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Abstract

The linear nornconforming element and Wilson’s element for the obstacle problem are corsidered.
Optimal error bounds for both elements are obtained in the case of regular subdivisions of domain &
in B3,

S Abstract Error Estimate |

' There are ‘a number of wurks in the analysis of finite element methods for
variational inequalities (o.f. [7] and the references therein). Particularly the
analysis of F.E.M for the obstacle problem has been studied more or less completely
(c.f. [2]—[9]). ALl these analyses, however, are related to conforming {inite
elements, except for the mixed type'®.

In this paper, we will analyse two nohmnforming finite elements for the
obstacle problem. We first show an abstract error estimate, which is similar to the
Second Strang Lemma™, Next, in § 2, we will analyse the linear nonconforming
element approximation to the obstacle problem. Finally, in § 3, Wilson’s elemont
will be considered for the obstacle problem.

Let 2 be a convex domain in RB? with piecewise smooth boundary 00, X a

.|, K a nonempty convex closed

subset in X, and a(+, +) a continuous, X-elliptic, bilinear from on X' XX, f&

'—the dual space of X, with the duality pairing <., > between X " and X,
The abstra.ﬁt Varmtmnal mequahty considered is the following:

{ﬁnd v € K, such that
a(u, v—u)={f, v—u) VwGE

The solution of (1.1) will be approximated by the finite element method ior a
regular subdivision. For each 2>>0, let .75 be a regular subdivision on Q' @~
U 7z, X, be a finite element a.pprﬂiimafe space of X with [l (either

TETr

conforming or nonconforming, i.e., X ;,CX or X,& X respectively), and K; be a’
convex closed subset in X3, as an apprommatmn of .E' Then the approximate
prob]em of (1. 1) is the followmg

(1.1)
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{ﬁnd u, & K, such that (1.2)
_ﬂh(ﬂh; Un— u’h) ?f“:f: Uh—Unon VO E Ky, -
whers ? ; :
@y Uy, ’Lh) 1_2 ﬂ(‘uh.n %H):
<f: Un h_TZhg\'n 'Uh 'F>:

and uly, wa|s and fl; are the restrictions of ¥, v and f on the element =
respoctively.

Throughout this paper we will use the notations of Sobolev gpaces H™(Q2) as in
[1] and we assume that O i3 a generie constant, which may have different values in
different placey, if not specifically indieated.

We have an abstract error estimate, similar to Second Strang Lemma™’, as
follows: |

Theorem 1. Assume that ap(+, ) is a ccntinuous, X y-elliptic, bilinear form on
X% X, and u and u, are the sclutions of problems (1.1) and (1.2) respectively. Then
there ewists o constant C independent of X, such thal

[~ usfa<C int {uu—%uh 2 (%, Vp=th) = <F, th—ths } (1.8)
| . raCHy "uﬁ_'uﬁylﬁ
The proof is eagy and similar to that in (5], so it i3 omitied.

§ 2. The Linear Nonconforming Element

To begin with, we consider the cbgtacle pi‘ﬂb']em:
| {ﬁnd uE€ K, such that
a(u, v—u)={f, v—uy VeEK,

K={w€ HI(O): 9= a.e. in Q, rv=§ on &4}, | (2.2)

(2.1)

where

a(u, m)=j (VuVo+u-0)de,
(2.3)
<f: ﬂ:”-_"[ f v dw

and 1€ Lﬂ(.Q), g, W E H?*(Q2), g=y on 24Q.

We now solve problem (2.1) using the linear nonnonformmg finite element
approximation. Let B, (1<<4<<8) be the midpoints of edges of triangle v& .73, and
X, ke a space consisting of the piecewise linear functions with nodes at B;, whmh is

| Crouzeix-Raviart’s element space (r = 1) Le’n K, ha a
P 8 3 cﬁnvex subset of X, as follows: '

-/[J\_m i = {* € X;: v*>= at the nodes in Q" w" g(Pm) o
* oo . at the nodes m on 82, | . (2.4) |
| : ‘where P,, is the intersection point of 2Q with the outer

g & normal at the node m on 2@ (Fig. 1)..

The linear nonconforming finite element a,ppromma,twn of (2 1) is the_
.f{}llﬂw.mg s
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{ find «*€ K,, such that | | (2.5)
a(u®, v*'—ut)={f, v*—u'ds W" € K, '
where
| @n(e?, ¢*) = (‘?u Vol da -
5, - (2.6)

<J, Wh>n='[m_f'--u“ de.

|5 in X, is defined as follows: Yo' € X, -
| [ 3= =2 |71~ (2.7)

Tet II: H? (Q)—} X, be an interpolation operator defined as follows: for aﬁy-
given v€ H?*(Q), we define ITv& X, such thai
(D) (By) =v(B;), 1<i<3, YrE€ET . (2.8)
Then due to the well-known results in [6], we have the following error estimaltes:

Lemmal. «o¢c H'z), |
|0~ I |, <SCR ™| 1,5, m=0,1, 2. 1=2, | (2.9)

and | i - "
_ _ . ‘lw_ﬂﬂﬂhgt}k!@[mﬂ V@GHE(Q);”_. - (2.10)

where 11 Tw=-(ﬂ'ru) b
Let ¢! be another modified linear intorpolation of » € H*(2), which is the same

as ITv excopt for the boundary nodes m € 22"

vi{m)=v(Pp). - (2.11)
ThenwEKhlfquI{ Since for v & K, |
(Hv)(m)=2(m) ¥ boundary nodes m € 0824, (2.12)

then in general v c K, .
Using the technique as in [12] for the analysis of Orouzmx—Ravmrt g element

{r=1), we have-the following
Lemma 8. There exis's @ constant C independent of h, 31¢ch that

U “""h” VWEEK;., (2.13)

J‘ O, 1= (1l ’*)d'}"ﬂim&'u\ 0|

TE N,

where 9, denotes the outer novmﬂl derivative npemtm'
We now will show the error estimate of the linear nonconformmg elament for

the obstacle problem,

" Theorem 2. Assume that fEeL?(Q), &, g& H*(Q), u and ¥* are the solutions of
(2.1) and (2.5) respectively, with w€ H*(Q2). Lel Q2 be a convexr domain im B with
Lipschitz boundary 0Q, and T3 bs a regular triangulation of Q. Then there exists a

constant C dependent on u, @ and f, but independent of h, such that
| Hu | p < Ch. T (2.14)
Proof. Bv ;) Well—known result, the solution « of (2. 1) Sa‘bmﬁ&& the following
problem: . o B _ - | _
{ -—dti—l—u—*f?{], (—dut+u—7f)(p—u)=0, a.e. in (2.15)
u=gonold. . o ‘ - | N e
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Since u! € K, from Theorem 1 we have |
- ' r_ " S
uu—-u"n,qo{uu-u’uﬁ an(u, W) —{f, ¥ "% 7:‘“}. (2.16)

2’ —u*|
Let us estimate the first term on the right side of (2.16):

o — 2 | p=< tu— Hufpt+ | Du—vfn (217}
From Lemms 1l (c.f. (2.10)), we hmra

Let .77 be the set of boundary elements 7 (¢.f. Fig.
2). Then from the definitions of I and ', we have

| o — | = 2 [Tu—]2e.  (2.19)

On 7', we have
(Hu—u) (@) = (Hu—u') (m) * pim(2)
— (u(m)—u(P) pm(®),  (2.20)
where w, is a linear interpolation basic funetion on 7/, such that pm(m)=1,

pm(B;) =0, =1, 2. Since the boundary 9£2 is piecew. se smooth, [Pam|< OR? (c.i.
Fig. 2); then from the imbedding theorem [1; Ch. 5.4, case B]

| (Hu— u’)(:n)|~§0j‘ 1'\7’u|dt€OIPmm]3"“'(J__I‘i?u]‘dt)

< Ch32 |t | wanFomd <CR*3|us,0,

from which,
| | T —u |3, - < OR| (2.21)
Similarly, from (2.20), we have |
[N (e D) (@) | < |ulm) —ulP
< Ch- ijm Wumtgcrh-iw hmuuug,g,
from which,
| 1T~ %Ill,w‘éf}hﬂ“‘u"z.n | (2.22)
From (2.19), (2.21) and (2.22), we have - |
| Tu— wﬂn‘éﬂhdul‘m . @)
B};r (2 17), (2.18) and (2, 23), we have = 5 ) " _“ :
o fu—t h<Oh|ulsoe. . - {(2.29)

We DOW eatlma’ue the amohd term on the« nght snie of (2 16) ; by ase of Green’s

form‘ula, as follows:
(U, u'— u¥) — <f: U *"“'B}h

- j [Vu-V (o — o) +,uh-i(u1'l.71})]d_m1—jﬂ fo (o — ) da

TE T

= [ (—duru— )~ u»)dm+2j e~ ). (2.25)

TES,

Taking Lemma 2 into account, we need to estimate only the firsb term on the right
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T il = T Al i ; ST 5 CrC— : e R — T——

gide of (2.25). Let w= —du+u—f€ I2(Q2); then

jm(-—ﬁlu+u— ) (e —w)do

={w, w— Uy =<w, Hu—u*pp+ S, uf — Hudy, | (2.26)

From (2.21) and the definition of «', we have |
- w, v —Hudy| <[ w]o, 00 ' — Hu|o, 00

- [wlo,0 (TZEJ‘HE’—— Oy, ¢) Y 2<CR? | w

Applying (2.15), we have | | |

<, Du—v¥h=<w, I (u~p) — (u— )t Cw, u—ds+<w, Th—ds

|0.0°

"Hlug, '+ I8 (2, 27)

=, H(u—yp) — (u—y)n+<w, D~y (2.28)
Due to (2. 9), then | |
<‘H-': I (u— ) — (u— ) [0, 0
Q’Uh“[[ |lu—4r|2,0. (2.29)
The second term on the right side of (2.28) can be written as
G, Ti—1op = S, =%+, T~ i, (2.30)

Since w>0, a.efin Q, and ' —w*<0 at the nodes on £* and §’—u* is piecewise
_lmear 80 |,b'I —u*<0 on £* Thus {fw, o’ — u"};.%() from which and (2.21) we have

{w, MPp—h<lw, Df—Pm<|w]o,a> [Ty~
- <OR|wlo,0t |#]aa | (2.31)
From (2.26)—(2.81), it can be seen that

]u,nr-

[ (-t u= D) =) ao<OR [wloallulaot IWluake  (2.52)

Il*mm (2.25), (2.82) and Lemma 2, we have
ay(u, ul —u*) — (f, U ——u"}y@@hﬂ—kﬂhuu — [ 5, (2.83)

“where O’ is a constant dependent only on f& LX), i, wE H? (.Q)
If ju’ —u*|s>~, then from (2.33),

oa(t, o0 =, iy gah (2.34)
. : “H. — lh* . _
“from whlch and (2. 16), (2. 24), we can see - -
|]u (72 |lﬁ€0h

If ||fu:r u"ﬂ;ﬁh then from (2.24) and the triangle inequality,
[2— u"]l;% |2e— uﬂj;—kﬂuf u’*[].ﬁﬁh

Thus the proof i completed

Remark 1. It should be noted that for a triangular subdivision the number
of midpoints of all edges is nearly 3 times the number of all vertlces S0 the resuli
<f Theorem 2 is of interest only in its theoretic respect.
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§ 3. Wilson’s Element

In this section, we will consider Wilson’s element approximation of problem
(2.1) on a rﬂﬁtangular domain Q in R

- Let 2 € 7 be a rectangle, whose vertices will

" ok, be denoted by @, (1é<4) (Fig. 3). By.the same

Xy

T H__I notations ag in [5, 10, 11], Wilson’s element (7,
¥ 5 D, Bu), V¥ €T, is defined as
0y ———F————— 1€ 2hg
| _. S
" " o Z={pa), 1<i<s
] | o |
0 % - (4 /hats) | oupde, 1<8<2}.
Fig. 3 | ”Then for any given pEP;,‘ we have
v S . 2 |
p(e) =2 pla) p(2) + 2 9 2)9i2), (3.1)
where - y | s
j s e T4 —C1 . ¥g—0Cg
p1(2) 4(1_+ hn )( " ks )’ = =
< ”_""."".'--* ..... .'”I ..... | N o | g (3_2)
oLl By f=a)
hﬁé(m) 4 ;(—Li _!rij_ : )l\l f?.-g ),
— . ﬂ - X A o )
g;(m)=%[( 5 5.} <], deplyl oY
' hZ { g 5 B ] (3‘3)
o(p) =50 | fupds, 1<i<2, '
- ey & F c .o
G=EEE{. (3 4)1
- _ g | & i : '

Let the interpolation operator H : H ﬂ(r)-—} Pr be deﬁned ad follows: for each given.
vE H(7),

r“=ﬁ@(ﬂ0ﬁ(®+é§h(v)q¢(m)- o (3.5)

Let X, be a piecewise pnlynomml gpace ﬂonmstmg of above Wilson’s rectangular-
elements (7, P, 25) VT ET 3, = S [-15.)¥3 Since XL H(Q)N

0°(Q2), Wilson’s element is nonﬁéﬁ'fbrming. We congider approximation of the.
obstacle problem as follpws:

{ find Up - K By SHG]J that
ﬂa(uh; Wn"“ﬂw = <f.- Uh— ub)ﬁ- V"Uh E Kﬁ,

Lt

(3.6)
‘where L, __ 5. . _ S
Ky={mcE -X t Wh(ﬂ*i)-{.f}",b(_ﬂi); lﬁrﬂﬁ 4, @i-('”n} ‘C‘;@’i(lﬁ)} 1<@<2;

Vi €T (@) =g(Q) Yhoundary nodes Q€oQ}. - (8.7).
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We also assume that the subdivision .7, is regular and the inverse assumption
holds, i.e., there exist o, vy =const. >0, such that

hy<SOhy, h<vh, YTE.ZT, h>0, (8.8)

where A, and k. are the lengths of longest and shortest edges of = respectively and
h=max A,.

FTET,
In order to get the error estimate |u—ul,, we need .

Lemma 8. Let another interpolation operator I..H2(z)-—>P, be defined as
Jollows: for each given v€ H3(7),

o= 3 o(@)pi(@) + 3300, 4)-0ia), (3.9)
where | o
Dy(v, ¢)=min(g;(v), g()). (3.10)
Then -
ol L,0)=Di(v, $) <), T w(a)=v(ay). (8.11)

And if vEK, [Tv| =M v, then

IveK,. | (3.12)
The proof is easy, so we omit i,

It should be noted that Lemmas 1 (for =2, 3) and 2 are algo true for Wilson’s
element (c.f. [5] and [12]).

From Theorem 1 and Lemmas 1—3 for Wilson’s element, we derive the
following error estimate:

Theorem 3. Assume that FEL*(Q),  and g€ H*(2), u and u, are the solutions
of (2.1) and (8.6) respectively, and that hypothesis (8.8) holds for subdivision ;.
Then there exists a constant C independent of k, such that

ju—un s <OR([wlo,0+ |u]s, 0+ |P]aa), (3.13)

w=—dut+u—f € L*(Q). (3.14)
Proof. From Theorem 1 and Lemma 8 we can see that

where

Hu—u,.ﬂh-(ﬁ{ﬂu o e Bl Do - 04, ﬂ“"”*t}. (3.15)
1 Hu—ﬂ.h[l;,
Let us first estimate » _
Ju— T = (ﬁzﬁ |6 — I |3, )22 (3.16)

Due to Lemma 1 and the friangle inequality,
”H-.ﬁ'.;u”i,fg “u_‘ﬂfuﬂl,f_l_ “ Hfu_ﬁfu”j.rf

<Oh|ulg s+ | Hu— T u|y, (3.17)
And from (3.5), (38.9), we have

1.7

10— o], < 3 () — BuCa, )

¢4

< 33K/ haho)

Lan(u —dde| g1,y

'G;'Gh]u—xﬁg,f-gﬂq;ﬂhf. (3.18)
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It is easy to verify?thﬂ,ﬁ : .
e

r _ ) ' :ug oo g B3
{H Qil ﬂr"F (hikﬂxgo) (3.19)
| , 1q411fﬁ=(ﬁahw’12hﬂ)”ﬂ é=1, 2. |
Thus o o z\“ﬁh 1, TQO(G') ‘v’wEfﬂ. | N .(;3..20};
From (3 18) and (8.20), we have . = | s ®e £ OPEY § ¥ g
: . L "H u_ﬂ‘fuui,-rﬁah( |’u'|ﬂ,1;'+ Ilp‘ﬂrf)j we i ' (3.21}
from which and (8.17), it can be seen that e e Y% gt
- 1 “'H-""HT‘HH:L 1-'550]3( |% | 2,5+ !'plﬂrf) (8.22)
Thtua we have, taking (8.16) into account, :
o ju— f | << OR( | 8] 5.0+ P, 3 (3.23)

We now estimaje the second term on the right side of (3 15) by use of Green’s
formula: . _

ax(u, ﬁu—m) —<{T, ﬁu—nh}'

:{ [V V(ﬂu un)—ku(ﬂu m)]dw J‘ f-(ﬁu-'—:é:};jd& _'__

'.l'-'tf:.ffa.

=J( du+u— f)(ﬂu. up Yo+

CTET

Srﬂ*(ﬂu—-uh)d-}’ (3 24)
Le.t W= —Au+u-— f& Lﬂ(ﬂ) Then the first term on t]:ua righ’ﬁ gide of (3 24) ig .

J( du—l—u-~f)(ﬂu uh)dm_

= <w, Hu—tyy=<w, fTu—u>+<w, u— u,,> 4 (3.25}
From (8.5), (3.9) and (8. 19), we can see that '

hH,F“-H.—-HTH llln,TLQ‘Eli Py

'S;Ohg_iu_'piﬂﬁn VTE’L?_M

from which

| | Fu—Hulo,o= (3} | Fau—Loulf <O lu—dlaa  (3:20)
Thus " - | |
<, Fu—ud|<|w]onr ﬁu;-ﬂu.i“.g,nlgmﬁnéwh,;'m-—mg,,,; U (3.27)

The second term on the right side of (3.25) can be written ag
(o, Mu—tigy=<w; T(u—p) — (u=)>+<w, u—dp+<w, Tp—w).  (3.28)

Since (2.1B), {w, u— > =0. Due fo €Ki, H<u, and (2 15} fw}ﬂ a.e. in 52 S0
(w, T —uyp<0. Thus from (3. 28) and Lemma 1 we have

{w, Hu—upy<s<{w, I (u—1r) I_(H-f‘lf.l)_)'ﬁahﬂ"wuu*n fu—1 |2, 0. (3.29)
From (3.27), (8.29) and (3.25) we can see -

J N —dutu—j Y(Hu—us)de<Oh*|w|o,00 |u—y |20, - (8.30)
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from whmh»and (3 24), by Lemma 2, we ha.'lire
cz;.(u, ffu— u;.) S, Hu Up)
<OR|w|oar [ u—1P |00
If | flu—uy|a>>h, then from (8.31), we have
(e, Tu—w) —<f, Buwd
| It =1t
from which and (3.15), (3.22), comes

uu—ﬂnﬂh'%ch(u‘W[lu,n"i‘ W]ﬂ.ﬂ"i‘ 14’ \ s.n)-

If | Tu—wu]a<h, then by use of the triangle inequality and (8.23) it can be
seen immediately that

[t —upll << |06 — Il 3+ | Tt~ uip |y <<0h( | %] 2,0+ | ] 2,0).

Remark 2. For Wilson’s finite element approximation to the obstacle
problem we obtain, on the one hand, the convergence rate of order O(%), which is
optimal due fo the recent result in [18]; on the other hand, a number of numerical
experiments show that the approximations of Wilson’s element are heltter than
those of the bilinear element for second order problems™*), 8o we feel that
Wilson’s element ig preferable in the approximation to the ohstacle problem on a
rectangular domain,

(8.81)

n.n'l" ltﬁlﬂ.a):

[ﬂrﬂ'+ [u
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