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Abstract

We prove that Lin Qun and Lu Tac’s splitting extrapelation method and correction method ean

e offectively applied fo raise the accuracy of the numerical solution of elliptic boundary vaiune

problems on general regions, i.e., t0 obtain approximate sclutions with fourth- or fifth-order
 precision in the maximum norm.

§ 1. Introduction
The SO].‘[I‘IilOIl of the linear elliptic boundary value problem
7, 'u"(m) o I Y
{Lu(m) =3[ai(0) T4 b(a) 5 [Hdlaul@) =f(e), 2€0,

\
w(zw) —=g(a), mEBQ
by the finite difference method has a2 long history, see, e.g., [1] and rferences
therein. It is well-known that there are many methods, based on the asymptotic
expansion, for acceleration of convergence, but the one for problem (1) was obtained
by Bohmer' only recently.

In thig paper, we firgt give a gimpler proof of Bohmer’s result. Then we
explain how to obtain solutions with fourth- or fifth—order precision by the gplitting
extrapolation method™’. Finally, based on the idea in [8], we formulate the
correction analogue for (1) and prove that the approximate solution has fourth—order
precision. |

The gplitting extrapolation method™’ can save much computational work and
gtorage in comparison with the nsual extrapolation along all variabled, for it is
egsentially eqmal to the procedure in which the one-dimensional extrapolation ig
done N times, where N ig the dimension of problem {1). Moreover, it is appropriate
for parallel computers. The correction method hag the advantage that fo obtain a
more accurate solution, one does not need to solve the original discrete problem on a
smaller mesh, but 10 solve another discrete problem on the originsl mesh, which is

easier.

§ 2. Formulation of Difference Analogue

JLet us consider the numerical solution for (1) in which Q is an arbitrary
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bounded and connected region in the N-dimensional Euclidean space BY. To define
the analogue, we first introduce the following notations

ey, J—th unit vector in the j-th co—ordinate direction,
h>0, the StEp}___N={1,; 2, wu, N}, i
2=10; F1; 22 wopy _
N,=QN{zERY: o;=hn;, ;€ Z, Y€ N},
Gh={xC Ny ot he;EQ, VjENT,
¢ i Q;:Nﬁ—*ﬂh. ' 5 j
For every #& @}, by notations we know that there exist a non-empty subset
T=T+)I- of N such that x+he;ER, Vi€ I, o—he;€Q, VJE I and athe, €02, VIC
N—I. We assume that 8Q is smooth enough and h is so small that we have
o— (v—1) he;€Q, v=2, ---, k, VJEI* and & +(v—1) he, €0, vem 2 e B, VIEI.
Moreover, for any 7& I*, there is exactly one intersection point @ (1—sf)he;, 0
st< 1, of the line segment from z 0 =zt he; with 8Q2. Taking &€ (2, we let 882, be
the set congisting of the intersection points.
Now, we define an operator Ly F—F,, where Fr={u: N o0, —> R}. For
every € (2, let

- g e | _
. N
'. Ly () = —‘;’:—5 E a;{ ) [z;h(m +hes) — Quh{m) +u, (s —hes)]
+ th g bi(2) [un(@+hey) —up(@—heg)] +d(@)un(e)- (2.1)

For every o€ 8Qs, Lnyus(2z) =us(2). Finally, for overy o€ &, we still use (2.1) to
define L;u:(2). To this end, noting that 4+ he;€ Q, Vi€ I*, we replace uy(@:khe;) in
(2.1) by | - 8

k—1 :
wp(wthes) =of (ot (1—s7 he; ) + ; of un( @ T vhey ), (2.2)

where
k | .
ata=bt [TIA=3), afy=(=1"*5/(o+1-8}), (2.9)
. e .

which is meaningful from the assumptions. Thus, Ly is well defined and we obtain
the discretization problem corresponding to the continuous problem (1), i.e., the
difference analogue |

L () =f(z), €U,
2.
Jl up(w)=g(x), >EC. | -

T+ should be pointed out that the discrete problem (2.4) is essentially the same
ag that in [1].

§ 3. A Priori Estimate for the Discrete Problem

In this section we rewrite the resulis of Bramble—Hubbard™* in a more
convenient form for our use. | '
We express the operator L, as
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#EA U 28

Let S, be any non— empty subset of N, 1002, and o S,,—}R Write -
MNal 282p+ (3 . 2)

Now let ug congider the necessary condlmoﬂﬂ for: a.pplymg Bramble—Hubbard 3
results on the operator L,

Lhuh(w‘j o 2 ﬂ-(mr y)ﬂﬁ-{?) ' o (3 -1)

li Un ) m“max o(2) ], l vl = | A

oz, ©)<<0, Vo & QU 2, - (3.8

(@, ¥)=0, Vy#az, Vo€, vEN,, (8.4)
jo(, ) |2 20 |olw, ¥)|, Vo€, yEN,, (3.5)
33, 0<<8<1, such that |
b o(s,2)' > H |o(z,y), Ve€Q4 (3.6)
I e

 Here the validities of (3. 5) and (8.6) clearly mply, when % ig small enough,
that - -

| h"’\a'(m X)) ==g9>>0, VmE.QhJ__JQ

where g, is independent of A. For this we may write those results in [4, Theorem
2.1] as

Lemma 1. “Let the ﬂﬂnd@t?mm (8.3)—(3.6) are mZ@d when h 48 smmu encugh,
then if |vn).0,=0 and k is small enough, any v, € F, satisfies the key estimation

Josl <O Lnvn} 0,7 Lnen ] o, ), (3.7)

where O denoles some constant independent of h. Such constants will elways be dencted
by U, though not necessarily the same at each ocourrence.

Y 4. Asymptotic Expansion of the Discretization Error

Lemma 2. Let s satisfy 0<{s<C1, then the linear equation

{I_l'l"l_‘lﬂ —+ 0y + R +05;r¢_1.= 1_.,
S0_j-+aog+ 20+ "]'kﬂﬂk_i;" 0,

(4.1)

llllllllllllllllll

b+ oo+ 2% +- -+ + £,y =0
have exactly one solution

| % - &
a.3=k! /[[{(T—s), aﬁ=(—1)"+]< l)s/(fu-{—l-——s), D<o<<k—1
1=1

P
and

Gk, )>2, 0<k<4, ¥s€[0, 1),

p(h, T)<-1, k=5,

k—1 :
wlheic Yk, 8)=1+]ap| — 21 ap| (Pp(0, s) and P(1, 8) are naturally regarded as 1
cand 1+ |agl|, respectively).
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Proof. By means of calculation of Vandermode’s determinant and Cramer’s
rule, it is obvious that (4.1) has exactly one solution and the solution has the given
expression,

For the rest part of Lemma 2, we may suppose that 4>2. From

s | § — I
Wi o 1—3(1) E( v )‘”"‘1—3 *—"=21( v )"H’l
1

1 7 = k—"-l
1 k[ stk [ 1 ar—k| 1 [Eﬁ( ] )t]dt

+kﬁ [122 ( k;:t )  |at
=1—kj: (4~ —1) [(148)*2— 2] dt

we may congider % as a (ontinuous variable. It is easy to see that :p;(.?c, 8) <0, that is,
(%, 8) i a monotone decreas;ng function on %, so we only have to prove B4, s)>

1/8, ¥s€ [0, 1) and ¢(5, -—%—)Q —1. In fact, we have from (4.1) that

k—1 k—1 k—1 k—1
B (k, s}=1—an—%§a,, +1§ﬂ:u=ﬂ_1 £ 2%& ﬂu-—-z'—Q% [Gyl:
i 4 .

therefore

b(4, s)=4!/£]1(l — £) et

..33-——2%[24—83(1—3)(2—3) (4—8)]

1 — — . a l
}:«g[S s(1—s)-2 4]}3..

We also have
£ g(z—%) b (5, L) <60—10- f:]l(z—%-)g — 40,

The proof of Lemma 2 is completed.
. - N
Throughout this paper we assume that ay, b5, ¢, f, €0 (), I?i? mélﬂﬂ a;(@) =

a>0, d<0, and there exists exactly one solution for problem (1) and u, the unique
solution, can be extended to Q" such that u € 0**(Q"), where £" is some open region
containing the set QU {z +1te;: s €Ny, [E|<h, JEN}, ¢>2, O0<a<l. These
assumptions are guaranteed by [6, Theorem 6.19 and Lemma 3.7] when

as, by, d, fE02H(Q), g€ 0™ (9Q) and Q€O

In the end, to estimate the truncation error by Taylor’s formula, we always suppose
that the line segment from « to y is ingide the region Q.

Under the above hypotheses we have

Theorem 1. Let the fiwed k satisfy 0<k<4, then there ewists ho, lo>>0, such
that, if h<ho, the disorete problem (2.4) has a unique solution Uy and the disereiizalion
error g (x) =up{ @) —u(z) admits the esttmaiion |
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L= s

'I Bh” < (Opwin(2, k41, q—ﬂ-f-u)' (4 : 2)

Proof. Using Taylor’s formula in every direction, we obiain, for any z € &,

Lyn(2) = Lu(@) + 2] (o). E (2«%)1 D***u(2)

N [ - h2p
g § iy oo sty

in which the ferms containing 2™ should be considered as O(A772**) when m>=q—2
+a. For every o€ &}, because of Lemma 2 and the fact u€ 0**(Q2"), we deduce, for

any j& %
k—1
u(zthe;) =oi_julawst (1—38F)he;)+ g of u( @ T vhey) +O(A**1). (4.4)

Hence (4.8) is also valid for every o€ £}, but for this case the 0 terms should be
O(pmin¢-l.g=3+e)  Jf the conditions of L.emma 1 are valid, these clearly imply
Theorem 1. It ig easy to check conditions (8.3)—(8.5) when A<a/b, where

N
b=maxmax |b;(x)] (mmay be zere). So in the following we only have to prove that

i=1 zefl

condition (3.6)4s valid.
Let € @2} and h<<a/b. Since a;(2) £ -g-b,(m);(], a;o<0 and of; >0, by definition

we have
Wole, =)= _JE;—I [2a,(2)] + Fd(=) - .f§+ { 204(a) +[ () +'% 5!(@]&;&}
s E‘_{ 2a;(@) +[ a;(z) —-% b,(m)]a};n} (4.5)
and

B 3 oG, 9)| = 3 [2a2)]
+ 34 @)~ 2 by(@) |+ as@) + L 1,0

)

21
+ S a@+5 00 |+ @)~ L b@) | 3 Loz .
(4.6)

For k=0 or 1, it is irivial to prove (4.6). For £>>2, combination of (4.5) and
(4.6) leads to

2,

3{ 2a;(x) +[ as(@)+ -% b;(m)] oo ] }
 sa@Fha@ @ E @] S el (4.7)

x—1 k
To prove (4.7), noting g ey | < 2( )izﬂ’- and the definitions of ¢ and b, we

only have to prove
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' o E~—1
2+_\ﬂf0|‘—hmﬂfﬂl/ﬁ}1+g |ﬂfu|+h£1+2k)b/{3. | (4.8)
Taking he>>U such that fo(1- 2% 2“1)6{:%2- @, then when h<h and Laga | 25,
the left side of (4.8)_}2#—%— late| =2+2% but the right 'side£1+2fﬁ+%-; vhen

h<<h and |ods| <2¥*% by Lemma 2 and the choice of ko, (4.8) is also valid. This
completes the proof of Theorem 1. # | T
Theorem 1 asserts the convergence of the approximate solulion. Further, under

the same hypotheses, we have |
Theorem 2. Let 0<<k <4, then in the mamimum nNorm el =
asymptotic expansion
u(@) =un(@) +hes (@) + Bley(z) - O(pmindrla-atay) (4.9)
holds for @ € N4l 0Dy, where €& ge-2vta( Q) (w=1, 2) are functions independent of R.
Proof. For k=0 or 1, (4.9) is naturally regarded ag
U= _I___ O (h‘minﬂt& 1, {I—E-l'ﬂ’r)) ;

which ig the assertion of Theorem 1. kor k=2, we may suppose g=>4. By [6] and
the fact u & G"?‘L”(..Q“)’ the equation

* UN,J,U 24 ihe

ea( @) -EO, of
has a unique solution 6960'3‘2*‘_“(5_3) and it can be extended. . Let g =u— Uy — h7e..
From. (4.8), (4.4) we have | A i
Lyeo(@) = Ly — L — B s — R*(Linea — Ley) = O[h“”lil_‘(‘*"'?‘?"‘“}) , €0,

L,eo(2) = Lyu— Lu— A% fa —12( Lyes — Les)+0 {h”‘lj o= O(hm“““‘i' p=24eY) g € Q.
Therefore, by applying Lemma 1 t0 &, (4.9) is valid when 2<k<3. Finally, for
k=4, we may suppose g=>6. Proceeding as before, iliig easy 0 find the desired e, t0
be the solution of the following equation

-

Leézgzmj(l ; -+-i1—'1};ag)+bj (il;};);u-ﬁ_l_mu), 0,

6! D! 31
' il - B,
which implies that the proof of Lemma 2 i8 completed.

Remark 1. When k=5, we see from above proofs that the conditions of
Rramble—-Hubbard’s results are no longer valid. In this sence, Bohmer’s result ({1,
Theorem 21) is best possible, that is 1o say, Pe-ryra—PrDsk_umwski—Widlund’a
conjecture ({9, p. 01) is perhaps not true. G ~ " e

§5. F ﬂurthl—' ﬁ.nd Fifth—ic;rdef Formulations
of Spliting Extrapolation

For gimplicity we used uniform mesh formerly, but if we let hs be the gbep of
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e

%

the j—th direction, A=max &; and IL,;:.,», dencte the corresponding discrete operator
joml

(L, sn, =Ly when py=--- =ﬁN) then we 813111 have gimilar results. In fact, we again

have Lem mia 1 from the proofs in [4] Thus the proofs of Lemma 2 and Theorem 2
1mply - -
 Theorem 2'.  Let O0<k<4, then there ezists hn}ﬂ such that, if h«::hu, the

discrete equativn (2.4) im which Ly f.r*efplrzced Ewy L,,, . s umgua solwt'zm *uh e @
the msympiaﬁw wpmmfwn

=+ 2 h?eﬂ.,+; Hew ORI a-312)
holds where egy,; € 0T 24( Q) (j=1,-e+, N; v=1, 2> are snlntm@s ”f |

Leﬂi.f.= 4' ﬂ;D;H—l— 31' bj-D?'u, _Q: gt
N . ﬂﬂ,;eﬂ o83
and | .5
Ley, ;=2q; (_f:il_f ut TI"";_,.DJ*EE;J —l—b,;( 1 .Dju +§1‘ Djﬂﬂ,j Q,
| 34.5=0 ol '

respectivelsy. »

Theorem’2* ig the basis of extra.pﬂla,’umn By th]ﬂ and the splitting extrapolation
method'™ we obtain |

‘-1-{4;]u,,;,..._;,,,ﬂ,.';.,h—‘(4N-3)u,,1,..1,h }='u+0(ﬁm*ﬂ<4=-k+1-ﬂ-'ﬂ+ﬂ>) (5.1)
which gives an approximate solution of (1)} with fourth-order preclsmn when 3<k

<4 and ¢>>6. Further; when k=4 and ¢:>7, both

%{64 é Upyy oy By /4, ...,5ﬂ—20 ;—21 Uy, a by /20 ...,jl.N—I' (45"'— 44N)uh,...,hm} = H"I—O(hﬁ) (5 . 2)

and
1 N N i s | e
120 {243 Euﬁ“ vl by 128;‘%%"’“ s W/ By ors By + (120 e 116N )uy,, --m,} =u-+0(Ah*)
' (5.8)

give the approximate Enlutinns?ﬁvith ﬁfth—nrd'ej:_l precision,

} 6. Fourth-order Correction Analog-ue

Based on the idea in .{8], -we hawve for prnblem (1) the correctlon ana,logue

Lﬁuh*f+hﬂ'§[%ﬁgd Hh—l——?’l— b,dgﬁf‘&h 'ﬂh_ i

Lhu: .___f} Qi, (6 " 1)
l M;:=g, 393’1»:
where the discrete difference operatorg d;, d! and §; are defined as

32, = b3 2w+ hey) — 274(2) + Zo(w— hes)],
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W T e PO R e = oy

 di=didl, .
8;Zn=(2h) [ Zn(@+hes) — Zn(2—hey)]

in which Z,: {s CRY: ¢y=nh, ns€Z, YJEN}—> R ig any mesh fanction. By above
definitions, dtu(z) and d38a4(a) both use the value of u, at the points mt2he; I1f
some of these points are out of 2, at which the values of u, may be replaced by the
right side of (2.2), then (6.1) is well defined. We have

Theorem 8. Let 0<k<4 and ¢>max(4, 3+ [N/2]) then, under the baste
haypotheses made before, there evists hy>>0 such that, if h<<ho, (6.1) has unique solution
u, and u;, satisfies S |

- ur=u-+O0(h!) T W e - (6.2)
on the mesh set N, 04, in the mazrmum norm. |
Proof. Taking into account the corresponding (4.8) when 2 C ), we deduce

Ly(u—up)=0(A%), 2. (6.3)
So by Lemma 1 we only have to prove - R
, | Liu~u)=00Y, @ (6.4)
Further, noting (6.1) and (4.3), we only have t0 prove
»
# Diu—dju=0(h%), Q4 (6.5)
Diu—d38p,=0(R"), O o - (6.6)

These are the known results in [11, Theorem 4.1] or [6]. The. proof is thus
completed. | ;| " CowEE & o

| Aﬂknﬁwkdg.emﬂt The author wishes o ﬂ}&ﬁk advisors Lin:QuI;L and Lu Tao
for their guidance and encouragement,
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