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Abstract

Tn this paper, the penalty-nonconforming finite element method for Stokes equations is considored.
An ahstract error estimate is given., For Crouzeix-Baviart nonconforming triangular elements, in
particolar, the analysis shows that the “reduced integration” tochuique is not necessary in the
integration of the penalty term on cach element. Tt means that a loss of precision is avoided in this
penalty method, o

§ 1. Introduction

F

- We consider the numerical analysis of a class of finite element method for

Stokesian flow problems of the type | r
| ~pAu+Vp=f in Q,
dives=0 in Q, (1.1)
u=0 on 04,

where p is the viscosity, 8= (uy, *-, %) is the velocity field, p is the pressure, I is
the body force density, and G is an open bounded domain jn R". 2Q is the
boundary of Q satisfying the Lipschitz condifion.

As usual, let H*(2), H3(Q) denote the Sobolev spaces with norm I lmo, and
V= (HI(Q))", M={g€I*(Q), L ¢dw=0}. Then the boundary value problem
(1.1) is equivalent to the following variational problem:

Find (&, p) €V XM, such that

{am, v)+b(p, p)=<Lf, >, VvEV,

1.2
b(“: Q)EO: VQ'EM: ( )
where

o i [ P e
ﬂ'-(ﬂ, t’) Migljﬂaﬁj aﬂ.?; dﬂ?,

b(v, 9)= -L ¢(div v)dz=— (divy, 9),

S, v>-Lf-v .
A direct finite-element approximation of problem (1.2) leads to the so-called
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mixed finite element methods using conforming and nonconforming finife
olements which had been studied extensively, see [1]—[5]. An alternative
formulation of (1.2) is provided by the exterior penalties where (1.2) is replaced
by a family of perturbations consisting of nunconstrained problems depending on a

penalty parameter s>>0. - , _
Let & be an arbitrary positive number. Then a penalty approximation of the

variational problem (1.2) consists of finding (&,, p.) €V X M, such that
ﬁ(ﬂ,, t’) +b (U, P') . (fs ﬂ), Yvec V: (1 3}
b(“., ﬂ')"'s(P-, Q’) _0: VQEM' |
For any v €V, we have

j.ﬂ divedo=0;

$hen we can eliminate the pressure p, from the last equation and get

py=—-L dives,, in Q. (1.4)

8

Finally, we obtain the penalty approximation of the variational problem (1.2)
containing only unknown functions &, ,
. a(te,, ©)+s(dive,, dive)=L{f, v), VvE}l. (1.5)
The variational problem (1.5) and (1.4) is equivalent to problem (1.8). The
gignificant advantage in the penalty variational problem (1.5) is that the pressure
does not appear explicitly in the variational formulation; hence the corresponding
finite eloment schemes can be consiructed t0 have fewer unknowns than the
gtandard mixed methods.

Finite element methods based on(1.5) have been proposed by several authors®2,
who on the basis of numerical experiments, have determined that i¥ is necessary o
use reduced integration of the penalty terms in formulation (1.5) in order to
obtain physically reasonable resuls. These reduced-integration-penalty schemes
2150 have been studied mathematically by several anthors, In pariicular, we refer
to the work of Oden, Kikuchi and Song™®.

In this paper, nonconforming finite elemenis are applied to penalty finite
oloment methods for Stokes equations. Moreover, an abstract error estimatle is
given. For nonoconforming triangular elements, in partioular, the reduced
integration technique is not necessary. It means that the integration of the
-penalty term on each element ig required to integrate exaotly.

o~y Nﬂnmnf"r“?ih# Finite Element Approximation

First of all, we recall the basio _bpnverganoa theorem for péﬁalty problem
Theorem 2.1. Géven 80, let ¥, EV be the solution of (1.8) and let p. be the
funotion given by (1.4). Then (8, p,) converges sbrongly to solution (u, p) of (1.2)
(0. V. % M as 8>0. . Moreover, the following estimates hold - FIO I
Pl ke R B BT, & _uu_;-;a—:ﬂ.;ﬂvrl-_lpﬁéhsgilxﬁﬂa, ST BN
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where O is a constant independent afra
The proof can be found in [10]. : .
We disouss the nonoconforming finite element approximation 0 problem (1.8).

Let Vs, M, be two finite dimensional spaces, and MC M; in general, V', i3 not a
subspace of V. Suppose VA (L?(2))". We extend the definitions of a(t, v) and
b(v, ¢) to (VaHUV) x(VaUY) and (VU V) X M respectively. Let an(#, ©) and
bx(®, g¢) denote those extensions, and ;

(8, v)=a(l, v), ‘v’ﬂ,-.ﬂEV,
ba(w, ¢)=b(v, q), VvEV,qEM.k

Furthermore, suppose that
(1) there are three constants us}() A>0, B>0 sueh tha.t

ax{ Vs, vﬁ)?ﬂ“vn“ X | VOL.CV,,
@h(i“h vﬁ) | Q-A-Ilﬂnﬂ;"v;ﬂn, ‘9’“}, f-’jerj, | : (2.1)
ba (s, O) IQB"U’AHLH hlu, VOL.EV,, an €M,

where ||« |, denotes the norm of space Vy;
(2) there is an operator p,: ¥V ,—>M; satisfying

~ba(0s, ¢a) = (2ah, &), YBEM,; (2.2)
(3) there is & cOnstant O 1ndependent of 2, such thal
[vlo.o<Oltals, V4EVS (2.3)
(4) there exists a constant £n>0, such that
sap bl%”l: gﬁ) ?Bh anllx, V@ €My, - (2.4)
taEVs v}.'lh

| The nonconforming finite element approximation of (1. 3) is the solution to
the following problem:
Find (un, Pﬁ) EV;XM};, such that

{ﬂ;(ﬂi, I?;,) +bi’l<ﬂﬁ: Pi) e <f: vb): Vvle VM

bu(th, o) —8(Hh, ) =0, Vo€ M,
To begin with, we prove the following lemmas.
Lemma 2.1. Suppose that the hypotheses (1)—(4) hold. Then problem (2.5)
has & unigue solution (e, 1%), and the following estimates hold

_[uuznfaqmo,n,

(2.6)

, o O (2.6
Hﬁ'ﬂi<'__3_"fln,ni #.6)
where O is a consiant dependent only mu,Awnd,B
Proof. B;y condition (2. 2) problem (2.5) can ‘be rewritten as follows:
ﬂh(“ﬁ: vl) +_"'(Plvh Plui) —<-f obj V"ae V},
1 AR X YL oo umome o (2'5)*

ﬁ—-”ﬁﬂrwgy;m.wwﬂﬁ_

o X

Obvlously, problem (2.5)* 18 equivilent. to problen (2.5). It is straightforwa.i;d
{0 seo that problem (2.5)% .hss a unique solution: (&, ;) by ithe Lax-Milgram
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theorem™Y, Betting v,=u} in (2‘ 5)*, we obtain

lusli< ZHan(es, ) +L (o, i) } =147, > <L 1f ool o

From condition (2.3) , We have

|4 [ <O{f lo.0.
| On the other hand, by inequality (2. 4) we have

Bililu< sup- Z’ﬂ("n: 2) _ gup =8, O)+<S, o

n"n - RET H‘Unﬂn

<4 nﬂri'ouf”o.aﬁgﬂfﬂo.n-

Finally, we get iy
| Hpillu'ﬁ—ﬂf o.0.

Furthermore we will prove that when 3-—)0 (u}:, p},) ﬁoﬁ*&'ei:ges to (wy, »;)
satisfying

{a;,(u,,, )+ 8 (0y, 1) =<, vh> Vﬂ;EV.,

2.7
by(8, q3) = 0, VoM, i)

We have

Theorém 2.2. Assume thas hypotheses (1)—(4) hold. Then (45, p3) converyges
to (W, o) when 8—0 and the following estimates hold

e; ~ [, <OB5e|f |00, (2.8)

|25 —2a] <0872 f |0, 0, | | (2.9)
where O 48 a constant dependent only on «, A and B. |
Proof. From (2.5) and (2.7), we obtain

@, (15— —Uy, Uy) =0, (Un, Dr— Pﬁ) V”LGVL- (2.10)
By inequality (2.4), we have

_ Hﬁ“Pk"H"Q 108, — et fs.. (2.11)
Taking )=t — 1, in (2.10), we get

s~ wli<Ll o (o, i — 1) = - by (01}~ ty, pr—p})

- (2, ;1) <= ﬂﬁﬂxﬂpx—ﬁh@ﬁﬂw—rm ~thls
the last inequality is from (2.6) and (2 11) Hence inequalities (2.8) and (2.9)
follow immediately. . 5
For the error estimates of lu—-u,.ﬂ,. and ﬂp-—p;,ly, we have
- Theorem 2.3. There exisis o oomtcmt O imdependent of b, suoh that

ju— "iﬂl+ﬁilﬂ“?bﬂu<o(1+ ) l" "iﬂi’l‘qigii!P—L§§IR+EEnﬂrg},

¥

where: (a,p)athsmhmmto(l DY, ond. i sy i .
T dG A E,,(n, ;) = ap (s, ”n)"l'bh(”u P)"'(f: 9:): (213)



P T — ]

_|Bupod| L (a1
| Byl = sup- M—Mh , | 218
Proo f By e.qua,llty' (2 13), we KkKnow 'lihﬂ.‘t- for H.I'bl‘[?I'&I‘j" 0, € FL, ("; P)

gatisfies
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ay (8, ©,) + (U, P_) ={f, v+ B, p; vﬁ), ane Fh:

ba(tt, ) =0, VarE M.
From (2.7) and (2.15), we get

an(B—th, Us) =bu(s, ;y—p) + En (84, P; ), YOLEP.. (2.18)
For arbitrary v, €V, and g€ M,, we have

(U~ s, Op—1h) =G (0 — U, Ur— ) +a,.(u 8, Ur—1Us)
=y (U — U, Uy—th) H0, (U — 1y, pv—p) +Ex (8, p; Oy—1h)
=g (Uh— B, Us—th,) +0s(Or— ¥, Da—D) + 5 (8 — s, 31— D)
+ By, p; Os—th).

Moreovar, we obtain

(2.15)

|os—t[x< —-{AE"“t’hﬂhh’i"*ﬂiﬁr“BI"_”hHhﬂP‘"Pﬁﬂﬂ

. +Bﬁ”“‘“nﬂiﬂ?—9nﬂr+Enﬂvs|f’i t/n}
Then there is a constant 0; dependent only on a, 4 and B, such that
i“““ﬁ“iﬁf}i{ﬂ“—_”ﬁﬂi‘l'ﬂu*‘t’nunﬂ‘ﬂ—ﬁhﬂr -
+lu—thjo—alut+iBlRd, VOEVS, a» € M. (2.17)
On the other hand, inequality (2 4) yields -
Balgr—palue< sup 2% B=Tr) < sup XA E NENCHEr

vaE¥a Uriia t?lET"l L 253 H A
QA”"_""I*"I' IE#HH"'BI‘P‘“%IH: YV € M.
Fuarthermore, we have

Bilp—nla<dlg—tha+ | Eln+ (B+B) | p—aly, VHEMs. (2.18)
After combination of estimates (2.17) and (2.18), the error estimate {2.12)
follows immediately.
Finally, an abstract error estimate for penalty—nonconformmg finite element
approximation i given by Theorems 2.2 and 2.3.
Theorem 2.4. Supposs that hypotheses (1)—(4) hold and (8}, D}) 48 the soluiton
towoblem (2. 5)* thmwhawthofouomnymormw " _

fer; “1|L+3nﬂﬁ—PHx<(1+—){ inf Hu v;

ﬁET?

+ inf EP'Q:|!+ |Enﬂn+“|.ﬂm } Broooeeis o (2.19)

s €My

N §3.. Nonconformin'g' Tri&iiﬁulai- Elemenﬁ

" Tn this section we ghall confine ourselves to. flietdase n«=2.  Moreover, Huppose
0 is‘gn open cONVeX . polygen.. @ ig divided into/some triangles {K}. Let J,
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denote thig triangulation satiéying

(1) Q =52,f. .
(2) For each distinet K; and K,€ .7, either KiﬂK, ig empty or K; and K,
have a common vertex or X; and K, have a common side,
(8) let
hx _dlam(K)r
pr=—sup{diam(S); § is & cirole contained in K},
h=max{hy},

KEer

p=min{ps}.

Hey,

BSuppose h/p<a, where o >0 is a constant.

(I) Linear elements for the velocity fleld

Let N, denote the set of the midpoints of the sides of .7 on the boundary of @
and N; denote the Eet of the mldpomts of tha sides of .7, » in the interior of 0.
‘Suppose

.§h__{@]q, |r€ P1(K ), VK €7, v is continuous on Ny and o(d) =0, Y¥bE N,},

»
v={ele|xEPo(K), | gdo=0},

=‘l§h XSJH

where P,(K) denote the space of all polynommls of degree <<k on domasain K.

Obviously, M, is a subspace of M, but ¥, is not a subspace of V. Therefore we
need o define the approximate bilinear forms:

w, )= 3 3| 0N g vu, 0EVIUY,

Edr ¢

(0, p)=— 3 | (divo)pda, VOEV,UV, pEN.

Let |©]s= (cp,.(v o)V YoV, Iiis straightforward to see that hypothesis (2.1)
holds. In this case, operator p, is given by

pUy=—dive,on K, YK €97, v,.EV.. (3.1)
Obviously, psth€ M, and . B
(Ph”h @) = — by (1, gl): VYO.EV, (€M, | (8.2)
Hence, the penalty—nonconformng finite elament_approﬁmaﬁon (2.6)* is reduced
P @m0+ 3 3 @ives, dives=<S, o), VOEVh,
| i .
ﬁ-"‘"l AL, T

where (dw u;, “div 1?;.)3-] div et - dﬁﬁ.ﬁh

Tt is olear shat the reduoced 1n1;egmh:on techmque is. not neoessary for t]:us case,
For spaces ¥V, and. ¥, we have T _
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Lemma 8.1. There exists a constant O independent afh such that
sp | Fa(3: & U) | <OR(|8]5,0+|p

.t i I A
where (W, p) i3 the solm-:,m.to problem (1.2) and € (H*(Q))3 pc H(Q).
Proof. By Green’s formulatinn, we obtain

E;(u, D, ‘UL) ”BE’ J' * s dig E I ('-U;‘P)Pdﬂ

_ Bus [ ow ous
i xzsr.{.[m 04 Vi &S+ sk O%a vavidS+ oK O v1ta &S

Ol " ol =, o
i3 2K O ¥ara dﬂ} BE. “‘ ﬁppﬂh dS+J oK el dS}’

where t=(uy, ), Uy= (v}, 92), v= (4, v,) denotes the unit outer normal vector
on 2K. Let |

irﬂ) 3

Tp, va)= Bg Lx v, dS, Y€ HYQ), nES,.

By the result about Orouzeix-Raviart triangular elements in [12], we know that.
there exists a constant U independent of %, such that

Ti(@f ) | <Oklg|1,0
Therefore, we obtain

| Ea(8, 2; Oa) |§Ok{ Pz, i‘D_I_I Oy 1*” a‘”ﬂ

}H”hﬂ'
<OM|p|1,0+ |8] 5,0} [Oa]s. |
The proof is completed. |
For o, &€ S;,,, the discrete imbedding theorem holds. Then there is a constant.
C independent of h such that
| tale,0<Olwsls, YuE 5' - (3.4)
The proof can be found in [13] with hardly any change. Hence we have
Lemma 8.2. There is @ constant O independent of h, such thai

ﬂ”ﬁ lo. 2 <0 v;'“_n, VOL,EV ).

[%“h V@G HI(Q), v € éﬁ.

%5 |1

+ Das |1

1. 0

' Futhermore, we have
I.emma 3.8. wam evists ¢ constant B independent of b, such that

b" vi, 9 ?BE%!I& Yo € M,

-tk - U {a

Lemma 3 4. For gwm uGF’n (H*(2))? and p€ M N HY(Q), we have

wo Tt

mf ﬂ“ L #3 nﬂahlulﬂ.ﬂ;
o€V,

inf [o—qafo,0<0%|p|1.0- -

anEM,

The result in Lemma 8.8 has been jshown [in |[2] and used implicitly in [1].
The proof of Lemma 8.4 can be found in [11]. -

- -An application of Theorém 2:4 yields the. following error estimate:

'Theorem 8.1. Suppose that the solution (u,p) of problem (1.2) satisfies:

E‘Il
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u < (H2(Q))? p€ HY(Q); then the following inequality holds ™y
|22t ]a+ 20— D30, 0<OB( %) 2,0+ |P1,0) + &) flo0}, - (3.5)
where O i3 a constant dependent only_on a, 4, B and B. (8;, 1%) 4s the solution to (3.3).

(II) Quadratic elements for velocity field

For each triangle K €7, let gy, @1, as be the vertices of K and by, bs, ba, by,
b5, be be the six Gauss-Legendre points of its sides. We use.
(A1, As, Az) a8 the barycentrio: ﬁooljdlnatas of a point.o of
K. On triangle K, there exists a *neutral fanction” =
(unique up t-o a multiplicative oonqtant) -

‘ibmr(ﬂ?) "2_3(3-1 +3-2+3-32)
which vanishes on the six Gaunssian: nodea by, bg, ver, 5, and
belongs to Py(w). - e w0 e . @y
W:.-"{%I‘UslIEPn(K ), 9 i8 continuons on the two (Gaussian nodes
of eaoch interside of 5’}, a.nd fv,.(b;) ={), when b€ 3!3}

Suppose . :
X’,,-=-{*v,. wh[EEPﬂ(K'), ig ﬁontmuouﬂ on £; and 4,[;0=0},

* Oy={s| Ps| x =arho,x(#), ax ER'}.
By proposition 1 in [14], we know Wi=X ADP,. Asgume

{.&ﬁ— {Q’nlg’ﬂxePi(K) _[ q*dgﬁﬂ}

V;.=W,.><W; with norm [o,)i=~a (0, ©,).
Similarly, in this cage operator p, is given by |
| pth=—divoyon K, YK ET, 0,€V, -~ (8.1)*
where p0,CM,, and the penalty nonconforming' finite element approximation
(43, 7}) 1s given by
[, )+ 3] @ives, dive) =S, 05, YB,ET,

- {8.6)

P Pnﬂi- | | | |

In problem (8.8)*, the integrations of penalty terms on eaoch triangle are required

to integrate exactly. Xor the spaces ¥, and M, defined by (3.8), sumlarly, we have
Lemms 8. 1"’ There és a constant U indspendent of h, such that '

L JE,,(E;, gﬂr, .vn)lqgkﬂ(|u|3,5+lﬂls.n),

€ Uil
where (4, p) t2 the solution to problem (1.2) and u € (H’(Q))’, p€ H"(Q)
Lemma 3 2*.  There is a constant C independent of h, such that sepn ®

| " s ﬂvi"u.nqaﬂt’lﬂh VOLE V.
Lemma'=§_.3*. There ewists a constant B independent of k, such that

sup 193(Un fﬁ L>Blale, VacH,

mET"'. ﬂl?
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Lemma 8.4*. For given uEF"ﬂ (H*(Q))? and pGMﬂH“(Q), we M’Uﬂ
inf ﬂu t’;BLQOh |“|3.ﬂ;

eV,

inf {p—qa|u<OF*|D|3,0,

gAEM,
where O is a constant tndependent of h.

A sketoh of the proof of Lemma 8.2% was given in [14], The proois of the
other three lemmas are basically the samé. Finally, we obtain *

Theorem 8.2. Suppose that v & (H l‘(SZJ‘))’ pE H“(Q) and (u, ) és the solution
to (1.2): then the following inegquality holds - . | B

Nu—uilatlp—pila<C{s* “"lhﬂ"f" L'Plﬂ.n] +3||f|]o.n};
where O is a constant independent of h and s.

Conoclusion. The nonconforming finite element method for Stokes equalions
has special advaniages: by use of nonconforming elements for the. standard mixed
method, the optimal error estimate or quasi-optimal error estimate can be obtained
[1], [8], [14]; by use of nonconforming Orouzeix—Raviart triangular elements for
the penalty variational problem (1.5), the reduced integration technique is nod
necessary. It means that a loss of precision is avoided in this penalty method.

»
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