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Abstract. An interesting discretization method for Helmholtz equations was intro-
duced in B. Després [1]. This method is based on the ultra weak variational formu-
lation (UWVF) and the wave shape functions, which are exact solutions of the govern-
ing Helmholtz equation. In this paper we are concerned with fast solver for the system
generated by the method in [1]. We propose a new preconditioner for such system,
which can be viewed as a combination between a coarse solver and the block diagonal
preconditioner introduced in [13]. In our numerical experiments, this preconditioner
is applied to solve both two-dimensional and three-dimensional Helmholtz equations,
and the numerical results illustrate that the new preconditioner is much more efficient
than the original block diagonal preconditioner.
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1 Introduction

A wide range of physical problems (for example, the acoustic scattering) in steady-state
oscillation can be characterized using the Helmholtz equation (i.e., harmonic wave prob-
lem). Yet the main difficulties in numerically solving harmonic wave problems lie in the
non-coercive nature of the problem and in the fact that the solution is oscillatory with a
wavelength λ=2π/ω. There exist many numerical methods for solving Helmholtz equa-
tion in literature: finite volume [2] and finite difference methods [3], the finite element
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method (FEM) [4, 5], the Galerkin least-squares FEM [6], the quasi-stabilized finite ele-
ment method [7], the Partition of Unity Method (PUM) [8,9], and the predefined reduced
bases [10], the boundary element method (BEM) [11, 12] and the wave shape functions
method [1, 13–15]. Among these methods, the last one becomes popular in the recent
years.

The UWVF method was first proposed for solving Helmholtz equation and Maxwell
equations by Cessenat and Després, see [1, 13, 16]. In this method, the Ultra Weak Vari-
ational Formulation is associated with a triangulation on the underlying domain where
the trace of the analytic solution and its normal derivative on the skeleton of the mesh
need to be computed. In the discrete UWVF, one uses exact solutions of the Helmholtz
equation (without boundary condition) on every elements as basis functions, which are
usually called wave shape functions. Once the discrete variational problem based on UWVF
is solved, the full approximate solution can be obtained by solving local problems on the
elements. It was proved in [1, 13] that the approximate solutions generated by the dis-
crete UWVF possess the optimal error estimate. The results reported in the subsequent
study [14] show that the method permits the use of a relatively coarse mesh and can
reduce the numbers of DOFs per wavelength in comparison with the standard FEM.

Since the stiffness matrix associated with the UWVF method is of high ill condition
when the frequency ω is large (so the mesh is fine), how to iteratively solve the system
generated by the UWVF method is a difficult problem. Because of this, a block diagonal
preconditioner D for the system generated by UWVF was proposed in [13]. In the nu-
merical experiments of [13], the preconditioned Richardson’s iteration with such block
diagonal preconditioner is applied to solve the linear system generated by UWVF for
some two-dimensional Helmholtz equations, and the numerical results indicate that the
preconditioner D is slightly effective only. In the numerical experiments of [16], the au-
thors adopt the preconditioned Bi-Conjugate Gradients Stabilized Method (BICGSTAB)
with the above block diagonal preconditioner to solve the corresponding linear system
since the BICGSTAB is faster than the Richardson’s iteration. It was pointed out in [16]
(pp. 743) that an interesting question is how to obtain a better preconditioner than D. However,
to our knowledge, up to now there is no better preconditioner proposed in literature.

In this paper we try to construct a more effective preconditioner than D. Motivated by
the domain decomposition method, we construct a coarse solver associated with a non-
overlapping domain decomposition to the underlying domain. By adding the coarse
solver into the original block diagonal preconditioner D, we obtain a new preconditioner
B. We would like to emphasize that the new preconditioner is not a standard substructur-
ing preconditioner based on non-overlapping domain decomposition, and is simple and
easy to implement. To illustrate the effectiveness of the new preconditioner, we apply the
preconditioned BICGSTAB method with the new preconditioner (and the original block
diagonal preconditioner) to solve the systems generated by the UWVF method for both
two-dimensional and three-dimensional Helmholtz equations. Numerical results show
that the new preconditioner B is much more effective than the original block diagonal
preconditioner D. It is well known that a satisfactory theoretical result on a solver for
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Helmholtz equations is difficult to obtain, so we do not consider this topic in the present
paper.

The paper is organized as follows: In Section 2 we briefly recall the Ultra Weak Vari-
ational Formulation (UWVF) for Helmholtz equations. In Section 3, we describe dis-
cretization of the variational formulation. In Section 4, we construct a preconditioner
for the stiffness matrix associated with the UWVF method. In Section 5, we report some
numerical results to confirm the effectiveness of the new preconditioner.

2 Ultra weak variational formulation for Helmholtz equations

In this section we recall the Ultra Weak Variational Formulation (refer to [13]). Let Ω be a
bounded and connected Lipschitz domain in Rl (l=2,3). Consider Helmholtz equations
which is formalized, normalizing the wave’s velocity to 1, by











−∆u−ω2u= f , in Ω,

(∂n+iω)u= t(−∂n+iω)u+g, on γ,

|t|<1, t∈C.

(2.1)

The outer normal derivative is referred to by ∂n and the angular frequency by ω.

The basic idea of the ultra weak formulation is to consider a new unknown as well as
a new continuous problem from which we will be able to go back to the original problem
(2.1). To achieve this, let us consider a partition of Ω in the sense that

Ω=
N
⋃

k=1

Ωk, Ωk

⋂

Ωj=∅, for k 6= j,

Γkj =∂Ωk

⋂

∂Ωj, for k 6= j,

γk=Ωk

⋂

∂Ω, (k=1,··· ,N),

γ=
N
⋃

k=1

γk, Γ=
N
⋃

k=1

∂Ωk.

In practice, the partition is a mesh of domain. The sets Ωk are the elements. We denote
a local interface by Γkj or a part of the boundary by γk. The size of the triangulation
associated with the elements {Ωk} is denoted by h.

2.1 Existence and uniqueness of the solution of (2.1)

The following classical result can be found in [1].

Theorem 2.1. Let Ω be an open bounded set, and γ be its boundary assuming it is of class C1

nearly everywhere. Let f ∈ L2(Ω) and g∈ L2(Ω). We let ζ =(1−t)/(1+t) and assume t to be
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constant, |t|<1 (then ℜ(ζ)>0). Then, there exists a unique u∈H1(Ω) satisfying







∀v∈H1(Ω)
∫

Ω
∇u·∇̄v−ω2

∫

Ω
uv̄+iωζ

∫

γ
uv̄=

∫

Ω
f v̄+

1

1+t

∫

γ
gv̄,

(2.2)

or equivalently
{

−∆u−ω2u= f , in Ω,

(∂n+iω)u= t(−∂n+iω)u+g, on γ.
(2.3)

2.2 Ultra weak variational formulation

Let nk and ∂nk
denote the outer normal vector and the outer normal derivative to ∂Ωk,

respectively. Define

W(∂Ωk)=
{

ψk=(−∂nk
+iω)e|∂Ωk

∈L2(∂Ωk); e∈H1(Ωk), ∆e+ω2e=0
}

,

and

W(Γh)=
N

∏
k=1

W(∂Ωk),

with the natural scalar product

(ϕ,ψ)W =
N

∑
k=1

∫

∂Ωk

ϕk ·ψkds,

hereafter ϕ|∂Ωk
= ϕk∈W(∂Ωk), ψ|∂Ωk

=ψk ∈W(∂Ωk) and ψ denotes the complex conjuga-
tion of a complex function ψ, and

Γh =
N

∏
k=1

∂Ωk.

The value of the unknown ϕ in the UWVF formulation will be defined from the solution
u of (2.1) as being

ϕk=((−∂nk
+iω)u|Ωk

)|∂Ωk
.

For ψk = (−∂nk
+iω)e|∂Ωk

∈W(∂Ωk), with e satisfying e ∈ H1(Ωk) and ∆e+ω2e = 0, we
call such function e=Ek

h(ψk) as the Helmholtz extension of ψk in Ωk. Set Fk
h (ψk)= (∂nk

+
iω)Ek

h(ψk)|∂Ωk
.

Theorem 2.2. Let u ∈ H1(Ω) be a solution of the Helmholtz problem (2.1) and satisfy the
regularity hypothesis ∂nk

u ∈ L2(∂Ωk) for any k. Then the boundary functions ϕk = ((−∂nk
+
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iω)u|Ωk
)|∂Ωk

(k=1,2,··· ,N) satisfy

N

∑
k=1

∫

∂Ωk

ϕk ·ψkds−
(

∑
k 6=j

∫

Γkj

ϕj ·Fk
h (ψk)ds+∑

k

∫

γk

tϕk ·Fk
h (ψk)ds

)

=−2iω
N

∑
k=1

∫

Ωk

f Ek
h(ψk)ds+

N

∑
k=1

∫

γk

gFk
h (ψk)ds, ∀ψ=(ψ1,ψ2,··· ,ψN)∈W(Γh). (2.4)

Conversely, if ϕ=(ϕ1,ϕ2,··· ,ϕN)∈W(Γh) is the solution of (2.4), then the unique solution u of
the original problem (2.1) can be defined by u|Ωk

=uk with uk satisfying

{

−∆uk−ω2uk= f , in Ωk,
(−∂nk

+iω)uk = ϕk, on Ωk.
(2.5)

Proof. See [13].

Define the bilinear form

a(ϕ,ψ)=
N

∑
k=1

∫

∂Ωk

ϕk ·ψkds

−
(

∑
k 6=j

∫

Γkj

ϕj ·Fk
h (ψk)ds+∑

k

∫

γk

tϕk ·Fk
h (ψk)ds

)

, ϕ,ψ∈W(Γh).

Let ξ∈W(Γh) be defined, via the Riesz representation theorem, by

(ξ,ψ)W =−2iω
N

∑
k=1

∫

Ωk

f Ek
h(ψk)ds+

N

∑
k=1

∫

γk

gFk
h (ψk)ds, ∀ψ∈W(Γh). (2.6)

Then the problem (2.4) is equivalent to

{

Find ϕ∈W(Γh), such that

a(ϕ,ψ)=(ξ,ψ)W , ∀ψ∈W(Γh).
(2.7)

3 Discretization of the variational formulation

In this section, we consider a discretization of the variational problem (2.7). The dis-
cretization is based on a finite dimensional space Wp(Γh)⊂W(Γh). We first give the exact
definition of a space Wp(Γh).

3.1 The basis functions of Wp(Γh)

For convenience, when f=0 in (2.1), we call (2.1) a homogeneous problem. Otherwise, we
refer to a nonhomogeneous problem. In each element Ωk, we introduce a finite number
of functions ekl (l = 1,2,··· ,p) supported in Ωk and that are independent solutions of
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the homogeneous Helmholtz equation (without boundary condition) in the element Ωk

(k= 1,2,··· ,N). To simplify, we consider some constant number p of basis functions for
all elements Ωk. Particularly, in this paper we will choose ekl as the wave shape functions
on Ωk, which satisfy











ekl = eiω(x·−→αl ),
−→αl ·−→αl =1,

l 6=m→−→αl 6=−→αm,

(3.1)

where −→αl (l=1,··· ,p) are unit wave propagation directions to be specified later.
Thus the space W(Γh) is discretized by the subspace

Wp(Γh)=
{

ψh ∈W(Γh) : ψh|∂Ωk
=

p

∑
l=1

θkl(−∂nk
+iω)eiω(x·−→αl ), x∈∂Ωk, θkl ∈C

}

. (3.2)

It is clear that the basis functions of Wp(Γh) can be defined as

φkl(x)=

{

(−∂nk
+iω)ekl , on ∂Ωk,

0, on ∂Ωj, satisfying j 6= k,
(k, j=1,··· ,N; l=1,··· ,p). (3.3)

During numerical simulations, the directions of the wave vectors of these wave func-
tions, for two-dimensional problems, are uniformly distributed as follows:

−→αl =

(

cos(2π(l−1)/p)
sin(2π(l−1)/p)

)

, (l=1,··· ,p).

For three-dimensional problems, the following formula proposed in [19] can be used
to generate the wave propagation directions

−→α j1,j2,j3 =

−→̂
α j1,j2,j3

‖−→̂α j1,j2,j3‖
,

−→̂
α j1,j2,j3 =





tan((2j1/nt−1)π/4)
tan((2j2/nt−1)π/4)
tan((2j3/nt−1)π/4)



,

where nt is a given positive integer and j1, j2, j3 = 0,··· ,nt are positive integers chosen so
that at least one of j1, j2, or j3 is equal to zero or to nt. Using this construction algorithm,
the number of directions p becomes equal to 6n2

t +2. For example, choosing nt=2, nt=3,
and nt=4 leads to 26, 56 and 98 wave functions, respectively.

3.2 The discrete problem and the algebraic form of (2.7)

Let Wp(Γh) be defined in the last subsection. Then the discrete variational problem asso-
ciated with (2.7) can be described as follows:

{

Find ϕh∈Wp(Γh), such that

a(ϕh,ψh)=(ξ,ψh)W , ∀ψh ∈Wp(Γh).
(3.4)
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Let A be the stiffness matrix associated with the bilinear form a(·,·) and the space
Wp(Γh), and let b denote the vector associated with the scalar product (ξ,ψh)W . Namely,

the entries of the matrix A are computed by al,m
k,j = a(φjm,φkl); and the complements of

the vector b are defined as bk,l =(ξ,ψkl)W . Then the discretized problem (3.4) leads to the
algebraic system below:

AX=b, (3.5)

where X=(x11,x12,··· ,x1p,x21,··· ,x2p,··· ,xN1,··· ,xN p)
t∈CpN is the unknown vector.

After solving (3.5), we can get the solution ϕh of the problem (3.4). Furthermore, we
can compute an approximation uh of u. In practice, the discretized form of (2.5) is as
follows:

{

−∆ũh−ω2ũh= f , in Ωk,

(−∂nk
+iω)ũh = ϕh, on Ωk.

(3.6)

Then any approximate solution of the above local equation can be regarded as uh|Ωk
. In

particular, when f =0 on Ωk, the solution of the Eq. (3.6) can be obtained directly, i.e.,

uh|Ωk
= ũh|Ωk

=
p

∑
l=1

xklekl , (k=1,··· ,N), (3.7)

where xkl and ekl (k=1,··· ,N, l=1,2,··· ,p) are defined by (3.5) and (3.1), respectively.
In general the system (3.5) is solved by some iterative method, for example, the pre-

conditioned BICGSTAB method. Then we need to construct an efficient preconditioner B
for the matrix A, and use BICGSTAB method to solve the equivalent system

B−1AX=B−1b. (3.8)

4 A preconditioner for A
4.1 The original preconditioner proposed in [13]

To iteratively solve the system (3.5), a block diagonal preconditioner was proposed in [13].
Let D denote the matrix associated with the scalar product in Wp(Γh), and let C denote
the matrix associated with the second part in the bilinear form a(ϕ,ψ). Let φkl be the basis
functions defined by (3.3). The exact definitions of them are given as follows (see [13] for
the details):

i) The entries of the matrix D are defined by dl,m
k,j =(φjm,φkl)W , i.e.,

dl,m
k,j ==δkj

∫

∂Ωk

(−∂nk
+iω)ejm(−∂nk

+iω)ekl . (4.1)
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ii) The entries of the matrix C are defined by cl,m
k,j =(φjm,φkl)W−a(φjm,φkl), i.e.,

cl,m
k,j =















∫

Γkj

(∂nk
+iω)ejm(∂nk

+iω)ekl , for k 6= j,

∫

γk

t(−∂nk
+iω)ejm(∂nk

+iω)ekl , for k= j.
(4.2)

It is easy to see that D is a block diagonal matrix. Then the matrix A can be written as

A=D−C. (4.3)

The matrix D was chosen as a preconditioner of A in [13]. From the numerical results
reported in [13], we can see that the preconditioner D is slightly effective only.

4.2 A coarse subspace based on domain decomposition

We first coarsen the triangulation {Ωk} as follows: let Ω be decomposed into the union
of D1,D2,··· ,Dn0 such that Dr is just the union of several elements in {Ωk} and satisfies

Dr

⋂

Dl =∅, for r 6= l.

Let d denote the size of the subdomains D1,··· ,Dn0 . Set

Γd=
n0
⋃

r=1

∂Dr and Wp(Γd)=
n0

∏
r=1

Wp(∂Dr)

with

Wp(∂Dr)= span
{

ψr1(x),··· ,ψrp(x)
}

,

where

ψrl(x)=(−∂n+iω)eiω(x·−→αl )|∂Dr
, x∈∂Dr , (l=1,··· ,p).

We try to design a solver associated with Wp(Γd). Since Wp(Γd) is not a subspace of
Wp(Γh), it can not be chosen as a coarse subspace of Wp(Γh). In order to define a suitable

coarse subspace of Wp(Γh), we set ed
rl = eiω(x·−→αl ) (x∈Dr; l=1,2,··· ,p) and define

φ̃rl =

{

(−∂nk
+iω)ed

rl, on ∂Ωk, satisfying Ωk ⊂Dr,

0, on ∂Ωk, satisfying Ωk 6⊂Dr,
(r=1,··· ,n0; l=1,··· ,p). (4.4)

Then the desired coarse subspace can be defined as

W̃p(Γd)= span
{

φ̃11,··· ,φ̃1p,φ̃21,··· ,φ̃2p,··· ,φ̃n01,··· ,φ̃n0 p

}

.
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4.3 The new preconditioner

To describe the new preconditioner more clearly, we need to define a transformation ma-
trix. With the basis functions defined in the last subsection, we define the transformation
matrix Cd by

(φ̃11 ···φ̃1pφ̃21 ··· φ̃2p ··· φ̃n01 ···φ̃n0 p)
t=Cd(φ11 ···φ1p φ21 ···φ2p ···φN1 ···φN p)

t,

where {φkl} are the basis functions of Wp(Γh) (see (3.3)).
Let Ad denote the stiffness matrix of the bilinear form a(·,·) on the subspace W̃p(Γd).

The matrix Ad can be viewed as a coarse solver associated with the non-overlapping
domain decomposition described in the last subsection. It is easy to verify that Ad =
CdAC t

d. Then the desired preconditioner B of A is defined as

B−1=D−1+C t
dA−1

d Cd.

In applications we can make the domain decomposition such that d≫ h, so the order of
Ad is much smaller than the order of A. This means that the action of B−1 is cheap to
implement (note that D is a block diagonal matrix).

5 Numerical experiments

In this section we apply the preconditioned BICGSTAB method with the precondi-
tioners D and B to solve the system (3.5) generated by UWVF method for both two-
dimensional and three-dimensional problems. In order to give a convincing conclusion,
we also consider the damped preconditioned Richardson iteration with the precondi-
tioner D, where the damped factor βn is chosen as 0.75 instead of a random variable
(the number 0.75 seems almost the optimal damped factor). For simplicity, we will use
”B (rep. D)+BICGSTAB” to represent the preconditioned BICGSTAB method with the
preconditioner B (rep. D), and use ”D+Richardson” to represent the preconditioned
Richardson iteration with the preconditioner D. We report some numerical results to
illustrate the efficiency of the new preconditioner B.

In the examples tested in this section, we adopt a uniform triangulation Th for the
domain Ω as follows: Ω is divided into some small cubes (for three-dimensional case)
or rectangles or triangles (for two-dimensional case) with the same size, where h denotes
the length of the longest edge of the elements. In the two-dimensional case, the number
p of basis functions in each element equals 12 (for the smooth case) or 7 (for the singular
case). In the three-dimensional case, the number p of the basis functions in each element
equals 26, which corresponds the positive integer nt (defined in Subsection 3.1) being 2.

In order to determine the coarse solver Ad described in Subsection 4.2, we define
subdomain Dr, (r = 1,··· ,n0) as follows: each subdomain (coarse element) Dr is a cube
(for three-dimensional case) or rectangle (for two-dimensional case), which is just the
union of several elements, and every subdomains Dr have the same size. Let d denote
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the length of the longest edge of the subdomains Dr. In general we can define d≈
√

h in
the domain decomposition method. However, we consider different choices of d in the
following tests so that we can see how the iteration number and computing time depend
on the different values of d/h. Note that the value d/h determines the number of the
elements contained in each subdomain Dr, and so determines the number of the coarse
elements Dr for a fixed fine mesh size h. Speaking more exactly, for a fixed h, when the
value of d/h increases (so d increase), the number of the coarse elements Dr decreases
and so the order of the matrix Ad decreases (but the iteration counts of B+BICGSTAB
increases).

The stopping criterion in the preconditioned BICGSTAB iteration is that the relative
L2-norm ǫ of the residual of the iterative approximation satisfies ǫ< 1.0e−8 (we choose
initial guess X0 = 0 in the iteration), and Tsol represents the computing time for solving
the algebraic system (including the construction time of the preconditioner). To measure
the accuracy of the resulting approximate solution uh, we will use the relative L2 norm

err.=
‖uex−uh‖L2(Ω)

‖uex‖L2(Ω)
.

5.1 Wave propagation in a duct with rigid walls

The first model problem is the following Helmholtz equations for the acoustic pressure u
and associated boundary conditions (see [20]):

∆u+ω2u=0, in Ω, (5.1a)

∂u

∂n
=cos(kπy), on x=0, k∈N, (5.1b)

∂u

∂n
+iωu=0, on x=2, (5.1c)

∂u

∂n
=0, on y=0,1, (5.1d)

where Ω=[0,2]×[0,1], and n denotes the outward boundary unit normal vector. The inlet
boundary x = 0 has an inhomogeneous Neumann condition, and the outlet boundary
x=2 is characterized using an absorbing boundary condition. The boundaries y=0,1 are
assumed to be perfectly rigid leading to vanishing normal derivatives on the boundary.

The exact solution to the problem can be obtained in the closed form as

uex(x,y)=cos(kπy)(A1e−iωxx+A2eiωxx),

where ωx=
√

ω2−(kπ)2, and coefficients A1 and A2 satisfy the equation

(

ωx −ωx

(ω−ωx)e−2iωx (ω+ωx)e2iωx

)(

A1

A2

)

=

( −i
0

)

. (5.2)
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The solution respectively represents propagating modes and evanescent modes when
the mode number k is below the cut-off value

k≤ kcut-off =
ω

π

and up the cut-off value

k> kcut-off .

We compute numerical approximations for the highest propagating mode and the
lowest evanescent modes. The simulations are performed for the wave number ω = 20
and 40 when the corresponding highest propagating mode numbers are k=6 and 12. The
Tables 1-4 below give a comparison of iteration numbers and computing time between
two preconditioners, and we list the approximation error for the mode numbers k.

From the Tables 1-4, we can see that, for a fixed k, the iteration number and the com-
puting time of the preconditioned BICGSTAB with the new preconditioner B increases
much more slowly with respect to h than that with the original preconditioner D pro-
posed in [13]. Moreover, the iteration number and the computing time with the precon-
ditioner B is significantly less than those with the preconditioner D. Results listed in the
Tables 1-2 indicate that the damped Richardson’s scheme is completely invalid to solve
the underlying linear system. All these show that the new preconditioner B is much more
effective than the original preconditioner D.

The results listed in Table 3 indicate that the choice d/h=4 conduces less computing
time than the other choice (d/h= 3,6), but the results listed in Table 4 indicate that the
choice d/h= 6 brings on less computing time than other cases (d/h= 3,4). Besides, the
iteration number of the choice d/h=6 increases much more slowly with respect to h than
that of other cases (d/h=3,4) for ω=20,40. Therefore, when the wave number ω increases
and h decreases, the size of subdomain d should decrease with a suitable scaling in order

Table 1: A comparison of iteration numbers and computing time between three strategies for ω=20.

Methods D+BICGSTAB D+ Richardson
h k err. Niter Tsol(sec) err. Niter Tsol(sec)
1

12

6 2.40e−6 407 8.01 5.67e−2 5000+ 31.33
7 2.11e−5 229.5 4.97 5.89e−2 5000+ 30.14

1

24

6 1.48e−7 901.5 7.28e+1 1.19e−1 5000+ 1.58e+2
7 1.04e−6 478 38.15 3.36e−1 5000+ 1.48e+2

Table 2: A comparison of iteration numbers and computing time between three strategies for ω=40.

Methods D+BICGSTAB D+ Richardson
h k err. Niter Tsol(sec) err. Niter Tsol(sec)
1

24

12 2.30e−6 2081 1.50e+2 3.56e−2 5000+ 1.59e+2
13 4.40e−6 621 54.88 6.63e−1 5000+ 1.49e+2

1

48

12 1.11e−7 4685 1.93e+3 1.55e−1 5000+ 5.65e+2
13 3.32e−6 1517.5 6.10e+2 7.89e−1 5000+ 5.15e+2



802 L. Yuan and Q. Y. Hu / Adv. Appl. Math. Mech., 5 (2013), pp. 791-808

Table 3: A comparison of iteration numbers and computing time between three strategies for ω=20.

B+BICGSTAB err. d/h=3 d/h=4 d/h=6
h k Niter Tsol(sec) Niter Tsol(sec) Niter Tsol(sec)
1

12

6 2.40e−6 51.5 1.66 56 1.39 87 1.97
7 2.11e−5 52.5 1.77 62.5 1.77 83 1.89

1

24

6 3.61e−8 78.5 16.25 85 9.56 108 12.63
7 3.46e−7 76 15.88 81.5 9.89 99.5 11.24

Table 4: A comparison of iteration numbers and computing time between three strategies for ω=40.

B+BICGSTAB err. d/h=3 d/h=4 d/h=6
h k Niter Tsol(sec) Niter Tsol(sec) Niter Tsol(sec)
1

24

12 2.30e−6 63 13.01 66.5 10.62 98 9.71
13 4.40e−6 52 11.75 62 11.81 85.5 9.00

1

48

12 3.67e−8 75.5 97.92 81 63.12 116 62.14
13 5.81e−8 73.5 1.01e+2 84.5 6.75e+1 103 5.36e+1

to keep some balance between the iteration counts of B+BICGSTAB and the computing
complexity for the coarse solver Ad (if d is too large, the iteration counts of B+BICGSTAB
is great; if d is too small, the cost for implementing A−1

d is large).

5.2 A two-dimensional singular problem in an L-shaped domain

The second model problem is the following Helmholtz equations (see [21]):

∆u+ω2u=0, in Ω, (5.3a)

u=0, on Γ1, (5.3b)

∂u

∂n
+iωu=

∂g

∂n
+iωg, on ∂Γ2, (5.3c)

where Ω is an L-shaped domain, which is shown in Fig. 1. The exterior boundary Γ is
divided into parts Γ= Γ1+Γ2 so that the edges meeting at the origin are denoted by Γ1

and the rest of boundary Γ constitutes Γ2. Besides we set

g(r,θ)= J2/3(ωr)sin
(2

3
θ
)

,

so the exact solution of this problem is uex = g. This solution has a singular derivative at
the origin (of course uex∈H1(Ω)).

In the L-shaped domain example we adopt the uniform mesh (Fig. 1).
From the Tables 5-6, we can see that the new preconditioner B is also much more

effective than the original preconditioner D. In addition, the results listed in Table 6
indicate that the choice d/h=4 leads less computing time than the other choices (d/h=
3,6) and the iteration number of the choice d/h = 6 increases much more slowly with
respect to h than that of other cases (d/h=3,4) for ω=20,40.
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Figure 1: The meshes for the L-shaped domain.

Table 5: A comparison of iteration numbers and computing time between three strategies.

Methods D+BICGSTAB D+ Richardson
ω h err. Niter Tsol(sec) err. Niter Tsol(sec)

20

1

12
2.81e−2 241.5 2.81 2.81e−2 599 1.82

1

24
1.06e−2 472.5 2.29e+1 1.06e−2 1956 2.37e+1

40

1

24
2.97e−2 493.5 2.41e+1 2.97e−2 1148 1.46e+1

1

48
1.05e−2 947 2.05e+2 1.05e−2 2395 1.20e+2

Table 6: A comparison of iteration numbers and computing time between three strategies.

B+BiCGSTAB err. d/h=3 d/h=4 d/h=6
ω h Niter Tsol(sec) Niter Tsol(sec) Niter Tsol(sec)

20

1

12
2.81e−2 80 9.97e−1 113 1.20 171 1.94

1

24
1.06e−2 85.5 7.19 104 5.61 145 6.14

40

1

24
2.97e−2 98.5 5.84 161 8.80 300.5 1.27e+1

1

48
1.05e−2 81 3.45e+1 97 2.76e+1 182 4.61e+1

5.3 A smooth homogeneous problem in 3D

The third model problem is the following Helmholtz equations

∆u+ω2u=0, in Ω, (5.4a)

∂u

∂n
+iωu= g, over ∂Ω, (5.4b)

where Ω=[0,1]×[0,1]×[0,1], and g=iω(1+~v0 ·n)eiω~v0·~x. The exact solution of the problem
can be obtained in the closed form as

uex(~x)= eiω~v0·~x,
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Table 7: A comparison of iteration numbers and computing time between three strategies.

Methods D+BICGSTAB D+ Richardson
ω h err. Niter Tsol(sec) err. Niter Tsol(sec)

10

1

12
1.43e−4 114.5 6.99e+1 1.43e−4 5000+ 4.51e+2

1

24
7.21e−6 228.5 8.98e+2 7.21e−6 5000+ 3.54e+3

20

1

12
3.04e−3 104 4.95e+1 3.04e−3 302 2.32e+1

1

24
1.22e−4 203 7.95e+2 1.22e−4 5000+ 3.65e+3

Table 8: A comparison of iteration numbers and computing time between three strategies.

B+BICGSTAB err. d/h=4 d/h=6
ω h Niter Tsol(sec) Niter Tsol(sec)

10

1

12
1.43e−4 62 4.06e+1 73.5 4.17e+1

1

24
7.21e−6 76 3.97e+2 99.5 4.72e+2

20

1

12
3.04e−3 61.5 3.27e+1 93 4.50e+1

1

24
1.22e−4 55.5 4.97e+2 92 4.29e+2

where
~v1=(tan(−π/10),0,tan(π/5))t, ~v0 = ~v1/‖~v1‖2.

Tables 7-8 below give a comparison of iteration numbers and computing time be-
tween three strategies.

We can find that, from the Tables 7-8, that the new preconditioner B is still much more
effective than the original preconditioner D for three-dimensional problems. In addition,
similarly to the 2-D cases, the results listed in Table 8 indicate that, the choice d/h = 4
induces less computing time than the choice d/h= 6 for ω = 10 and the choice d/h= 6
induces less computing time than the choice d/h = 4 for ω = 20. Besides, the iteration
number of the choice d/h=4 increases much more slowly with respect to h than that of
the other case (d/h=6) for ω=10,20.

The following Fig. 2 describes real part and imaginary part of the exact solution and
the numerical solution in the plane z=0.5, respectively. From this figures, we can find that
the numerical field, computed using UWVF, is indistinguishable from the exact solution.

5.4 A point source problem

The following test problem consists of a point source (see [22]):

u(r,r0)=
1

4π

eiω|r−r0|

|r−r0|
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Figure 2: The first row is the real part of the exact solution and the numerical solution. The second row is the
imaginary part of the exact solution and the numerical solution.

in a cubic computational domain Ω= [−1,1]×[−1,1]×[−1,1] centred at the origin. The
location of the source is off-centred at r0=(1,1,1) and r=(x,y,z) is an observation point.
Tables 9-10 below give a comparison of iteration numbers and computing time between
three strategies.

We found from the above table that the iteration number and the computing time
of the preconditioned BICGSTAB with the new preconditioner B increases much more
slowly with respect to h than that with the original preconditioner D proposed in [13].
Moreover, the iteration number and the computing time with the preconditioner B is sig-
nificantly less than those with the preconditioner D. In addition, results listed in table 9
indicate that the damped Richardson’s scheme is completely invalid to solve the under-
lying linear system. All these show that the new preconditioner B is much more effective
than the original preconditioner D. In addition, the results listed in Table 10 indicate that,
the iteration number and the computing time of the choice d/h=6 increases much more
slowly with respect to h than that of the choice d/h=4.

Fig. 3 describes real part and imaginary part of the exact solution and the numerical
solution in the plane z = 0, respectively. From the above figures, we can find that the
numerical field, computed using UWVF, is indistinguishable from the exact solution.
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Figure 3: The first row is the real part of the exact solution and the numerical solution. The second row is the
imaginary part of the exact solution and the numerical solution.

Table 9: A comparison of iteration numbers and computing time between three strategies.

Methods D+BiCGSTAB D+ Richardson
ω h err. Niter Tsol(sec) err. Niter Tsol(sec)

5

1

6
1.58e−1 117.5 5.80e+1 1.58e−1 5000+ 4.16e+2

1

12
1.56e−1 236 9.85e+2 1.56e−1 5000+ 3.98e+3

10

1

6
1.19e−1 111 5.41e+1 1.19e−1 323 2.69e+1

1

12
1.14e−1 208.5 9.01e+2 1.14e−1 5000+ 4.09e+3

6 Conclusions

We have introduced a new preconditioner for the system arising from the ultra weak vari-
ational formulation for both two-dimensional and three-dimensional Helmholtz equa-
tions. The effectiveness of the method for the large-scale numerical modelling of acoustic
fields was confirmed by some numerical experiments. In comparison with the original
preconditioner proposed in [13], the new preconditioner showed significant improve-
ment in both iteration numbers and computing time.
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Table 10: A comparison of iteration numbers and computing time between three strategies.

B+BiCGSTAB err. d/h=4 d/h=6
ω h Niter Tsol(sec) Niter Tsol(sec)

5

1

6
1.58e−1 61.5 4.33e+1 83 5.34e+1

1

12
1.56e−1 84 5.18e+2 109 5.15e+2

10

1

6
1.19e−1 60.5 2.68e+1 84 3.81e+1

1

12
1.14e−1 65 4.16e+2 84 3.88e+2
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