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NUMERICAL ANALYSIS OF BIFURCATION
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Abstract

The paper presents some essential results of branch solutions of nonlinear problems and their
rumerical approximation. The general theory is applied to the bifurcation problems of the Navier—
Stokes equations. : o - | | -

§ 1. Introduction

The purposg of this paper is to study the bifurcation problems of the nonlinear
equation . - | p W
F (A, w) =u+T Q)G (A, u)=0 (1.1)
and its diseretized form '.
Fa(h, u) =u+Th(A)G(A, ) =0, (1.2)
where we assume that for some Banach gpaces }~ and W, {T'(A); A€ A} and {T,(A):
A€ A} are two families of linear bounded mappings from W into V', 4 is the discrete
parameter which tends to 0, and G'(A, «) is a nonlinear mapping from A XV into
W, 4 being a subset of a Banach space. |
We consider the bifurcation of the continuous problem (1.1) and the
convergence of its numerical approximations. The outline of the paper is as follows,
Section 2 is devoted to general analysis of singalar points of nonlinear mapping
F and parameterization of its branch solutions. In Section 8 we disouss the
approximation of simple limit points of #. Seotion 4 deals with the numerical
prediction of a singular point of . The bifurcation problem of the Navier—-Stokeg

equations is considered in Section 5 and Section 6 provides & numerical method for
computing its branch solutions.

§ 2. Simple Singular Points

Let V', W be Banach spaces, and A a subset of a Banach space, Suppose that
1) G: AXV—>W isa O™ (m>2) bounded mapping; - ;
2) T, Th: AXW—V are 0™ bounded mappings with respect to A and for any
fixed A€ A, T(A), Th(A) EL(W, V).
Define the mappings F, Fy: Ax V-V at follows:

4 Reca:-ived June 1, 1984.
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P, u) =ut-T Q) <G, w)+u,
Fo(h, w) =u+Th(A) <G, uw) +u,
where u* i8 a given point in V. | IR o
Theorem 2.1.™ Let A be a compact 867 and u(r): A—>V be a nonstngular
solution of F, i.e. | | | |
1) F(, u{d)) =0, YA C 4;
2 D F (A, u(r)) 8 an isomorphism on V;
8) u()) is @ O" mapping. -

If in addition the following eondiitons are satisfied:

(2.1)

i) limsup | AT (M) — DT (M) | =0, O<i<m, (2.2)
~0,AC A

ii) sup | DrTA(M) <O, U i3 independent of h, o . S (2.3)
Ac A _ . .

tFom there exist constants &, ko, K ?D; such that if h§ho, there 18 m-unigm O™ mapping
wn (M) AV satisfying:
Fﬁ(?"’: uﬁ-(}')) =01 -'

" A
 m—udl<e, o7 B
. iRl
| D= Du < E{ |10+ Z3] A LT (0 =T )G, u())] I

vah agd, oslism—1, . .- (2.b)
where |+ | stands for the morm of the Banach space that contains A.
~ Definition. A pair of (ho, o) € AXYV is called @ simple singular point of F if
(Mo, Up) Saitisfies: o i
1) FO=F (b, u0) =0, . e - (2.6)
2) T (ho) DG (ho, uo) 48 @ cOMpact operator and —1 i3 one of its eigenvalues with
algebraic multiplicity 1. o - | =T .
~ Denote D F° =D, F (Ao, o), and in the sequel V"’ stands for the dual space of V
and ¢, represents the dual pairing between them. k . W, |
Temma 2.1. Let (Mo, %) b8 @ simple singular point of F. Then there aré
(MY, (@133’ (p=1 integer) such thas o oy
D, Fp; =1, | =1, 1<i<<p,
Viﬁ-Ker(DgFo) = [p1, @3, " Ppl;

and (DuF) *QJ’: = 0: <';Dh *P?> = Sih
VgERﬂﬂgE(DuFO) e [';D;: ‘;D;: " i??;] -LI
V - Vi -'Ii- Vﬂ‘:

D, F° is an isomorphism from Vs onto Va,

where (@1, Pa, ***, Pp] 18 G linear space smﬁﬂ-ﬁd by @1, 3, Py
The proof can be found in [101. |

For simplicity, we shall write L= (D F°/Va) as the inverse ;-isom(}.]i'phism of
D, F° on Vy. Let us now define a projection : V—V3 by | '

p
Qu=1—2 v, )P
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Then the equation %3 2 & & o |

 FA, uw)=0'" (2.7)

is equivalent to the system T L

QF (A, u)=0, _.

” (I-Q)F (A, v)=0.

leen any (}% ) EA XV, there exists a umque dmompomtmn of the form:
A=kt SE€04], (2.9)
u=to+ou@i+v, oa=~{(o, >, a) ER?, vEV,

where [A] stands for the linear space spanned by 4. In the sequel we shall use the
Einstein convention. The first equation of (2.7) ‘becomes

B¢ & v)=0,
where F: [A]XR"KVE——}VQ is defined by iy o

F(§, A, 0)=QF (ho+¢, uo+a.¢:t+w)—w+f(§)@<s y ol
V" =@Q(u+u"), while 7, G are defined ag .
| T(€)g= QT(M%M, |
G, a v) = G(mo+§ ug+cx;qn¢+w)

By the definition of ? @ o it is elea.r that al] of them are O"‘ mappmgs and
Fr 0, 0, 0)=0, |

(2.8)

F o

D, F(0, 0, D) D,F?|, isan isomorphism of Vo

'I-Iere by applying the 1mp11{31t function theorem we gob
Lemma 2.2. Assume (Ao, %o) is @ simple singular point of F. sz@n there exist
iwo positive constants 8, r>0 and a umqu& om magppmg 2»:8(0; 3| [4]) xS(0; r|R?)—>

Vg such that - B
F, 'n:;' w@, o} )‘ =0,

2(0, 0) =0,
where 8(0; 3|[A]) ={g9c [4], |&| <38}, S(0; 'TJR"") {EER” [n:|<ifr} and if thers is
no confusion, |«| represents the norm in RP.

Now, solving equation (2.7) in a neighborhood of the Bmgular ponnt (Ao, Uo)
amounts tc the following eguation in a neighborhood of (0, 0) € (4] % R?:
(L —Q)F (Mot uotapi+v(§, a) =0 (2.10)
- Fo e, wotapit v, ) =QF M+§, wotap+2(E, o).
It shows that (£, «) i a solution of (2.10) if and only if
F(hot§, wotapt+v(§, ) €Va.

or

Let :
1€, @)\ [ KF (hotE, motapit+v(E, @), o>
FlL, w)=| ¢ - '- A
N SlE @) ) \KF (Mo, uwotapit o€, @), o
Then equﬂ,tmn (2 10) ig egquivalent to
f(&, a) =0.
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—

Ulearly, elementary calculation shows that -
f(0, 0)=0, D,r(0, 0)=0, (2.11)

We shall consider the approximate problem in the sequel, It i3 equivalent to the
sygtem:

{ QFT#(?“: H) ={}:
(I—-Q)Fp(A, u)=0.

By the uniqueness of decomposition (2.9), the first equation of the above system
becomes |

(2.19)

Fl(gj Oy ru) =01
where 74 [A] X R* X V=V 4 is defined by

Fi(gj o, ‘U) EQF?& (A‘OF!_EJ t'ﬁﬂ_l_“‘lq}i"l—w) =®+Th(§)a(§.r &, "U) +'TJ'
and &, ¥* are the same as above, while T3 [A] x W—>}, changes into

Tg(A) g=@QT(he+&)g.
Obviously, T is a O™ bounded mapping. If the statement

lim sup [DL(THA)—TM))[=0, o<i<m-1 (2.13)

»
holds in a neighborhood 8(Ay; 8) of Ay, then the statement
lim sop [|DE(Th(€)—-TE)|=0 Oo<I<m-—1 (2.14)

h—0Q FCH{0;8)

also holds in a neighborhood of §=0.
We agsume A is bounded in the sequel and by using Theorem 2,1, we derive
Theorem 2.2. Let (ho, Uo) be o simple singular point of F and T, Ty saitsfy
(2.18). Then thers exist constanis 8, ho, K, a, v>0, such that for h<<ho small enough,
there is @ unique O™ mmppmg v S(0; 3| [A]) x 8(0; r|R?)—>V, satisfying
Fr (€, a, u(é, o)) =0,
" Un (g: 05) o ‘v(g.l ﬂ‘) u <ﬂ'}
and

D€, o) — Doé, o
<k{|g'~¢l +[a"~al + 3 IDTHEE &~ HE D11} (2.15)

oli<m—1, V(& ), ¢, o) €ES(0; 8) x8(0; 1),
sup | D™ (€, o) | <K,

(&) e 00; -:!J:{H{IJ r)

whore Hy(€, @) =Th(©)GFE, a, (€, @), H(E, a) =T ()G, o, '!-"(5 ).
Proof. Using Theorem 2.1 and Lemma 2.2 directly shows the desired results.
Hence, system (2,12) is eguivalent to the equation R

(I-Q Fr(ho+, totaptn(é, @) =0,
which holds if and only if F;(Ro+&, to+ap+95(E, a)) EV .
Let us define f(§, a) in such a way:

fn(g, ) (Fy(ho+§, uptapit (s, o)), @1)

[ —

I

s, o) = . .
f:pl(g: ﬂ') <Fl(}‘ﬂ+§; uﬂ_i"ai';ﬁ'{‘l'q’h (E? ﬂl)), @;}
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Then the approximate problem amounts 10 solving

fn(f ) '=0

Lemma 2.3. Under the hypothesis of Theorem 2.2 we hww the following
inequalities:

IDAE, &) ~DIE D |<E{1€~¢] + o ~a| + DD G @ - HE 0]},

O<i<m-—1, V(& a*), (§ ) €ES(0; 8) x8(0; r),
g0 Hbmfn(f a) | <K.

(£ o) EH(0:d)XEB 0 7)

Assume there are pairs of O™ functions (¢(?), a(t)), (Ex(8), ar(?)), from RT
(g>1 interger) into [A] X R?, and there exists a constant &>>0, such that

(€@, a®)), @), ar(®)) €8(0; 8) X8(0; r), Vi€S(0; &|R).
Lemma 2.4. Assume the funciions (£(3), a(t)), (1), &t (®)) are as above, and

1) uﬁﬂiuﬁg( -fT(g; —|—“&i2(u;(t)-—m(i))n )=0, o<l<m~1
2) ?H-g( g ﬂ(t}“ ‘I d;‘ ah(t)ﬂ)ﬁa (mdependemt of 7).

Then under the h@ﬁ:mthesm of Theorem 2.1, the following. hold
| (€, @ () —0(E®, «()) ]l

<= Zi [+ | e -]

ﬂ g7 (Hn(é (t), a(t))—H (), a(tj)ﬂ}, (2.16)

O<i<m—1, VIi€§(0; s|R?),

where Hy, H are defined im (2.18), h<<hy 48 small enough, and K is @ constani
indeperdeont of A.

Lemma 2.6. Under the hypotheses of Theorem 2.2 and Lemma 2.4, the
following statement holds:

—%-(ﬁ(ﬂ(t} ar(t)) — FEQ), a@))”
qzz:{ TGO - |+ |- @@ ~a)

-}—n = (Hy(E@), a(®))—H (@), a(t))) ﬂ}

- <Ism -1, VteS(0; s|RY).
The proofs of the above lemmas are similar to those in [2].

§ 3. Simple Limit Point

Definition. Let [A]=R* (or [A] be an tsomorphism 1o R?), and (Ao, uﬂ) be a
© sbmple singular point of F. If in addition |

matrix A={D, F (ko, uy), p;» 8 nonsingular, (3.1)
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is called a stmple imit point of . - . . -
~ Lemmsa3.1. Let (Mo, %) be a s@w@plé; limit point.of F. Then there exists a
sonstant 7>0 and @ unique O™ mapping &(aw): 8(0; | R?)—>R? such that
| - JE(@), a) =0,
b T - E@@=0.
So én @ neighborhood of (s, Uo ), There is @ unique branoh soligtion {(M(a), u(a)):
«CS(0; r/R?)} such that - -
. FO@, u(a)) =0, Ya€S8(0;r|R?),
where A (o}, u(a) are O™ tappings given by » B
Prunf. Using Lemmas 2.1, 2.2 and (3.1), w‘e'g'e_t that-

o D, £(0, 0) =XD,F (Ao, ), PP=4 " s
is nonsingular. By (2.11) we know £(0, 0) =0.. A.Eplﬁg'g the local implicit function
theorem, we Gcrmpféte the proof. o - |

Lemms 3.2. Assumé the hiypothesis of Theorem 2.2, If (he, Uo) 8 a sémmple lemil
point of F, then there ewist constanis r, b, A, K ::;gﬂ_,_~_.sfuch_ that for h<<ko small enough,
there 48 a unigue O™ mapping & (a): 8(0; r| R?)—>R? such that .

' S, ) =0 - |
|G —E@ <, (8.8)
gnd . L . R, |

e o S TR g T THAEE
|4 @ —E@) | <K 3|4 0@, u@) = F A, u(@))] ,
R U A b@|<K, am
where M), u{a) are defined by (3.3). |
Proof. We shall use Theorem 1in [2] 1o prove the conclusion. Using Lemmag
2.8, 3.1 and (3.14), we can apply Theorern 1 in [2] to get 7, Ao, b, K>0, such
that, if A<ho, there exigts a t;nj_@ue 0™ function E3 () satisfyi_pg (3.8) and the
second statement of (3.4), and"> ¢+ o+ T T w0

|0 o L6 | <R 3 [ (e @, - 7@, a0 |

Letting ¢ =0, a(f) =ay (1) =a; & (%) =§:(tj =£(a) in Lemma 2.5 and combining the
above inequality, we gat the firgt statement of (3.4), which eompletes theiproof.
Theorem 3.1. Suppose the hypotheses of Lemma 2.9 hold. Then the approximate
problem _. . | .y
. _ Fy\, w) =0 o (3.5)
has w uniqué branch solution {(Mla), un(a) Yo la <o} n @ neighborhood of the branch
solution {(A(a), ule)); |al<r} of the continiuwous problem for h<hg sufficvently small.
‘... Moreover, M(o) ;. th (&) are of class OF and we oan obiain: the following error

(3.2)

sup

| = 1

,
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e

estimates
| DFan(a) — D () | -+ ﬂD’un(a) D‘u (a:) Il <K 2

C0SIsm—1,  Vie|<r, | | (3.6)
sup (UD’“(M(H) },(a))"—z-{le(u,,(a) H(ﬂ))ll)“éﬁr |

o i B
Pmﬂf Decomposmg k;,(a) u;,(ﬂa) as R Pt
| A () “M“‘fﬁ(ﬂ); "
“up (@) =1to+aupit 0, (6x(a), o),
from Lemma 3.2 we know thege functions are of class C™ and satisfy {3i5).
Furthermore, the following error estimates hold:

12 (0 (@) =2 (@) [ + | D (s (@) —u(@)) |
<|-L G@-@) |+ |- @, 0 -0¢©, )|

0<<I<m—1, V|m[£fr

Using (3. 4) (2.16) (Let a(tj ==n:;,,(t) =a, (1) : §(n:) -fh(t) = §;,(ﬂ:)) it is easy
to derive the first inequality of (4.8). The second is vamus |
- Now, we Shﬂ.ll congider the derivative of & (a:) at o= U Siinple Galﬁulatwn ShOWS

. e~ DY <0,
DiE(0) = — A IDIFD, D>,
Definition. ZLet (g, ug) be @& simple limit point of F. If in wdd@ﬁwn AN DPF ‘D
@:>, 1<e<p, is @ certain de ﬁmte MALrie, thm (o, to) ©8-called a normal singular
point of F,

- Olearly, if (Aq, ‘?.50) is a normal Slngular point of 7,

1<Ce=<<p are all definite. h “

Lemma 3.8. Assume the hypotheses of Lﬁmm 3.2 and mz>8. Then if (?wo %g) is
a normal singular point of F, there extst 1y, hu}ﬂ mh that of h<ho, there is &
um»gus n:;,ES (0 TIIRI’) 1<i<<p, Stmfa?;sfymg |

.-"

J _

(8. 7)

llm 'ﬂh Eilisi UJ
[ Al :

d i o con e
xﬂgin(ai)'_—o; A<y,

ag & (a), d e fjh(ﬂ)_ﬁ’?‘ﬂ all de finite matrizes and their signs are the same as

those of S |
- Va&8(0; 71| R"), 1-‘@}"@?-- o g (3.8)

Deﬂnltlon Let M, Az (a:y’.) ul =1 (ai} We call (hh, o) the G—th nerrma:l smngulmr
ﬁﬂﬁ ﬂ'f F Be - \
Theorem 8.2. Under ihe kyputhaﬂﬂs Gf Lamm 3.4, we have

ol + ) K F [ 0@, w@)-Fa@, w1, @9

3

where K is a constant @ﬂdﬂp@ﬁdﬂﬂri of k. Fu:rtﬁarmnm " T P 6w s
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M=o SE{|<Fa o, 1) — F (R, ), B
+ [ P (o, tie) = F (ho, o) |+ | (DuFs(ho, o) — DuF (o, ta))"P"|
+ 3 [ Lo (@, u@) -~ FO@, s@)]|_ }- (3.10)

Proof. According to (3.8) and the O™ pmpei'ty of E (), there exists a constant
M, such that :

f; 2 (a) ngm,, V| <rs, 1<j<p.
Hence
Iailﬁf;:}ixl dd; Sﬁ.(m)"il H% Em(ﬂf’.)—j.% Em(ﬁ)l
<u|Leof<u|lao-Leo) (3.11)
and

M —2o| < [€a(ad) —€r(0) | 4 [€4(0) | <Osfad| + |6 (0) —£(0) | (3.12)

Here we have used the mean value theorem and the faot £ (0) =0. In the same way,

Jud — o 5< [un (o) —ua(0) | -+ [1a (0) | <Oslak| + [ua(0) —2(0)].  (3.13)
Com bining inequalities (3.12) and (3.18), and using (3.11), (8.4) and (3.6), we
got (3.9).
A# previous, we have

24— ho| < [6(0) |+ |3 £3(0) | + ok | +Chlad |2

< |£,(0) |+ 0.

According to (8.11) and (3.4), we see:
|£x(0) | < O3 f»(0, 0) —F(O, 0) |
<05 | {Fn(ho, to) —F (Ro, te), D]
3 C5 | KT (Mo » [G (ho, Uo+22(0, 0)) —~G (Ao, uo)l, P 1. (3.16)
But on the other hand, by the O™ boundedness of &, it holds that
G (o, to+22(0, 0)) —G (Ro, to) = DWG (Ao, uo) V1 (0, 0) +DiG (V4(0, 0))%.
Thus

ENCEHON R @

| T () (G (o, to-+ (0, 0)) —G (R, o)), B*]
< | (DFr(h, i) — DuF (o, 1)) "D*| 104(0, 0) |+Co]ma(0, O) [.

We have used the fact that {(D, F?v(0, 0), ®*) =0. Substituting the above inequality
and (8.16) into (3.14), we obtain |

| M= ho| <O | <Fa(ho, Uo) —F (ho, o), B*>|+0s| (DF3—DF°)"®*| | u(0, 0)]
+0s0a] 1 (0, 0) |2+ 0| 2 (¢2(e) —£(@))

By applying (2.15) again with 1=0, §=£"=0, o*=a=0, and (8.4) in the above
inequality, (3.10) is proved. |

-
=10



No. 1 NUMERICAL ANALYSIS OF BIFURCATION PROBLEMS OF... 29

§ 4. Numerical Prediction of Bifurcation Points

In this section we shall prediet bifurcation points of the original problem by

‘numerioal methods.
Lemma 4.1. Let (Ao, uo) be a solution of problem (1.1), and D.F (o, %o) be an

isomorphism operator on V. Then as h<hy is small enough, there ewist two umique
functions w(d) (w(ho) =uo) and u(\) satisfying (1.1) and (1.2) for ACS(ho; 8) (B
suffictent small) respectively.
Furthermore, there is a constant d>0 independent of A, such that
{UDJ"(JL, u(A)) v =d|v],
[ DuFa(h, un(W) »v| =dv], VAES(he; 3), VoEV,

lim sup [us(d) —u(d)[=0. (4.2)

A—(Q, A8 (A d)

(4.1)

The proof can be easily accomplished by using the implicit function theorem.
Definition. (Aon, uon) s called an asymplotic solution of equation (1.2) ¢f for
any &0, there exists a real number ho>-0, such that
| Fn(hon, von) | S8, VAho,
»
Theorem 4.1. Assume (Aox, %) 8 an asympiotic solution of equation (1.2),
-and (Aon, Uon)—> (Ao, Uo). Let
dy=sup {¢; €2>0, | DuF3(Aes, uon) <v||=elv|, Vo&V},
d=sup {e; ¢>0, |DF (ho, o) *v|=¢|2|, Vo&V}.

Then i) (le, Uo) is @ solution of equation (1.1).
ii) 1imd;,,=d.

hA—()

Proof. i) It is easy to see that (Ao, 4) is indeed a solution of equation (1.1)
from the following inequality

HF(M: %)“Q”F(%, o) — Fu(ho, to) "+"Fn0\o, Up)
— F3(Aon, ton) | + |3 (hon, uon) |-
ii) By the definition of dj or d, we have
d;,,"w”*{ DoF (Aon, uon) "’U“
< | DF (Mo, tp) » ] 4 | (DuF (o, %o) — DouFy(han, ttes)) +9],

-and for any &>>0, there exists an element »+0 such that

| DuF (o, to) *v| < (d4-8) |},

Hence | | dy<<d—+ 3e.
'Bimilarly d<ds+3e.
Finally, we get . lim dy=d.

A—1D

Remark 4.1. 1) As a direct consequence of this theorem, we know that
(Mo, %) is a singular solution of guation (1.1) if and only if d,—0.

2) If (Ao, %) is a solution of equation (1.1), equation (1.2) always possesses
. asymptotic solutions.
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Let V4 and V45 be two closed subspaces of 7 which can be deeompnsed ad
- - V=V1+V2=V1].+Vﬂh B T : (43)

Assume P, P, are projectors from V onto Vi and V' along Vi and V.
respectively, and | 4 B N i
lim [ P,— P[ 0. B (4.4)

A=)

Then Q I P Qh=I — P, are pl‘OJEGtGI‘S frﬂm V onfto Vg and Vg;. reapeﬁtwely, -
- - Lim | @y~ @[ =0. T o, A

Theorem 4.2. Assume the hypotheses of Theorem 4.1 and (4 4), (4 5). If in
addition the following hold: :

1) There is a constant d>>0 independent of h, mh that

| Do (hon, tan) * w]|}d|]wl| V*wGV:am h-g;ku small enaugh
%) lim dy=lim sup | D, Fn(ﬁ.m. o) - 'vll =

A0 2V ];h.
Ivi=

then we can get-

i) (Ao, Uo) 8 @ singular poini crf .,
ii) There extsts a constant. do> 0, such that

* © | DuF (ho, uo) - 'Z»U[]}tﬂullwu Y EV .
111) - DF (ho, to) *v=0, \?‘wEVi

Proof. FlI‘Ht amordlng to Remark 4 1, i) is vamus Sem:mdly, with eondltlnm
1) we have .

nDuFGLD to) ‘W"="D F (Mo, uo)’w D Fn(%h, Mﬁ)w+Dth(Mh;
= | DuFn{hon, von)w| — [ DuF (ho, uo) — D, Fh(%h; u’ﬂh)”— lw|
>d|w|—e|w| (Vh<ho small enough)
—@-8)|wl, YwEVn

Hence “ _ |
| D.F (he, 1) w]> [ DF (ho, ) Quw] — nDuF(% ) (w——'QM)'ll '-
> (d—e)|
> (d HD F(Ro o) |+ w}

?(d—8+(d—8—\|DJ(&o uu)ll)llQ Q:.ID ||
mdofw|, Vh<hs, wEVg
So the conclusion ii) is proved. Finally, we km}w | R S0
| DF (ho, o) ]| << | DuF (ho, o) — DuFs (hon, tiem) [+ | 0] + | DuFa(Pon, ton) 2]
<|DF (Mo, tio) ~DuFs(hon, uon) | - [ o] +dav]. |

By using the properties of 7, T and condition 2), the proof is completed.
Remark 4.2. 1) let d= sup HD,,_F(M ito) ?|. Then lim dy=d,

A=
Iuﬁ—i

‘'« '2Y The statement Ker (D F G'\-o u.}) ) ==V1 19 131“'1'3 if ﬂﬂd 9111? 1f eundltmn 2) In:
Theorem 4.2 holds. ' '

8)'Theorem 4.2 can be writtén. in s more general form. For simplicity, we.
denote B | |
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et Sl

Ey= (DuFa(how, vs))Ty © B=(DuF (o, 10))7 721,
thy, = e "Eh’!’" = sup | Bo]. -
& ﬁl 5 N S —i . '

Theorem 4. 2. Assume that kxypcthesas (2 2) and (4 4) t:md the follawmg hold:
1) (}\.Oh Uon) 48 an asymptoiic solution. of (1.2) and .

11111 (Mows uun) (Ra, to,) -

2 Tmm is @ constant d>0 @“dﬂpﬂﬂdMﬁ of h, such that - B nls N
| Byw] =d |w], V-wEVg,,,' ];.gho (SMmEE mcmgh) e

[

Then,
YD) (e, we) %8 @ soluiion of eguﬁtm (. 1)
ii) lim d,=d.

J h—0 ]
% 111) Thafrﬂ amwts @ c&n@tmnf tfu?-’O such, that

| Bew]|zdo]w], YuE€Vs.

iv) (Ao, Uo) 18 @ singular solutton of (1.1) ¢f a,nd only &f d=0.
- v) Ker(H)=V4 if and only ¢f d=0.
Theorem 4.2 shows that V4 is the null space of D, F (},o, uu) In the sequel of
“thig section we,shall consider conditions which make - ’ - 5§

Ker (DF (ho, u0)?) =V

Lemma 4 o Let Sc¥ (V V} : V1=Ker (S’) Then the fallnwz.ng smtemmts ure
-equivalent:
i) Ker(§?) = Vi,
ii) |Swve—[>0, Vo1 €V, "_cffuaaEV
iii) V1N Rang(S) ={0}. *
Proof. i)=>iii): For €V Rang(ﬁ-’) aer.trary, we kiow' Sv=0; on the other
hand one can find an element w such that »=Sw. Hence S2w Sw~0 which shows
wEV, v=8w=0. - ' g .
iii)=>ii): Otherwise, thara exists at least & pair Of 4 € Vi_, _*1?;%71 such that
|Sve— 1] =0, i.e. Swa=2;EVY. Henoce S*vg £V, I"I Rang (8, Swa=0 or v, €V,, which
contradiots v, &V 1.
i) Take 9 € Ker (8%) to be arb1tra.ry Then SwEVi If v¢¥V4, let v,=87,
wg=2. We then get a contradication

; 0= "S*Uﬂ —’31“:}0; |

e e

Thig completes the proof. .
Lemma 4.3. Let Sce (V V) be a cicsed mnga Ofpemtor wmd. Vi—Ker(S) @
finite dimensional spacé. Then Ker(S?) =V if and unly of the “following hola:

lﬂf{”‘ﬂ;[—S’Ug“ '1!1€V1: WQEVQ, O{E"*-‘:..["Uj_u ﬂ’vgﬂéb},f@}(} (46)

-where C=0{a, b), and Vo CV such that V=Vi4-Va.
Lemma 4.4. Let S S,,EE‘ V, ) be closed, mqrage opemtoa's which swtfmfy

lmp8—8f=0. ool T o (4.7)

B A i

If (4.4) holds, we get (4.6) if and only &f o ow Bl B Bt .
(oo inf{lo Savasl, Y& Vak 22 EV o, G{ﬁ%ﬂ‘vnﬂ | tgn| B’y = O >0, (4.8)
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where O'=0'(d’, b’) is a constant independent of h.
Pmﬂf Assume (4.6) holds. Then from

— Shvarn= (Pp— P) v4p+ Py — SQug + (5'—15'1) Quan+ 8 (Q"Qn)’”ﬂ:

we hava
Joun—Savan| = — | Py—P| « o] + | Pran— 8Quan| — [ S — Sl + | Q)+ | vaa
— |8+ |@—@l - [2]|>0">0, 0<d'<|vu],
The other side may be proved in the same way.
Now, let us return to problem (1.1) and (1.2). For simplicity, we shall
sssume that T, T are compact and (2.2) holds.

Theorem 4.3. Under hypotheses (4.4), the following propositions are equivalent:
1) (Ao, wo) 18 @ solution of (1.1) and

Ker(DyF (ho, o)) =Ker ((DuF (Ao, t ))?) =V3; (4.9)

i) (Aon, Hon) 48 an asymptolio solution of (1.2), dy—>0 (d, is defined as in
Theorem 4.2), (e, tion)—> (ho, o) @nd

wml;ﬁil 4 “ Vip — Dy 'y (Aon, Uon) Van H =020, | (4,10)

1-’1,.'5 F]h
Vaa< Fia

where C i8 ¢ constant Padependent of h.

Proof. 1)=pii): According to Remark 4.1 there exists an asymptotio solution
(Aor, %on) converging to (Ag, tg). Using Lemmas 4.8, 4.4 we can obtain (4.10) from
(4.9). As for d,—0, it ig natural by Theorem 4.2,

ii)=>i): Applying Theorem 4.2 we know that (A, up) is a 5011‘11}1011 of (1.1) and
Ker( D F (Mo, %)) =V 3. Using Lemmas 4.4, 4.8, we get (4.9).

Remark 4.3. i) This theorem also holds in the case of V1= {0}.

ii) It can be generalized as Theorem 4.2,

§ 5. Application to the Navier—Stokes Equations

We consider the steady viscous incompressible Navier—Stokes equations:

—vut+ (#-V)u—Vop=J,
{ i ) et in QCR,

Ver=0, (6.1)

u=—0 on 00; | pda=0,
4
where f < (L ()" n<<4, QC R bounded conie domain.,

Denote ¥ = Hi(@)*x L&(Q); W =L (Q)x IXQ), Wo=L5(Q)x {0}. Obviously,
VeWaV = H-(Q)*x I*(Q), and W,CW.
Now we define & and a:

G, (0, p))=((u-V s -F, 0): R, XV->W,,
a(h; (u, p), (v, q))mlj w-vwm+j (pV-0+¢V w)de: R, xV xV—R.

' The weak form of problem (B6.1) is the following
a(d; (&, »), (v-9)) +<(v, 9), G, (&, p))>=0, V(v, Q)GV (5.2)-
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where A=1/p, and its approximate problem i3

a(d; (8, m), (U, ) +<W, @), G(A, (1, 1)) =0, V(t’ g)eV  (6.9)
where V=X X I, X,CcH(Q)*NY, Y€ H2X(Q)", L,=L2(Q) are discrete spaces
and satisfy conditions (H1), (H2), (H3) in [4]. v

The variational form of the Stokes problem is |
o (@, p), (0, 9))=<(®, 9), (@,0), V@, eV (5.4
We introduce the operator T: B, x WV as follows:
TM-(g, 0)=(u, p) safisfying (6.4).
It follows from the Soboley imbedded theorem that T (A) is compact.
Let (u#°, p") denote the solution of (56.4) when A=1, i.e,

(w’, ) =T(1) (g, 0).
We define the mappings §: We—F and @: Wo—V by
. 8(g, 0 =@, 0); Qg, ©)=(0, r).

Lemma 8.1. 7)) =A8+0, ¥YA>0,
Now, let us introduce the operator T R, X W—V ag follows:

a( (th, ;a), (U, ¢)) =<, ¢), (g,0)>, Vv, 9)EV,s. (5.5)
Under hypotheses (H1)-—(H3), problem (5.5) hag a unique solution for any
AER,, (g, 0 EW.,.
The proof is in [4].
Let (u;, ;) be a solution of (5.5) when A— 1 i. e.
| ("fru Pa) “T n(l) (9’; 0).
‘Define 8, @Q,: Wo—V ag follows '

Sa (ﬂ; 0)=(1;, 0); g, 0)= (O.- _‘Pn)

Like Lemma 5.1 we have the following result:
Lemma 8.2. T,(A) =AS,+Q,, YA>O.
Lemma 8.3. Under hypotheses (H1)—(HS), we can get

lim [§,—~8|=0; lim|@—@Q[=0
A—{) h=0

Furthermore, ¢f T(1) (g, 0) € H™*1(Q)*x H™(Q), we have
|T(1) (g, OO —~T (1) (g, 0) | <O"|g|m-s,

where U is a constant independent of h.
The proof can be found in [4].
Ooncluding the above discussions, we easily get

i) - T, 7T, G are of clasg U; (5.6)
ii) hm sup | DA (T (A —T(A)) | =0, =0, 1, 2, ---, if AC R, is a bounded set.
; (6.7)

Theorem 6.1. Let {(u(r), p(A)); A€ A} be a nonsingular sclution of (5.2).
Then there extsts a constant hy, such that for h<<h, small enough, there is a unique O~
| mapping (U (A), pa(R)): AV satisfying
i) (ua(d), pa(A)) 8 @ solution of (5.3);
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if) lim (joi(2) — 6P ) |+ 2P ) —pP W) ) =0, =0 | .
i) 4f n(d) CH™ (@), f € H™2(Q)", then there extsis a constant K ., independent
of h suoh ihal | - - T,
Ju® (A) —u® ) | + 2P ) —p® W) | <K A7, O<t<m.
Proof. By Theorem 2.1, conclusion i) is easily proved, and there exist.
donstants K;(0<I<m) independent of A, such that '

Ja (W) —u® ) | + |2 () —pC (W) |

A 4 [(T;.(?«.)-'T(;\,))G_(}\.;u(?u);p(z.))]ll.

: v | d}-i
By calculating

E'?‘J:‘:T[(fz’].,(;m) —T(MYE R, ), ?C?u))]M

d* | s o = |
<of| =93 o]+ | @-ogr ol +| e-o g}
Again by (5.6, (6.7) and Lemma 5.8 we complete the proof,
Theorem 5.2. If (o, (Mo, Po)) is @ simple Limit point of (5.2), then there exist
constanis r, hosU and undque 0° mappings: -
(A (), (#(x), p(a))), (a(®), @ (@), pa(@)): (—1, N)—=AXY, h<hy,

such that
i) they are solutions of (5.2) and (5.8) respectively;

i) limsup ( [ Td;r (@) —A (@) |+ [P Q) —u®@W) |+ [ (M) — 2P () II) =0;

A—=D \m|<r
i) of #(e) € H™(Q)®, F€ H™ ()", there is a constant K, independent of h,
such that

sup {[A(0) —A® (@) | + [P (a) — e (@) + o (@)~ (@) |} <K A",

o] =

O=<I<<m.

The proof is similar to that of Theorem 5.1.

Theorem 5.3. If (ho, (8o, Do)) i8 @ normal limit point of (5.2), then as h<<hy,
we have

i) problem (5.8) possesses a normal lomit point (A3, (8, P1));
ii) lgfg(Ihﬁ—hl+||Hﬁ—uoﬂl+llpﬂ—pollu)=0;
iti) of # () € H*(Q)", f S H™*(Q)*", there exisis 4 constant K, independent of
h such that
- |23 — 2o | -+ [ #25 — tho[l1+ 2% — Pollo< K ™.
Proof. Applying Theorem 3.2 in the proof of Theorem 5.1 we can easily

complete the proof.

§ 6. The Penalty Approximation of Branch Solution

Woe still consider the stationary incompressible Navier-Stokes equations .with
the same notations and operators as in § 5. Now we shall choose H - H()",
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V={v€H, V.v=0}, W=L2(Q)* Then problem (2.1) is equivalent to
Find # €V, such that ao(t, ©) +A{(1-VIu—F, v>=0, Yevcl,
where ao(u, ©) ==jﬂ‘?u-?vdm, A=a1l/y. Define @: Ax H—->W as G(}, @)={u-Viu—f
and §: WV by ao(Sg, v)=<{g, v}, vocV, geW. It is easy to see that § ig
compact. Thus, if we define the operator T (A): W->¥ for all AeER, as T(A) =2A8g,
Yg €W, we know problem (5.1) becomes | |
Find 4 € H such that F(\, u) =g +T(A)G (A, u) =0.
Introdnoe the finite element spaces X,CH and L, L?(Q) as in § 5 and assume

hypotheses (H1), (H2), (H3) hold.
Let Vi={v,€ X\, (g V) =0, V¢, €L}, and let p» be the orthogonal

projeotion from L2?(Q) to L,. ~
Lemma 8.1. For all g€W, AE A, the Jollowing equation has ¢ unique solution

ﬂﬁGX;,:
ao (85, ”n)'l“'i—(Ph(v'"a): i (V0,)) =24g, 0, VU,EX, (6.1)

and we have the estimates .
» | — 5| 1,0<O+-2) | g]w.
Furthermor&,*éf ©°E H"I()" we get
| — 3] 1,0<O (W4 )| @] m-s,

where 1<m<l, 1 és the interger in (H1) and (H2), and O is a constgni independent
of A, &, s.

The proof of this lemma can be found in [4].

Define the operator T,(A): (0, g) € W—T,(}) g=u,C X, as the solution of

(6.1), i.e. |
ap(n5, t’h)+'i—(ﬁh(?'“i): pa(Vey)) =g, 0y, VYU,EX;,

Then, since |[(o4(V-t5), pa(Ve0s))] <C|#}!1,0|Vs]1,0, We ocan iniroduce the
Operator B;: X,— X, ag | .
(ea(Vetns), pa (Vo)) —ao(Batts, ©1), V0,EX A

and §: W—X, as ;g i _
2o (Sag, Us) =g, V), VYWHEX,.
8o (6.1) becomes N b | o
ao(uH —1‘— B, v;,) =ao(AShg, Un), YOLE X,
Hence | i - | .. |
Con § 8. . (I—l_%;Bh)uimkShg :
According t0 Lemma 6.1, 225 is uniquely decided and we get
s . =1
Lemma 6.2." Under the above hajpotheses, there exists a constant C independent of
A, &, & such that . | 8
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TG ~Ta(W)g|1.0<0k+e)[glw, VAEL - (6.2)
Furthermore, &f T(A)g € H™'(Q)", we have .
1T (g —TiM) g 1,0<O @+ )| glm-z, 1<m<L. (6.8)

Proof. The whole conclusion follows from Lemma 6.1 naturally. Given a
function s(k): R,—~R, satisfying ]f_ﬁmts, (&) =0, let Tr(2)=T5*(A) and h
_. . - LR oA =T N P

Fuh, w)y=u+Ta)G, w). (6.4)
Theorem 8.1. Let {#()); A€ A} be a nonsingular solutton of (6.1). Then there

exists @ constant ho>>0, such that if h<Cho 48 small enough, there is a unigue o~
mapping txy(A): A—H saiisfying . o

o Fir(h, t(A)) =0, g bt o -
| Dmu (A) — D" () | <Km(ht+e®). (6.5)
Furthermore, if £ € H™1(Q)", w(h) € H™(Q)", we get the estimate |
, | Dmu) —Drun(W) [<Kn(B"+e(R),
where K, is @ constant independent of A, k. -
Proof. By the definitions of T'(A), T.(A), G(u) and Lemma 6.2, we see that
the hypotheses in Theorem 2.1 hold, So there exists #(A) satisfying (6.5) and

| Dmu(3) — Do () | <K% 2! —d@;‘T[T'(;\.)G(u(pbjj*T,;(;Q)G(u(k))]l s |

<ri 3 {|@m - grewm|

@ -ma)grawm |}

£ .

Using (6.2) we derive (6.4) and if f€ H™1(Q)", u(h) € H™(2)", then G(u{})) €
H™*(Q)" which in turn shows 7 (A) G (1 (A)) € H™(Q). Bo we complete the proof
by using (6.3)- | | s Py

Theorem 6.2. Let (Mo, uo) De a simple limit pownt of (6.1). Then there exist
constanis oo, ho, such that for h<<hy small enough, there are two families of O
mappings {(A(a), #(a); |a| <ae}, A(a) =he, #(0)=0, and {((e), tha(@)); || oo}

satisfying FO(0), (@) =0, F(a), ua.(a))=0Q V[a| <ao

and we have the estimaies

A (@) —A™ (@) | + | u™ (@) — 8™ (o) | <K m(h+8 (h))-
Furthermore, of f € H* ()", u(aw) € H (@)*, we get

|G () —A™ (o) | + ™ (o) — 5™ (@) | KK m (A" + 8 (),

where K .. 12 a constant independent of h and A.
Proof. It is obvious that all conditions in Mheorem 2.2 are satisfied. So the

branch solutions exist and we have
| A8 (@) —A™ (@) | + Jus™ (o) — 16 () |

m o, |
<Ko 3 |-L 1@ 0.0) ~Ta (@) G @@)]].
In the same way as the proof of Theorem 6.1 the proof can be completed.
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