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Abstract

For & large class of piecewise polynomial subspaces S* defined on the regular mesh, Wi~-interior
estimate |Ua]1,., o, Clupl-s,0, UsE 84 (Q)) satisfying the interior Ritz equation B(u,, p)=0, Vpc
§4(Lh), LyC T CO, is proved. For the finite element approximation 4, (of degree r—1) to u, we

have WlL*“-interior error estimate lu—uil1,e, 0, <R 2| ully, 0 0 + |u)1g). If the triangnlation is
strongly regular in Oy and r =2 we obtain W *—interior SRPOTCONVErgence

max | D(u—us) (@) | <oB?(|Ink| [ ]s,u,0,+ |4[2.0)-

’ § 1. Introduction

Let Q be an n-dimensional bounded domain with the boundary 2Q. Denote the
norm and semi-norm of the Sobolev space W4r(Q), 1<p<<oo, respectively, by

[ulssa= 3 1 Duliner, [ulspo= 3 D} i

We simply write W*2=H* |y|,.q o= (%)% if p=2.
We consider the elliptic boundary value problem
{ — = j(m;jD;u—i—&wu) +ﬂio.Diu+ﬂuuu =f_,, in Q
u=20, on g2
and a bilinear form

(1.1)

B(H, ’IJ) =j i iI';_f.DﬂLDj'U d:‘ﬂj D{]H=t&,

Li,3i=0
where the coeflicients a;; are suitably smooth in . Suppose that

B(w, v)=e|v]3,0, 0>0, voc H(Q). (1.2)

On a regular (i. o. quasi-uniform) mesh—domain 5 of 2 we give a finite dimensional
subspace S*CC (), consisting of piecewise polynomials of degres r—1, and

Sm(ai) ={p € S*(Q) |supp e 02}, hocQ,

An approximate solution wu, C S*(82) 1o u satisfies the inferior Riiz equation

B(u—u, 9) =0, Ve€S§*Qy), (1.8)
An important special case occurs when Lu—0. Then U €ES*(Q) satisgfieg™
B(u, ) =0, VpcSMQy). (1.4)

. Buch u, will play a central  role in deriving the interior error estimates. For the
regular megh in 0, J. Nitsche and A. Schatz™ firgt proved L -interior estimate
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fun)l 10,0 U] 5,0, Q0T Ly, (1.5)
where 8=0 is an integer, arbitrary but fixed, and |ua | 5.0 negative norm. For the
aniform mesh, J. Bramble, J. Nitsche and A. Schatz® later proved L~—intferior
estimate | |

[P PSRN [N (1.6)
For the regular mesh, A. Schatz and L. Wahlbin® also proved it by the itechnique
of estimating derivatives on annuluges. The present paper extends these results and

proved the following
Tundamental Lemma. Suppose that the triangulation ds regular in £,CCQ,

and 1, € S satisfies (1.3). Then
|t 1,000 2 <) 2n ) —s, 0. (1.7)

Using the lemma, we may derive W' “~interior error estimate (Theorem 1) and
Wi =—interior superconvergence (Theorem 2) for the general problem (1.1).

§ 2. Some Assumptions

[7] and [8] discuased a priori estimate and the solvability of solution u€ W (Q),
1< p< oo, for the problem (1.1). We obtained |

Lemma 19, Let QC OV, a, EWH=(8), i+j#0, ap& L™(£2), Felr(Q), 1<p
< oo, and wEW*2(Q) is a unique solution of (1.1). Then

Nu"ﬂ!ﬂ-ﬂgﬂgl | filo.p.0, (2.1)

where p=max(p, '), P =p/(p—1), and the consianis A and ¢ are independent of p
and f.

Let Q=G be a sphere with radius R suitably small. Suppose that the Green
function g(z, y) for (1.1) existy such that

o(|]n1m*—y| | +1), n=2and a=0,

1rg(a, v) 1<} 2.2
D@ OIS g jpmyia,  n>20r |a] =1, e
By the Green function g(s, y), the solution v of (1.1) can be expressed by

u{z) =L 9(z, ¥ W)dy. (2.3)

If i<g<an/(n—1), we have

ulsao<e(] [ lo—yloel s dadg) (], 17 @) 1dy) " <elflosa
(2.4

We now turn to the finite dimensional subspace S*(€2)™ and make the following
assumptiong (for l<p=<<co):
Al. TFor each u€ WH(Q), 1<t<r, there exists a p€5*(£2y) such that

"u_‘PHssnqu‘f’hfﬂ“u $epy Gy s=0, 1, (2-5)

&

A2, Let 0w €C5(Gy) and un ESM(@), GG Q. Then there exigts p € S*(&)
such that

| wur— @[ 1.0.6< P[] 1.5.6. (2.6)
A3. For each AE (0, 1], there exists a mesh—-domain Gy, GoT CEC C&, such.
that, for all @ € 8*(2;),
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1@ ] 0.5.6:< €22 | @l 1,96, OSE8<7, (2.7)

- 1_1
”?"ﬂfﬂlﬂlgchﬂ ( ? 'ﬂ> Il'[p 0:sg:G1y 1gggpgm. (2 .8)
In particular, taking p=co, ¢=|InA| (then A?=¢") we have

@l 0,erai <t ®]0.q. 0. (2.9)

Much has been done relating to L™-convergence of the Ritz projection u € SHQ).
For the Poisson equation, for example, one has (cf. [5])

et — i | gy, oA | I 2| T|jt] 4y 00,0, 8=0, 1, 1I<USr (2.10)
and the refined estimate'®

———p

|lu—ti]g,e.050|In k|7 inf|u—e]o,=,0, (2.11)
@
i i =
where rr={ > TS
0, r>2,

Recently, R. Rannacher and R. Scott™ discussed the difficult case =2 on the convex

polygonal domain €2 in the Plane and successfully proved that the Rilz projection
Pu=u, € 8*(Q) is stable in W4?(Q), 2<p<co, namely,

| Pufs g e<cfuli,p,o; (2.12)

then g
H”—P“h.mnﬁﬂhﬂullﬂ.,,a, 2 ps oo, (2.13)
|%— Pucfg,s., ﬂgﬂhﬂl"u”ﬂ,p,n, 2 p< oo, (2.14)

They also pointed out that the results can be extended to the general elliptic operator
L and the smooth domain Q& C*?

Using a duality argument, we can derive (2.12)—(2.14) for 1<p<2 if Q is
smooth. In particular, from (2.1) with ¢’=|{InA|, we have

[lPﬂlli,,,ﬂQﬂlhhl"‘“M‘ 1.0,
|6 — Pulo,g,0<0h|Inh|*[u]1,5,0. (2.15)

§ 3. Proof of Fundamental Lemma

In view of (1.5) we only prove the following

|eall 1, o000 10 ] 1, 6. | (8.1

Lot GoccGhc cGc <@ be concentric spheres and o €04 (G4) with =1 on

Go, %= wuy. Note that since sappuCG4 we can suitably change the mesh in G\G4

such that the boundary nodes of the mesh-domain G4 belong to 8G. The change does

not affect ©, u, and the proofs that follow. Therefore we can define the Ritz projection
operator P in 8*(G) (and conjugate P*) such thas

"Pﬁ Hirﬂ:ﬂgcﬂﬁnlfp,ﬂ.

We have
e \31@&,‘& lli'illi.m,'%ciﬁlm,aﬂﬂéﬁ—f’ﬁIi,p+cIPiE|1...

. <¢inf |[u—p|1,pe+c| Puly,pe
P

‘gﬂh“uﬁ, 1!9+G+GI'P1FE|1:F|GU | B‘QPQW. (3'2)
To estimate Pu we construct a conjugate problem



4 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

L'v=f,in G, «+=0, on o,
and for z=Pu, Y =£Dv and £ € 05 (@) with £=1 on G, it is eagy to calculate
—(D(¢2), f)=B(D(&z), v) =B(z, Dv)+ B ({2, v)
=B(Pu, )+ (F(z, £), Dv)+B' (&2, v), (3.3)

and
B(Pu, f) =B(u, P"Y)=B(us, @PY—@) + (F (s, @), PY—+1),
(3.4)
where B'(z, v)= L} (iﬂZ.*ﬂ Day DD — aooD(2v) ) dee,

F(u, &) =Dy(auD) +ayDuDg + (an;— aw)uDi€, |
From (3.3), (8.4), (2.8), (2.12) and (2.13), for 1<p< oo and 1< {< oo arbitrary
but fixed, wo have

I (.D(gﬂ), f) |gﬂ”uﬁuim("mP*'ﬁ'—“qj”irf*-||P*lp—¢'”ﬂ'rll’)

+G("“ﬁ”11t”'~£’"ﬂ.t’+‘lP'E'll.t '11”1,:’) (3‘5)
<<ehftn |1, o (| P | 1.0+ [ ] 1) Holtin] 1, e 2] 1,0
<ch|tnl1.p]|v]2,pFcftal 1. 2] 1,0 (3.5a)

£ L and usin
I n’ &

|2]1.¢.0<efv]a,pe<c|f
(3.5a), (3.2) and the inverse estimate, we have

| P |1, p.6: | D(€2) |0, p.a <hta] 1. p+0]tta]1,e

Taking 1-:::‘,{?1;,‘%]-

Utfrﬂ'}

and
u“h 1,,,g,"§0h[}uh| 1.p+ﬂ|]Hh"l.:‘gﬁuﬂnni.r.ﬂ. (3-6)
If 2b<n<<2k+2, taking t=2, i-m-% i in (8.6) and iterating % times by
(3.6) (with different G, and &) we can derive
e <oltalse, ——=g -5, n>2 (3.7)

Therefore we congider two cases:
1) n=2k+1. Taking t=p;,=2n, t' <n/(n—1) and p=|Ink|, from (2.4), (2.1),
(2.14), (2.15) and (3.5) we have

IJU ilrfgﬂg{}”fn D:llﬁﬁ‘;(}"f 0.9 s
va,p.ose[Inh || flop.e,

and
Bl PY|1,y+ | P — oy, 0<oh|Ink|*| |1,y <ch[1nh]|®| flo,y.0.
Then
| Pt [y, e0, 6,50 | Pt 1,9,6, 6] D(€2) 0.5, 60| In B[ tta ] 1,006+ [ etn] 1,6).
By (3.2), (8.7) and the inverse estimate, (3.1) for n=2%-+1 is proved.
2) n=2k+2. Taking t=p,=n, and using the imbedding theorem and a priori
estimate, for ¢ >n arbitrary but fixed we have

1w se|v]ag.e<e|f |o.q.6.
Taking p=¢ in (3.5) and using (3.7) and the inverse egtimate, then we have

|
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uPa’li-qiﬂ-QGh ’i uhl

!11{?1

1rﬂ';ﬂ+ﬂu Un

and
lunl1.0.0. 50|16, ¢>n. (3.8)
Now, taking p=|In k|, t=¢>n in (3.5) and noticing
jolneie<e|floy, |P¥|ug<c|lnh|*|foy.c
we oblain
| Pt | 1,0,0, <5 | 10 B [ ** |t0a] 4, 0, 00| ¥ ] 1, 0.
Using (3.2), (3.8) and the inverse estimate, we obtain |
|3 1s00 0 <RI 2|2 |43 1, o 6+ € | 1,050 [ 202 ] 1, 0,00 U 1,60 [ 2] 1, 0.

Finally, by combining the above two cases, the fundamental lemma is proved.

§ 4. Some Applications

We now go back to the primary problem (1.1). Let Q be snitably smooth, and
there are negative norm estimates of e=u—u,,

lefl —s,.0<eh**tul:,0, Os<<r—2, I<i<r, (4.1)

Let G CG;CCGgC CG be concentric spheres, w € CF (Gy) with w=1 on (4. Denote
U=y (cf-§ 3) The local Ritz projection Pu € S*(®) satisfies (e=1u — Pu)

B(, p)=0, VpESM(G) _ (4.2)
and has a negative norm estimate
LIS 17

10, O<s<r—2, I<i<r, (4.3)

Noticing #=u on G4,
B(ur—Pii, p) =B, p)—Ble, 9) =0, VpES (@)
and using the fundamental lemma lead us to
Hur-Pﬁﬂi-me.'@cﬂurmﬂ -s-G:"gﬂ("E" —5GT “'Bn —1G)
<o(F"*|ulnet e -s0). (4.4)

Below we derive two useful resulits.
1) Wt >~—interior estimate.
Theorem 1. Let Q,CCQ,CCQ; then

|e—ta] 1, 0,0 <P (e, 000+ %] 1,0). (4.5)
Proof. From (4.2) and assumpiion (2.12) we have
!I”_Pﬁ 1rmﬂ-'€“a_Pﬁ”Lm.G'ﬁﬂh’hi“ﬁ Loy oo, B 20
Taking ¢=1 in (4.4), then yields |
lts— 4] 100,60 | % — P |1, 00,6, F 08— P 1,00, 6, <R (| 0] 50 [ 2] 1.0).

The subdomain 2, can be covered by a finite number of &y. The theorem is thus

proved.
From (2. 11) and the fundamental lemama one has

lee—tafo, o, a0 <l (| I A|7|©]r, 00,0, %] 2,0), - (4.6)

which was derived by A. Schatz and L. Wahlbin in 1977%
2) W' =-interior superconvergence.
For the sake of simplicity, we only consider the two-dimensional bounded

Iﬂ“ra-
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domain Q and the linear triangular eloment. Let the triangulation be strongly
regular in Q;CCQY?, j.e. each quadrilateral consisting of two adjacent trian gleg
7, and 74 has a deviation O(A?) from some parallelogram. The middle points z on the
common side of such 7, and 75 form a set M. Denote the mean value of the gradient

of u, at z by

Dup(2) = ((Dun)»,+ (Dun) ) /2.
If the mesh is uniform in the subdomain Q;C <, from a well-known egtimate™?
on the difference ratio 8% one can derive an interior superconvergence

Teﬂf |D(u—in) (z) | <<eh?(|w ﬁ-ﬂ:"“”unﬂrﬂ)- J (4.7)

We now extend the result to the strongly regular mesh.
Theorem 2. Let the triangulation be strongly regular in Q) QeCCOCCL,
X =M N, us ES*(Q) be the linear finite element approvimation to u; then

max | D(u—n) () | <oh*(| b fuf.moont [ln). (4.8

Proof. Let *w;- be a linear iﬁtarpola,tiﬂn of w=u, We know thatto
o = | D(w—wr) (%) | <ch|ulis, o6, (4.9)
W '

and ({ =Pw-—w;) -
B(l, ) =B(w—wi, p)<ch’|uw
Following [6] we construct

s, manl@lie (4.10)

_ I'g=Ds., g€H' (&),
where §, is a smooth d-fanction and (@, D8,) =Dg(z), Ve S*(G). Then

DL(z) = (L, Dd,)=B({, 9) =B, P'g)<ch®|w|s, e[ P*l1.10.  (4.11)
We now prove =

[ Pgl1,1,6<cllnk|, P'g=g. (4.12)
In fact, using a weighted norm method* we have

b :
(jﬂ \Dghldm) =L < dm-'jﬂ cr"’l_Dg;,,l’dm

<c|]nh|(j_aﬂibg[ﬂd¢ jaﬂlﬂ(g-—gu)l”dx)
<o|inh| (|Inh|+1)<o|Ink|?,

The details are omitted here. -
From (4.9), (4.11), (4.12) and (4.4) we obfain
max | D(u—uy) (@) | <max | D{(w—wp) (@) |+ \; — P

FEX NG e X

<ch?(|In k| |u]

1,006+ | PE—Hn“Lm.E

84 ﬂﬂ!ﬂ"+ "uHﬂiﬂ) .-

The theorem ig proved.
Mheorem 2 can be extended o some other finite elements™ ™1™, Using these

results we can study the superconvergence of finite ‘element approximations to
ponlinear elliptic problems™
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