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By particle methods of approximation of time-dependent problems in partial
differential equations, we mean numerical methods where, for each time ¢, the exach
solution is approximated by a linear combination of Dirac measures in the space
variables ». Although these methods have not yebt a very large range of
applications as that of classical methods (finite differsnce methods, finite element
methods or even gpectral methods), they provide an effeotive way of solving
convection—~dominated problems. In fact, pariicle methods are commonly used in
gome problems of Physics and Fluid Mechanies.

In Physics, these methods have been considered very early for the numerical
solution of kinetic equations such as Boltzmann, Vlasov or Fokker—Planck equations
and have been mainly based on a Monte Carlo methodology. More recently, particle
methods have received a great deal of aftention in Plasma Physics and are now
currently used in a number of physical problems. In that direction, see the book of
Hockney and Eastwood™".

In Fluid Mechanios, vortex simulations of incompresgible fluid flows at high
Reynolds numbers have been first introduced by Rosenhead and subsequently
developed by Chorin, Leonard and Rehbach among other contribufors (see the
survey of Leonard™?). On the other hand, particle in cell (P.I.0.) methods have
been introduced by Harlow™ for the numerical computation of compressible
multifiuid lows. Recently Gingold and Monaghan'™ have proposed a new particle
method which may be viewed as an improvement of the P.I.C. method.

The purpose of this paper is to review some recent resulis recently obtained by
the author in joint works with 8. Gallic and J. Ovadia concerning the particle
approximation of hyperbolic and parabolic systems and which are related to the
approach of Gingold and Monaghan. In Section 1, we desoribe a particle method of
approximation of first—order linear symmetric systems. Convergence results are
stated in Seotion 2: they generalize previous results of the author on the particle
approximation of hyperbolic equations™® ¥, We show in Bection 3 how to adapt
the method to the nonlinear hyperbolic system of gas dynamics, hence generalizing
the ideas of [7]. Finally, Section 4 is devoted to the extension of the method to the
numerical treatment of convection-diffusion equations,.

* FTocel ed November 4, 1984.
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For a mathematical study of the vortex method, we refer to.Beale and Majdat.*
and the thesis of Cottet'™; see also [12]. For a proof of convergence of the particle
method for the Vlasov-Poisson equations arising in Plasma Physies, gee [4].

§ 1. Description of the Particle Method

Let us consider the Ga,ur:.hy problem for first-order systems written in
conservabion form

fi 9 A{ﬂ, -]—AO‘H'== - ﬁ",; t)'{}, TR I

{ s f"mﬁ( g s = (1.1)
w(®, O‘W-—uu(m) ot

Here u=u(2, t), f=f(=, t) are column vectors with p components and A¢= A4*(z, t)

0<i<n, are pXp matrwea Setting ¢r=R"X ]0 T[ T >0, we assume that

A‘E L (Qr; 8(R), -0<i<n,

‘ 1.2
| gi € L°(Qr; (R?)), 1<, j<n (1.2)

and | r
A"(m 1) = A‘(ﬂ: t)T lﬁiién (1.3)
Then, given uoE I?(R*)* and f& I*(0, T L”(ﬁ")”), it i3 a clasgical result that
Problem (1.1) basg indeed a nnique weak solution w& 0% 0, T; L*(R")?).
Assume next that the data 4%, 0<<i<<n, % and f are continmnous functions. In
order to approximate the solution u of Problem (1.1) by a particle mathad We beglm
by 1n1i:r0ducmg a System uf movmg coordinates. We write |

A= T+ B, 1<i<<n, (1.4)'-

where [ ig the p.Xp ;dentity matr:x and the functions ' are continuous and. satisfy
' !, 3@ €@, 1<i/j<n. @)

Then, we consider the differential gystem -

—-—~=ﬁ(ﬂ} t), a=(m1, sr, Gy ), (1.6)

whose solutions are the cha,ra.ctemstm curves associated with the first order-
differential operator

+2 N . 3@
We denote by t—>z(¢, t) the unlque solution of (1; 6) which satisfies the' initial
condion
R 5(0)=¢, £CRY @
and Wﬂ_ st ' - ' |
i T 6= -det (52 (&, t)) PRV - P
Then it js a mmple :-md ula.ssmal ma,tter 0 check that L |
F,
8 (&, =T (&, D) (d1v @) (@(E, D,0), div am > 32‘ .9
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Note that (£, ¢) may be viewed as a system of Lagrangian coordinates associated with
the “velocity” vector field a= (a3, ---, @x). . . | ﬁ

The next step congists in deriving a general approximation of a continuons
function by a linear combination of Dirac measures. Let g€ C°(R*) and lek
e Og(R), ie., o is a continuous functlon with compact ﬂuppg}rt By using the
change of Vﬂrmbles r=w(£, 1), we have

| gpdo=| g(a(e, 0)p(as, DI (E, 1.

Now, if we approximate the integral

| wae by 3 (e

ke K

for some seb (£, wy)rex of points £ ER" and weights w; ER, we obtain
| w3 w@)g@)e@m),

where | .
() =w(&, 1), w(t)=wnd (&, ), kEK. (1.10)
This amounts o approximate the function g by the measure

. ’_ F‘wk(t)g(mk(t)ﬁﬁ(m—mk(t));

where 3(#—ap) means the Dirac measure located at the point 7o ER® and. h referd foa
discretization parameter to be specified later on. %

. We are now looking for a particle appmmmmt@nn 4, of the solution w of Problem
{1.1) of the form -

(s, D=3 wOu®de-a®), (11D

where () stands for an approximation of u(z,(t), ¢). In fact, we need to associate
with the measure wa(+, ) & continuous function «%;(+, #) which will approximate the
exact solution «(., £) in a more classical sense. Therefore, we introduce a cut-off
function { €U5(R"), i.c., a O function with compact support, such that |

LH {da=1.

e @)

8

We set for all s>>0

and

N | u;h(-, t)n%'(.’ t)y«{, o N . |
- ui(a, "f)=kg;wk(t)u;;(t):{;(m:—:&g(#))'.k S (118)

It remains to derive a disoretized form of Problem (1.1) in order to. define the
unknown functions t—»u,(3), #€ K, and therefore the approximate solufions u and.
«;. Using (1.4), the first eqhation (1.1) becomes'

+§ ——-( 'u) + E ———-(B‘u)+A°u ==_f :in Qr
We first notfice’ t]:m‘h we have Jﬁ the' senae of distmbufmns on Jp

or equivalently
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= ——r, o,

%? ’ é‘a% (@'un) = kgr%_(“'i(t)uk(t))ﬁcm“%(ﬂ)- (1.14)

Indeed, let  be in OF(Qr); we have by (1.6

LA (222 )@, 1), 0.

Hence

(e o == o0 (B +§ 28, 0

f=l
e “g;ﬂ'kux( )'E?'?’(mk t_ : t)dff
and (1.14) follows.
Next, for deriving a particle approximation of _‘92_(3"1:;), we write
| ‘ i {
. 2 o oB ¢ Oy, B oB' ¢ Ou;
O (Blua) fn, A ox; o “"+3 o,
and we uge the following approximations for Bf and g—f—:
: . 1
5 Bl 3 wi(8) BL (D)8 (@ — 2 (1)),

o= Su() B 2o (o),

where B} (1) = B'(24(1), t). This gives

‘ -51-‘— B‘uhﬂk,le s W (D) (t) (BL(D w(¥)
+ B (D) S22 (0a(1) ~ 2,(8)) 32— (1)). (1.15)
Finally, we have ;
A%z, =k§r wy, (1) AR(D) ux (2) 8 (w— 2y (2)) (1.16)
and we consider the following ﬁpproximation of f o |
f= B () fu$)3@=m(®)), (1.17)

where A3 () = A°(2,(¢), t) and f(3) = f(2 (1), ).

Now, using (1.14), (1.15), (1.16) and (1.17), we find that = (semi-—)
discretized form of Problem (1.1) consists in finding functions ¢€ [0, T]—>u,(¢) €
R?, k€ K, solutions of the differential system

':;_t'(wk“k) + wy {‘% Eé ?UI(B?:R: + B; ﬂk)%i:— (mp— W:} 1= Ag“h} =unfy, (1.18)

e (0) =wo(§s), FEK. (1.19)

On the other hand, using (1.6), (1.7), (1.9) and (1.10), we note that the functions
t—>2,(t) and #>wup($), k€K, can be characterized as the solutions of the differential
-equations | o T ey . o E |
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i = A

[ dfﬂ;d

S "—ﬂ:(ﬁk, f‘): (1'20)
L, (0) = &y . .
and
_ { s — s (div @) (m, 1), (1.21)
P Y G

T'he numerical method ig thus defined by the equations (1.18), (1.19), (1.20) and
(1.21). It remains however o perform a suwitable time-discretization in order to
obtain a practically implementable numerical scheme.

If problem (1.1) is a purely convective problem, i.e., if B'=0, 1<i<<n, 4°=0,
J=0, (1.18) reduces to . '

%(wkuk) =0,

Hence, in that case, the problem is solved by moving the particles % along the
characterigtic curves 1—>a;(¢) without changing their weights wwu,. On the other
hand, when there is no convection, i.e., when &'—=0, 1<<i<n, the positions of the
particles remain fixpd but their weights are modified through (1.18). In fact, the
scheme (1.18) ‘can be viewed as a generalized finite-difference scheme using an
arbitrary moving grid defined by the positions of the particles.

It i8 often required in practice that the analogue of the conservation property

R‘i_ _ u(g, t)d:ﬁjﬂﬂ A%z, t)ulw, t)dﬂ.ﬂﬁ Sz, t)dw

holds for any numerical approximation of the solution of Problem (1.1). Hence, we
require that

d . - .
—*—( 2 we(#)ux(2) )+ 2 wi(2) Ag(t)wr(t) = '%wk(t)ﬁ,(t) (1.21)"
Note that this is mdeed the case if the cut-off functmn { satisfies the condifion

Z(—-m) K(m) vmeﬁ“ (1.22):
In fact, using (1.22), we have = . |

L - s
3&3‘ ( m) 8:’1‘5.; (m),
so that (interchange % and 7)
E wkw;(Bku;+B‘uk) ﬁ (m;‘-—-m;) .._.0

k.IeK

and (1.21) follows at once,

| § 2. Convergence of the Particle M;szthod

For slmphmty, we shall restrict ourselves in thig section 1o the model situation

whﬂre - . ; . .
e Tny % - R

K Z!j gﬁ (kik)i-ﬂ-cm mk“h“ Vk-(klj ' kl) EZ-' e (2';‘;}
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In this case, we are able to prove a precise convergence result for the particle
method. Before stating the theorem, we need to introduce for a,ny integer m>=1 and
any g€ [1, oo] the classical Sobolev spaces
W’“'“(R“) = {,,_, E LQ(R") o) = Lﬂ(ﬁ") < |c=| Qm}
prowded with ‘ﬁhe norms " - 2 2
| | [0 manpe = (@@ﬁ; |&%o] fewm) Ve
and semi norms

|"Jlman~=( Z ”3“’U|linmn>) .

for g<<+oc and their uﬂua.l mndlﬁcatinna for q= +m

| We begin by conmdermg the case] B owm B % g5 o
B=0, 1<i<m, . . (2.2)
80 that equation (1, 18) reduces 0

:Zit (wkuk) —I— -w;.;Akuk e *wk f,, |

Aasﬁmmg that the solﬁ’smn u of Prﬂblem €l. 1) is smooth enoﬁgh we. set
o g PO (i) =ul(a,(2), &) —ti(2). X |

Smce we have b}r (1 6), (1.9 and (1 10)

L S nu@), §) =) (—-—+2-—- (m))(mm), t)

=l
we obtain

{ T (2wiey) + @kﬂﬂﬁn =[),

- &(0)=0 - S o
and therefore () =0, ¥ € Z*.
Hence, setting for any » € O°(R")

LOELMRICDUCNOLUETION
and |

cma()r=m (sl -~ < Ao ieiR S 1988
we gee that, in the case (2.2), we have .

“h(': t)““’h@)”( )
Therefore, finding a bound for the error u«(+; £)—ug(+; 1) e-xacﬂy reduﬂes in tha cage
(2.2) in estimating the apprommatmn error:

‘u(‘ 1)~ Wh(t)u( ; )

Let ug then state an approximation theﬂrem o - B
Theorem 1. Let m>n be an integer.. We assume tluat

FEL(0, T; Wmt=(R"), 1<i<n. - (2.4

We assume in addition that tke ﬁut—uﬁ Junction { has a wmpwct support and satisfies
the following conditions:

(1) there ewisis an integer r>1 such that Bl & e o e
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| Cdggl, | | . S
. J . - (2.5)
JJ‘HH 2 do=0 VYo& N with 1@1;;!;;,,-__1 1, .

(i1) the function { lelongs to the space W™ (K" for some other integer. s3>0,
Then, there exists a constant O=C0(T) >0 independent ot h and & such that, we kmw
for all function v EW*(R), p=max(r-+s, m), liqﬁ-i-m

|1’—W:(t)q’;=qlﬂga( Erl'virﬂal'l"' m+s 1]"1?”,”.3"»), 06;:#%21 o (2-61}

8

For the proof of this result, we refer io [8]; of. also [12].

In the case (2.2), we may apply Theorem 1 in order to get a bound for the
error, Assuming that the hypotheses of Theorem 1 hold with $s=0, we obtain if the
solution u of Problem (1.1) is smooth enrough:

fuCe, D—wi(, Dlwaw<0( e+22), o<i<T.

In the general case however, the situation appears 10 be more complex. On the
one hand, we are only able %0 derive a Z? error bound. On the other hand, this
bound is not optimalscompared with the approximation error (2 8) for s=0, ¢=2.
In fact, we have

Theorem 2. Assume that the hypotheses of Theorem 1 hold with s=1. Assume
w addition that the condition (1.22) is satisfied and that there exists @ constant cy>0
sndependent of h and s such that s

;ﬁTl'g,GJ. (2.7)

Suppose finally that the solution w of Problem (1.1) belongs to the space %0, T4
Whe=(R")?) where w=max(r+1, m) and satisfes for mme y<—o. cmcl for mll BEN"

2
with |Bl<u |
182 u(z, 1) ] Qcﬂ(i+ =), zE€R 1[0, T]. (2.8)
Then, there exists o constant O=0(u, T)>0 éndependent of h and & such that
uu(-, t) ——'M;,(', t) IIL’{H"J ‘QG( ﬁjl ) Ogth i :I (2 9)

Again, we refer to [5] for f.he prmf of this thenrem Note that the error bound
(2.9) depends on:

( 1 ) the moment properties (2.5) of the cut-off functmn {,
(ii) the smoothness of this function .

In fact, (2.5) implies that {, i8 in some sense an a,pprommatmn of order 0(&") of

the Dirac measure 8. Moreover, we are able to prove the convergence of the pariticle
method only if . & -
: hm~ £ TaE

T tends 1o zem'zié A and s tend to zero. |

1) ot -ggn if &= (23, =+, 5a) ER®, amm (@1, vy @) ENOL



s -3

No. 1 PARTICLE APPROXIMATION OF F1RST ORDER SYSTEMS 57

This means that the support of the funciion y— {,(#—y) must contain sufficiently
many particles in order t0 obtain a reasonable approximation uf(w, ¢) of w(w, 1).

Remark 1. Theorem 2 can be easily generalized to first—order symmetrizable
systems. Instead of (1.8), we require that there exists a p X p symmetric matrix P =
P{z, t) which depends smoothly of # and ¢ and ig uniformly positive definite in Qr
such that the matrices PAY g, t), 1<é<<n, are symmetric.

Such symmetrizable first order systems occur when linearizing a nonlinear
system of conservation laws for which an entropy function exists, We shall discnss
the particle approximation of such a nonlinear first order system in the nex
section,

§ 3. Application: A Free Lagrangian Method for
the Euler Equations of Gas Dynamics

The numerical approﬁim&tion of the Euler equations for a compressible perfect
fluid is a practically important and challenging problem which is extensively
studied. Finite-difference Fulerian methods (using a fixed mesh) bave been
considerably developed recently but are still not well suited for the numerical
simulation of complez multifluid fows. In fact, for such flows, the use of a fixed
finite-difference mesh. appears to be inappropriate. On fhe other hand, classical
Lagrangian finite~difference methods (using a mesh attached to the fluid ) become
ineffective in presence of great distortions of the fiuid.

In order $o overcome the above difficulties, one could think to use a Lagrangian
particle method, i.e., where the particles have the fluid velocity. This was first done
by Harlow® when he derived the particle in cell (P.1.0.) method: in the original
method of Harlow, the convective terms are discretized via a particle methed while
the pressure terms are discretized via a finite-difference tecbnique using a fixed
Eulerian mesh. Recently, a new particle method has been proposed by Gingold and
Monaghan®™: the smoothed particle hydrodynamics (8.F. H. Yy method which improves
the P.I1.C. method in several respecls, in pa,rtmular by avoiding the use of a fixed
finite-difference mesh.

Now, by taking into account the considerations of Section 1, we are able to
extend the S.P.H. method of Gingold and Monaghan method. For simplicity, we
shall restrict ourselves to the one-dimensional case but the analysis can be easily
extended to mrlii-dimensional problems. Therefore, we consider the one-

dimensional gas dynamics equations in slab symmetry:

‘;’;’ F——(pu) =0,
2 (o) +—-(pu*+p) =0, (3.1)

b7 0
= (pH) +‘§;(PE+P)“ 0.

In (3.1), p ig the density of the fluid, w is ity velocity, p is 18 pressure and K is ifse
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total energy per unit mass. In order to close the system of equations (8.1), we need
to add an equation of state . : | |

p=p(p, €), - - (3.2)
where e==.E-.—'-.% u” is the internal energy of the fluid per unit mass. Hence, getting
P % 0 . 0y -
- \pH /. 0 p/p u |
the system of equations (3.1) can be equivalently written in the form
op , O » | 1
o (A(P)d) =0. (3.4)
Next, we decompose the matrix A(¢) in the following way
_ 0 O 0
A(P)=ul+B(¢). B(d)={p/p 0 0] - (8.5)
, 0 2/p ©
hence separating the convective terms from the pressure terms. Thus (3.4) becomes
| 3(‘15 o : 7, : e s
.0 i Ty (ue) +o—(B($)h) =0. 3.6)

- Now, we apply the particle method of Section 1 to the firgt—order system (8.6).
We are looking for a particle approximation ¢, of ¢ -

¢'ﬁ(m: t) =k§f wk(t:} qsl'-(f'ja(m_ m?ﬂ(t)):

where

_ Pty -_
and ¢—>a,(¢), k€ K, is the solution of the differential equation

[ S22 () = ().

Ly (0) =&,
The functions t—w,(#) will be specified in the sequel.
The method of discretization (1.18) gives here:

g o) + 2w B($u) i+ B() ) lu(a— ) =0, kCEK.
By using the form (8.5) of the matrix B(¢}, we obtain

(3.7)

'j_t(‘wi'ﬁpk) — O:

K N Py P o O
gz WPts) + w3 o T __)gn(mx %) =0, (3.8)

i _pi i ﬂ :; , per— [——}
= (wkp;ﬂk)-l—w',,l; fw;( D =+ o pku;,-,);(mk ) =0.
Thb first equation (8.8) gives
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20 =My =constant mass of the particle %. - (8.9

This expresses the conservation of mass. Next, using (3.9), the second and third
equations (8.8) of conservation of momentum and conservation of energy become

respectively

.:m L SO0 ( _})g(a«k— 7)) =0 (310
and
4 ;;(m ( ¢t B u;)f;‘:.(?@.-—m;)=0. (3.11)
By setling |
€y = Ek—'%“ u |
and using (8.10), we note that (8.11) may be also written in the form
de”’ + P E;‘lm;(u,ﬁ-—u;)f (@, —~ ;) =0. (8.12)
Finally, it remains o specify w; or equivalently py= :j”"' . We take
K
P == ;; Ml (T— 1)« ) (8.13)

: .
Therefore, the particle method of approximation of the gas dynamic equations

(3.1) is defined by (8 7), (8.10), (8.12) and (3.13).
It remains o introduee a time—diseretization in order to obtain a practical

pumerical method. This is done by using a leap-frog time-stepping exactly as in
Richtmyer and Morton [14, p. 206]. Moreover, in order io prevent the resuliing
scheme from the development of nonlinear instabilities, we have to add io the
pressure p and “ad hoc” pseudo—viscosity term ¢ of Von Neumann-Richtmyer type

ou ou
¢ {—mm Bt Tu
ou
0, _—-——E}O

where o is the local sound speed and « .8 a numerical pa.ra.meter For details, we

refer to [7] and [11]: see also Section 4. .
In fact, one-dimensional numerical experimenis show that 1;]:1]5 La,grangmn

particle method is simple and robust and produces very satisfactory results. Again,
we refer to [7] and [11] for more details in that direction. The apphcatmn of: the.-_
method to the numerical approximation of two-dimensional problems is in progress,

On the other hand, the sdiudy of the convergenﬁe of the method is an open

mathema.tma.l questmn

§ 4. Extensmn of the Partlcle Method
Contectlon—anfusmn Problems -

The particle me‘ﬁhod can be easily extended to the numerical appromma‘bmn of
convection—diffusion problems. Let us consider the Cauchy problem for a convection
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g e iy

—

diffusion equation
'. 31,! n__i i___rn a au =_ .n.
1"&*% oo ) = By (05, ) =Fr #ER >0
u[m, 0) “_-"uﬁim)‘
In (4.1), u=u(z, t) and f= f(a, ¢) are scalar functions and the coefficients o satisfy
the conditions (1.5). Mcreover, we sssume that
bEL=(Qr), bz, 1)=L>0. (4.2)
Again, we look for a particle approx.mation u, of the solution u of (4.1) defined
by (1.11). A first approach congists in putting (4.1) in the form of a firsi order
gysiem. | |

ou
3:‘11,—_

(4.1)

Setting p*= b , the first equation (4.1) becomes

r.g.qi 21_._3 / 3 =-
m +2‘ 3m‘ (EH"I"P) fl

fml .

Now, assuming that the functions @', b and f are continuous and applying the ideas
of Section 1, we want to find the scalar funciions t—>u(t) and ¢ —>pi(t), 1sisn,
kC K, solutiong of the differential system: | '

T ot | |
jj;(%ux) w24 29 wi(pi+pt) _Eéi (wh—ﬂﬁf) =S,

ph+be B (=) -5 (s~ 2) =0, 1<i<n, (4.8)
w(®=w(&).
For the convergence of this methed, we refor again to [5].

Let us now describe another way of approximating Problem (4.1) which
appears 10 be more effective in some practical problems. Starting from (1.14), we

have only to derive a particle approximation of ai (b ZE" ) This is based on the
Ly :

following result concerning the approximation of differential operators by
generalized finite—difierences.

Theorem 8. _Assume that the ccefficients a* and b are smooth enough. Assume in
addition that the cut—off function { ds radially symmetric, i.e., there ewists Junetion
{: R*>R such that | ' '

(=) ={(|=]). (4.4)
Moreover, we suppese that the function { belongs to the space WPrL1(R*) and satisfies

the conditions (2.5). Then, if the funotion v belongs to the space WH=(R"), s==
max(r=+2, m-+1), we have:

;;w‘(b(mf‘j +b(2) ) (v(@r) ~ v(ap)) Do u~21) (33— )

| &y — oy | #

FE6 Bl ) s
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et

In (4.5), D{.(») is the total derivative of the function {, at the point z so that

DL(z)-y=3} 25 @)y

Hence, assuming tha.t'(ti .4) holds, a natural particle approximation of Problem:

(4.1) congists in finding the functions t—u(?), k€& K, solutions of

E'i(lfﬂm_—mﬂ)'(mzf'mﬂ

: : e == L}
. 1m1_mlllﬂ . Fﬁfh

i ?d{ (wiuy) +wy a *w;,(b;-i-‘bhj ('MI"" Us)
- ﬂk(o) =o (&) -

1 (4.6)

For a mathematical study of this numerical method of approximation of

convection—diffusion problems, see [6].

Let us point out that the previous method is well adapted %0 the particle

diseretization of the psendo—viscosity ferm irtroduced in Section 8. In this direction,
the method may be viewed as a generalization of a method considered by Gingold
and Monaghan, - S
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