - il LD L T

- BTARMA (I, p, m, q) Tails off Tailg off 8

STACP~=Space-Time Antocorrelation Funection
STPACEF ==Bpace-Time Partial Autocorrelation Function
BTAR=Space-Time Autoregressive

STMA ~8pace-Time Moving Average

STARMA =Bpace-Time Autorégressive Moving Averaga

Table 2 The hierarchieal spitial ordering scheme for the eleven raingage statlong

Bpatial order 1 2 3

Raingage 1 3 2 4, 6§
2 3, 4 1 5,8, 9
3 1,2,4,5 6, 8 7, 9
4 3, 8,8 5, 0 1,6,7,10.
3 3,6,7,8 4 2, 9,10, 11
6 5 3, 7 1,4, 8
7 5,8, 11 6, 10 . 3, 4
8 . 4,5,7,10 | 3,9, 11 2,6
9 10 ; | 4,8 2, 3,5, 11
10 8, 9,11 . R 4,5 _
il [ 7, 1 8 _ 5,9
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Table 3 Sample STACF of the original precipitation series
M

L ——

Time lag (k) 0 A 2 4
1 0.0866 0.0728 0.0756 0.0753
2 0.0338 60,0134 —0.0029 0.0029
3 f 0.0298 —0.0010 -0,0112 0.0097
4 —0.0269 —0.0378 —0,0442 —0.U468
5 -~0,0412 —0.0514 —0.0401 ~0,0471
6 —0,0113 —0,0320 —0.0352 —0,0249

-

Tahle 4 Sample STPACF ol the original precipitation serles

g 0 ! 2 3
1 ' »0.0381 0.0008 —0.0098 0.0060
2 *  —0.0478 0.0158 —0,0063 0.0307
3 —0.0280 --0,0174 0.0244 0.0178
4 —0.0308 0.0097 0.0156 0.0302
5 0,0159 0,0087 0.0173 ~0.0226
8 —0.0273 0.0292 0.0025 -~0,0025

U it E N Sy

Space lag (s)

Table 5 Sample STACF of the differenced preclpitation serles
M

Time lag (k) ¢ i 2 .
1 —{.4711 —0,3660 —0.3971 —0,3490
2 —0.,0207 -0.0180 —0.0320 —.0358
3 0.0251 0.0081 0.0037 0.0302
4 —0.0220 —0,0112 —-0,0192 —0,0298
5 —0.0241 —(.0181 —0.0005 ~0,0121
6 ! 0.0488 0,0327 0.0204 0.0384

S S

Table 6 Sample STPACF of the differenced precipitation serles
f

s 1ag 08 0 1 2 3
1 0.8736 —0.0092 —0.0212 ~0,0067
2 0.2316 0.0001 —0.0299 0,0104
3 0.1646 —0.0155 ~0,0139 0.0125
4 0,1111 ~0.,0109 —0.0081 0.0259
5 0.1008 ~0.0133 . 0.0011 —0.0009
6 0.0549 —0.0009 —0.,0004 ~0,0148

S R o B B
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Table 7 Parameter Esiimates of the STMA (I:) preeipitation model
Run Parameter (Guess Hstimate Initial 9 Final §
fo1 0.000 (.9455
i 11 0,000 —0.0885
Gy {.000 —{0,0417
Es1 0.000 0.0007 0.219x107 0.130x 107
ot 0.400 0.9455
B4 0.100 --(.0385
3
Paq 0.200 —0.0417
Pay 0.100 0.0007 0.148 x 107 0.130x107
:
641 ~-0.100 —(0.0385
3
. » B9y —-0.100 ~(.0417
Eaq - 0,100 0.0007 0.198 x107 0.130x 107

8 is the residual sum of squares {(equation (12))

——

Table 8 Samp'e STACF of the generated residuals

wl

oo 122 &8 0 1 2 3
1 0.0572 0.0575 0.0620 0.0609
2 0.0128 0.0060 —0.0079 —0,0020
3 0.0084 ~0,0093 —0.0171 0.0022
4 ~0.0427 —0.0404 —0,0456 | —0.0487
5 —0.0514 —-0.0501 —0.,0385 ~0.0447
6 ~0.0182 —0.0267 ~0.0292 —0.0190

Table ® Port Maniean test on the generated reslduals

_

Bpatial lag Port Manteau
(8) statistics
0 7.52
1 8.21
2 7.50
3 7.5

Chi-square

statistic 0,05 Remarks
26.3 Accepted
28.3 Accepted
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