W¹,∞-INTERIOR ESTIMATES FOR FINITE ELEMENT METHOD ON REGULAR MESH*

OHEN CHUAN-MIAO (陈传森)
(Xiangtan University, Hunan, China)

Abstract

For a large class of piecewise polynomial subspaces S^h defined on the regular mesh, $W^{1,-}$ -interior estimate $\|u_h\|_{1,-,\Omega_0} \leqslant c \|u_h\|_{-s,\Omega_1}$, $u_h \in S^h(\Omega_1)$ satisfying the interior Ritz equation $B(u_h, \varphi) = 0$, $\forall \varphi \in \mathring{S}^h(\Omega_1)$, $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$, is proved. For the finite element approximation u_h (of degree r-1) to u_r , we have $W^{1,-}$ -interior error estimate $\|u-u_h\|_{1,-,\Omega_0} \leqslant ch^{r-1}(\|u\|_{r,-,\Omega_1} + \|u\|_{1,\Omega})$. If the triangulation is strongly regular in Ω_1 and r=2 we obtain $W^{1,-}$ -interior superconvergence

$$\max_{x \in X} |D(u - \overline{u}_h)(x)| \leq ch^2 (|\ln h| \|u\|_{3, -, Q_1} + \|u\|_{2, Q}).$$

§ 1. Introduction

Let Ω be an *n*-dimensional bounded domain with the boundary $\partial\Omega$. Denote the norm and semi-norm of the Sobolev space $W^{k,p}(\Omega)$, $1 \le p \le \infty$, respectively, by

$$\|u\|_{k,\,p,\,\Omega} = \sum_{|\alpha| \leq k} \|D^{\alpha}u\|_{L^{p}(\Omega)}, \, |u|_{k,\,p,\,\Omega} = \sum_{|\alpha| = k} \|D^{\alpha}u\|_{L^{p}(\Omega)}.$$

We simply write $W^{k,2}=H^k$, $||u||_{k,2,\varrho}=||u||_{k,\varrho}$ if p=2.

We consider the elliptic boundary value problem

$$\begin{cases} Lu = -D_j(a_{ij}D_iu + a_{0j}u) + a_{i0}D_iu + a_{00}u = f, & \text{in } \Omega \\ u = 0, & \text{on } \partial\Omega \end{cases}$$

$$(1.1)$$

and a bilinear form

$$B(u, v) = \int_{\Omega} \sum_{i,j=0}^{n} a_{ij} D_{i} u D_{j} v \, dx, \quad D_{0} u = u,$$

where the coefficients a_{ij} are suitably smooth in $\overline{\Omega}$. Suppose that

$$B(v, v) \ge c \|v\|_{1, 0}^2, \quad c > 0, \ \forall v \in \mathring{H}^1(\Omega).$$
 (1.2)

On a regular (i. e. quasi-uniform) mesh-domain Ω_k of Ω we give a finite dimensional subspace $S^k \subset C(\overline{\Omega})$, consisting of piecewise polynomials of degree r-1, and

$$\mathring{S}^h(\Omega_1) = \{ \varphi \in S^h(\Omega) \mid \text{supp } \varphi \subseteq \overline{\Omega}_1 \}, \quad \Omega_1 \subset \subset \Omega_1$$

An approximate solution $u_{k} \in S^{h}(\Omega)$ to u satisfies the interior Ritz equation

$$B(u-u_h, \varphi) = 0, \quad \forall \varphi \in \mathring{S}^h(\Omega_1). \tag{1.3}$$

An important special case occurs when Lu=0. Then $u_h \in S^h(\Omega)$ satisfies $u_h \in S^h(\Omega)$

$$B(u_h, \varphi) = 0, \quad \forall \varphi \in \mathring{S}^h(\Omega_1).$$
 (1.4)

Such u_h will play a central role in deriving the interior error estimates. For the regular mesh in Ω_1 , J. Nitsche and A. Schatz^[1] first proved L^2 -interior estimate

^{*} Received November 15, 1983.

$$||u_h||_{1,\Omega_0} \leqslant c ||u_h||_{-s,\Omega_1}, \quad \Omega_0 \subset \subset \Omega_1, \tag{1.5}$$

where $s \ge 0$ is an integer, arbitrary but fixed, and $||u_h||_{-s,0}$ negative norm. For the uniform mesh, J. Bramble, J. Nitsche and A. Schatz^[2] later proved L^{∞} -interior estimate

$$||u_h||_{0,\infty,\Omega_{\bullet}} \leq c ||u_h||_{-s,\Omega_1}.$$
 (1.6)

For the regular mesh, A. Schatz and L. Wahlbin^[8] also proved it by the technique of estimating derivatives on annuluses. The present paper extends these results and proves the following

Fundamental Lemma. Suppose that the triangulation is regular in $\Omega_1 \subset \subset \Omega$, and $u_h \in S^h$ satisfies (1.3). Then

$$||u_h||_{1,\infty,\Omega_0} \leq c ||u_h||_{-s,\Omega_1}.$$
 (1.7)

Using the lemma, we may derive $W^{1,\infty}$ -interior error estimate (Theorem 1) and $W^{1,\infty}$ -interior superconvergence (Theorem 2) for the general problem (1.1).

§ 2. Some Assumptions

[7] and [8] discussed a priori estimate and the solvability of solution $u \in W^{2,p}(\Omega)$, 1 , for the problem (1.1). We obtained

Lemma 1^(a). Let $\Omega \in C^{1,1}$, $a_{ij} \in W^{1,\infty}(\Omega)$, $i+j \neq 0$, $a_{00} \in L^{\infty}(\Omega)$, $f \in L^{p}(\Omega)$, $1 , and <math>u \in W^{2,p}(\Omega)$ is a unique solution of (1.1). Then

$$||u||_{2,p,\Omega} \leq c\widetilde{p}^{\lambda} ||f||_{0,p,\Omega},$$
 (2.1)

where $\tilde{p} = \max(p, p')$, p' = p/(p-1), and the constants λ and c are independent of p and f.

Let $\Omega = G$ be a sphere with radius R suitably small. Suppose that the Green function g(x, y) for (1.1) exists such that

$$|D^{\alpha}g(x, y)| \le \begin{cases} c(|\ln|x-y||+1), & n=2 \text{ and } \alpha=0, \\ c|x-y|^{2-n-|\alpha|}, & n>2 \text{ or } |\alpha|=1. \end{cases}$$
 (2.2)

By the Green function g(x, y), the solution u of (1.1) can be expressed by

$$u(x) = \int_{\mathcal{G}} g(x, y) f(y) dy. \tag{2.3}$$

If $1 \le q < n/(n-1)$, we have

$$|u|_{1,q,q} \leq c \left(\int_{a} \int_{a} |x-y|^{(1-n)q} |f(y)| dx dy \right)^{1/q} \left(\int_{a} |f(y)| dy \right)^{1/q'} \leq c \|f\|_{0,1,q}.$$

$$(2.4)$$

We now turn to the finite dimensional subspace $S^h(\Omega)^{(1)}$ and make the following assumptions (for $1 \le p \le \infty$):

A1. For each $u \in W^{1,p}(G)$, $1 \le t \le r$, there exists a $\varphi \in S^h(\Omega_1)$ such that $\|u - \varphi\|_{s,p,G} \le ch^{t-s} \|u\|_{t,p,G}$, s = 0, 1. (2.5)

A2. Let $\omega \in C_0^{\infty}(G_0)$ and $u_h \in S^h(G)$, $G_0 \subset G \subset \Omega$. Then there exists $\varphi \in \mathring{S}^h(G)$ such that

$$\|\omega u_h - \varphi\|_{1,p,G} \leq ch \|u_h\|_{1,p,G}.$$
 (2.6)

A3. For each $h \in (0, 1]$, there exists a mesh-domain G_1 , $G_0 \subset \subset G_1 \subset \subset G$, such that, for all $\varphi \in S^h(\Omega_1)$,

$$\|\varphi\|_{s,p,G_1} \leq ch^{t-s} \|\varphi\|_{t,p,G_1}, \quad 0 \leq t \leq s \leq r,$$
 (2.7)

$$\|\varphi\|_{0,p,G_1} \leq ch^{n\left(\frac{1}{p}-\frac{1}{q}\right)} \|\varphi\|_{0,q,G_1}, \quad 1 \leq q \leq p \leq \infty.$$
 (2.8)

In particular, taking $p = \infty$, $q = |\ln h|$ (then $h^{-n/q} = e^n$) we have

$$\|\varphi\|_{0,\infty,G_1} \leq c \|\varphi\|_{0,q,G_1}. \tag{2.9}$$

Much has been done relating to L^{∞} -convergence of the Ritz projection $u_{\lambda} \in \mathring{S}^{h}(\Omega)$. For the Poisson equation, for example, one has (cf. [5])

$$||u-u_h||_{s,\infty,\varrho} \le ch^{t-s} |\ln h|^r ||u||_{t,\infty,\varrho}, \quad s=0, 1, \quad 1 \le t \le r$$
 (2.10)

and the refined estimate[4]

$$||u-u_h||_{0,\infty,\Omega} \leq c |\ln h|^{\tau} \inf_{\varphi} ||u-\varphi||_{0,\infty,\Omega},$$
 (2.11)

where

$$\bar{r} = \begin{cases} 1, & r=2, \\ 0, & r>2, \end{cases}$$

Recently, R. Rannacher and R. Scott^[6] discussed the difficult case r=2 on the convex polygonal domain Ω in the plane and successfully proved that the Ritz projection $Pu=u_h\in \mathring{S}^h(\Omega)$ is stable in $\mathring{W}^{1,p}(\Omega)$, $2\leq p\leq \infty$, namely,

$$||Pu||_{1,p,\varrho} \leq c ||u||_{1,p,\varrho};$$
 (2.12)

then

$$||u-Pu||_{1,p,\varrho} \leq ch ||u||_{2,p,\varrho}, \quad 2 \leq p \leq \infty,$$
 (2.13)

$$||u-Pu||_{\mathbf{0},\mathbf{p},\mathbf{p}} \leq ch^2 ||u||_{\mathbf{2},\mathbf{p},\mathbf{p}}, \quad 2 \leq p < \infty.$$
 (2.14)

They also pointed out that the results can be extended to the general elliptic operator L and the smooth domain $\Omega \in C^{1,1}$.

Using a duality argument, we can derive (2.12)—(2.14) for $1 if <math>\Omega$ is smooth. In particular, from (2.1) with $p' = |\ln h|$, we have

$$||Pu||_{1,p,\Omega} \leq c |\ln h|^{\lambda} ||u||_{1,p,\Omega},$$

$$||u-Pu||_{0,p,\Omega} \leq c h |\ln h|^{\lambda} ||u||_{1,p,\Omega}.$$
(2.15)

§ 3. Proof of Fundamental Lemma

In view of (1.5) we only prove the following

$$||u_{h}||_{1,\infty,G_{0}} \leq c||u_{h}||_{1,G_{0}}$$
 (3.1)

Let $G_0 \subset G_1 \subset G \subset G'$ be concentric spheres and $\omega \in C_0^{\infty}(G_1)$ with $\omega = 1$ on G_0 , $\tilde{u} = \omega u_h$. Note that since $\sup \tilde{u} \subset G_1$ we can suitably change the mesh in $G \setminus G_1$ such that the boundary nodes of the mesh-domain G_h belong to ∂G . The change does not affect \tilde{u} , u_h and the proofs that follow. Therefore we can define the Ritz projection operator P in $\mathring{S}^h(G)$ (and conjugate P^*) such that

$$||P\widetilde{u}||_{1,p,G} \leq c ||\widetilde{u}||_{1,p,G}$$

We have

$$||u_{h}||_{1,p,G_{\bullet}} \leqslant ||\tilde{u}||_{1,p,G_{\bullet}} \leqslant c ||\tilde{u}||_{1,p,G_{\bullet}} \leqslant c ||\tilde{u}-P\tilde{u}||_{1,p} + c ||P\tilde{u}||_{1,p}$$

$$\leqslant c \inf_{\varphi} ||\tilde{u}-\varphi||_{1,p,G} + c ||P\tilde{u}||_{1,p,G_{\bullet}}$$

$$\leqslant c h ||u_{h}||_{1,p,G} + c ||P\tilde{u}||_{1,p,G_{\bullet}}, \quad 2 \leqslant p \leqslant \infty.$$
(3.2)

To estimate $P\widetilde{u}$ we construct a conjugate problem

$$L^*v=f$$
, in G , $v=0$, on ∂G ,

and for $z=P\tilde{u}$, $\psi=\xi Dv$ and $\xi\in C_0^\infty(G)$ with $\xi=1$ on G_1 it is easy to calculate

$$-(D(\xi z), f) = B(D(\xi z), v) = B(\xi z, Dv) + B'(\xi z, v)$$

$$= B(P\tilde{u}, \psi) + (F(z, \xi), Dv) + B'(\xi z, v), \qquad (3.3)$$

and

4

$$B(P\tilde{u}, \psi) = B(\tilde{u}, P^*\psi) = B(u_h, \omega P^*\psi - \varphi) + (F(u_h, \omega), P^*\psi - \psi + \psi),$$
(3.4)

where

$$B'(z, v) = \int_{\Omega} \left(\sum_{i+j\neq 0} Da_{ij} D_i z D_j v - a_{00} D(zv) \right) dx,$$

$$F(u, \xi) = D_{i}(a_{ij}uD_{i}\xi) + a_{ij}D_{i}uD_{j}\xi + (a_{0i} - a_{i0})uD_{i}\xi.$$

From (3.3), (3.4), (2.6), (2.12) and (2.13), for $1 and <math>1 < t < \infty$ arbitrary but fixed, we have

$$| (D(\xi z), f) | \leq c \| u_h \|_{1,p} (\| \omega P^* \psi - \varphi \|_{1,p'} + \| P^* \psi - \psi \|_{0,p'})$$

$$+ c (\| u_h \|_{1,t} \| \psi \|_{0,t'} + \| P \widetilde{u} \|_{1,t} \| v \|_{1,t'})$$

$$\leq c h \| u_h \|_{1,p} (\| P^* \psi \|_{1,p'} + \| \psi \|_{1,p'}) + c \| u_h \|_{1,t} \| v \|_{1,t'}$$

$$\leq c h \| u_h \|_{1,p} \| v \|_{2,p'} + c \| u_h \|_{1,t} \| v \|_{1,t'}.$$

$$(3.5a)$$

Taking 1 < t < n, $\frac{1}{p} = \frac{1}{t} - \frac{1}{n}$, and using

$$||v||_{1,t',G} \le c ||v||_{2,p',G} \le c ||f||_{0,p',G},$$

(3.5a), (3.2) and the inverse estimate, we have

 $\|P\widetilde{u}\|_{1,p,G_1} \leq \|D(\xi z)\|_{0,p,G} \leq ch \|u_h\|_{1,p} + c\|u_h\|_{1,p}$

and

$$||u_h||_{1,p,G} \leq ch ||u_h||_{1,p} + c||u_h||_{1,t} \leq c||u_h||_{1,t,G}.$$
 (3.6)

If $2k < n \le 2k+2$, taking t=2, $\frac{1}{p_1} = \frac{1}{2} - \frac{1}{n}$ in (3.6) and iterating k times by (3.6) (with different G_0 and G) we can derive

$$||u_h||_{1,p_k,G_0} \leq c||u_h||_{1,G}, \quad \frac{1}{p_k} = \frac{1}{2} - \frac{k}{n}, \quad n \geq 2.$$
 (3.7)

Therefore we consider two cases:

1) n=2k+1. Taking $t=p_k=2n$, t'< n/(n-1) and $p=\lfloor \ln h \rfloor$, from (2.4), (2.1), (2.14), (2.15) and (3.5) we have

$$||v||_{1,t',G} \leq c||f||_{0,1,G} \leq c||f||_{0,p',G},$$

$$||v||_{2,p',G} \leq c|\ln h|^{\lambda}||f||_{0,p',G},$$

and

$$h\|P^*\psi\|_{1,p'}+\|P^*\psi-\psi\|_{0,p',q} \leq ch\|\ln h\|^{\lambda}\|\psi\|_{1,p'} \leq ch\|\ln h\|^{2\lambda}\|f\|_{0,p',q}.$$

Then

$$|P\widetilde{u}|_{1,\infty,G_1} \leq c |P\widetilde{u}|_{1,p,G_1} \leq c |D(\xi z)|_{0,p,G} \leq c (h |\ln h|^{2\lambda} ||u_h||_{1,\infty,G} + ||u_h||_{1,G}).$$

By (3.2), (3.7) and the inverse estimate, (3.1) for n=2k+1 is proved.

2) n=2k+2. Taking $t=p_k=n$, and using the imbedding theorem and a priori estimate, for q>n arbitrary but fixed we have

$$||v||_{1,t',G} \le c ||v||_{2,q',G} \le c ||f||_{0,q',G}$$

Taking p=q in (3.5) and using (3.7) and the inverse estimate, then we have

 $||P\widetilde{u}||_{1,q,G} \leq ch ||u_h||_{1,q,G} + c ||u_h||_{1,G}$

and

$$||u_h||_{1,q,G} \leq c ||u_h||_{1,G}, \quad q > n.$$
 (3.8)

Now, taking $p = |\ln h|$, t = q > n in (3.5) and noticing

$$||v||_{1,q',G} \le c ||f||_{0,p'}, ||P^*\psi||_{1,p'} \le c |\ln h|^{2\lambda} ||f||_{0,p',G},$$

we obtain

$$|P\tilde{u}|_{1,\infty,G} \leq ch |\ln h|^{2\lambda} ||u_h||_{1,\infty,G} + c ||u_h||_{1,G}$$

Using (3.2), (3.8) and the inverse estimate, we obtain

$$||u_h||_{1,\infty,G} \leq ch |\ln h|^{2\lambda} ||u_h||_{1,\infty,G} + c||u_h||_{1,G} \leq c||u_h||_{1,g,G} + c||u_h||_{1,G} \leq c||u_h||_{1,G}.$$

Finally, by combining the above two cases, the fundamental lemma is proved.

§ 4. Some Applications

We now go back to the primary problem (1.1). Let Ω be suitably smooth, and there are negative norm estimates of $e=u-u_h$,

$$||e||_{-s,\rho} \le ch^{s+t} ||u||_{t,\rho}, \quad 0 \le s \le r-2, \ 1 \le t \le r.$$
 (4.1)

Let $G_0 \subset G_1 \subset G_2 \subset G$ be concentric spheres, $\omega \in C_0^{\infty}(G_2)$ with $\omega = 1$ on G_1 . Denote $\tilde{u} = \omega u$ (cf. § 3). The local Ritz projection $P\tilde{u} \in \mathring{S}^h(G)$ satisfies $(\tilde{e} = \tilde{u} - P\tilde{u})$

$$B(\tilde{e}, \varphi) = 0, \quad \forall \varphi \in \mathring{S}^h(G)$$
 (4.2)

and has a negative norm estimate

$$\|\tilde{e}\|_{-s,G} \le ch^{s+t} \|\tilde{u}\|_{t,G}, \ 0 \le s \le r-2, \ 1 \le t \le r.$$
 (4.3)

Noticing $\tilde{u} = u$ on G_1 ,

$$B(u_h - P\tilde{u}, \varphi) = B(\tilde{e}, \varphi) - B(e, \varphi) = 0, \quad \forall \varphi \in \mathring{S}^h(G_1)$$

and using the fundamental lemma lead us to

$$||u_{h}-P\tilde{u}||_{1,\infty,G} \leq c||u_{h}-P\tilde{u}||_{-s,G} \leq c(||\tilde{e}||_{-s,G}+||e||_{-s,G})$$

$$\leq c(h^{t+s}||u||_{t,G}+||e||_{-s,\Omega}). \tag{4.4}$$

Below we derive two useful results.

1) $W^{1,\infty}$ -interior estimate.

Theorem 1. Let $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$; then

$$||u-u_h||_{1,\infty,\Omega} \leq ch^{r-1}(||u||_{r,\infty,\Omega}+||u||_{1,\Omega}). \tag{4.5}$$

Proof. From (4.2) and assumption (2.12) we have

$$\|u - P\widetilde{u}\|_{1,\infty,G} \leqslant \|\widetilde{u} - P\widetilde{u}\|_{1,\infty,G} \leqslant ch^{r-1} \|\widetilde{u}\|_{r,\infty,G} \leqslant ch^{r-1} \|u\|_{r,\infty,G}.$$

Taking t=1 in (4.4), then yields

$$\|u-u_{h}\|_{1,\infty,G_{\bullet}} \leq \|\widetilde{u}-P\widetilde{u}\|_{1,\infty,G_{\bullet}} + \|u_{h}-P\widetilde{u}\|_{1,\infty,G_{\bullet}} \leq ch^{r-1}(\|u\|_{r,\infty,G} + \|u\|_{1,\Omega}).$$

The subdomain Ω_0 can be covered by a finite number of G_0 . The theorem is thus proved.

From (2.11) and the fundamental lemma one has

$$||u-u_h||_{0,\infty,\Omega} \leq ch^r(|\ln h|^{\frac{r}{r}}||u||_{r,\infty,\Omega}+||u||_{2,\Omega}),$$
 (4.6)

which was derived by A. Schatz and L. Wahlbin in 1977^[3].

2) $W^{1,\infty}$ -interior superconvergence.

For the sake of simplicity, we only consider the two-dimensional bounded

domain Ω and the linear triangular element. Let the triangulation be strongly regular in $\Omega_1 \subset \subset \Omega^{[10]}$, i.e. each quadrilateral consisting of two adjacent triangles au_1 and au_2 has a deviation $O(h^2)$ from some parallelogram. The middle points x on the common side of such τ_1 and τ_2 form a set M. Denote the mean value of the gradient of u_h at x by

 $Du_h(x) = ((Du_h)_{\tau_1} + (Du_h)_{\tau_2})/2.$

If the mesh is uniform in the subdomain $\Omega_1 \subset \subset \Omega$, from a well-known estimate⁽²⁾ on the difference ratio $\partial_h^a e$ one can derive an interior superconvergence

$$\max_{x \in X} |D(u - \bar{u}_{\lambda})(x)| \leq ch^{2}(\|u\|_{5,0} + \|u\|_{2,0}). \tag{4.7}$$

We now extend the result to the strongly regular mesh.

Theorem 2. Let the triangulation be strongly regular in Ω_1 , $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$, $X = M \cap \Omega_0$, $u_n \in \mathring{S}^n(\Omega)$ be the linear finite element approximation to u; then

$$\max_{x \in X} |D(u - \bar{u}_h)(x)| \leq ch^2 (|\ln h| \|u\|_{3,\infty,\Omega} + \|u\|_{2,\Omega}). \tag{4.8}$$

Proof. Let w_I be a linear interpolation of $w = \tilde{u}$. We know that [10]

$$\max_{x \in X} |D(w - \overline{w}_I)(x)| \leq ch^2 ||u||_{3,\infty,G_1}, \tag{4.9}$$

and
$$(\zeta = Pw - w_I)$$
 , $B(\zeta, \varphi) = B(w - w_I, \varphi) \leqslant ch^2 ||w||_{3, \infty, G}, ||\varphi||_{1,1,G}.$ (4.10)

Following [6] we construct

$$L^*g = D\delta_z, g \in \mathring{H}^1(G),$$

where δ_z is a smooth δ -function and $(\varphi, D\delta_z) = D\varphi(z)$, $\forall \varphi \in S^{\lambda}(G)$. Then

$$D\zeta(z) = (\zeta, D\delta_z) = B(\zeta, g) = B(\zeta, P^*g) \leqslant ch^2 ||w||_{3,\infty,G_1} ||P^*g||_{1.1.G}. \tag{4.11}$$

We now prove

$$||P^*q||_{1,1,G} \leq c |\ln h|, P^*g \equiv g_h.$$
 (4.12)

In fact, using a weighted norm method⁽⁶⁾ we have

$$\begin{split} \left(\int_{G} |Dg_{h}| dx\right)^{2} &= \int_{G} \sigma^{-2} dx \cdot \int_{G} \sigma^{2} |Dg_{h}|^{2} dx \\ &\leq c |\ln h| \left(\int \sigma^{2} |Dg|^{2} dx + \int \sigma^{2} |D(g - g_{h})|^{2} dx\right) \\ &\leq c |\ln h| \left(|\ln h| + 1\right) \leq c |\ln h|^{2}. \end{split}$$

The details are omitted here.

From (4.9), (4.11), (4.12) and (4.4) we obtain

$$\max_{x \in X \cap G_0} |D(u - \bar{u}_h)(x)| \leq \max_{x \in X} |D(w - \bar{w}_I)(x)| + \|\tilde{u}_I - P\tilde{u}\|_{1,\infty,G} + \|P\tilde{u} - u_h\|_{1,\infty,G}$$
$$\leq ch^2(|\ln h| \|u\|_{8,\infty,G} + \|u\|_{2,G}).$$

The theorem is proved.

Theorem 2 can be extended to some other finite elements[11,13-17]. Using these results we can study the superconvergence of finite element approximations to nonlinear elliptic problems[12].

Acknowledgement. The author would like to express his sincere thanks to Prof. L. B. Wahlbin for his precious suggestions.

References

- [1] J. Nitsche, A. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp., 28 (1974), 937-958.
- [2] J. Bramble, J. Nitsche, A. Schatz, Maximum norm interior estimates for Ritz-Galerkin methods, Math. Comp., 29 (1975), 677—688.
- [3] A. Schatz, L. Wahlbin, Interior maximum norm estimates for finite element method, Math. Comp., 31 (1977), 414-442.
- [4] A. Schatz, L. Wahlbin, On the quasi-optimality in L_{*} of the H¹-projection into finite element spaces, Math. Comp., 38 (1982), 1—22.
- [5] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- [6] R. Rannacher, R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 38(1982), 437-445.
- [7] O. Ladyzenskaja, N. Ural'ceva, Linear and Quasi-linear Elliptic Problems, Moscow, 1973.
- [8] M. Chicco, Solvability of the Dirichlet problem in $H^{2,p}(Q)$ for a class of linear second order elliptic partial differential equations, Boll. Un. Math. Ital., (4) 4 (1971), 374—387.
- [9] Chen Chuan-miao, L_p -esti-mate of linear elliptic boundary value problems, the case $p \approx 1$ or $p \approx \infty$, Symposium on Third Differential Geometry and Differential Equations, Changchun, China, 1982.
- [10] Ohen Chuan-miao, Optimal points of the stresses for triangular linear element, Numerical Mathematics of Chinese University, 2 (1980), 12—20.
- [11] Ohen Chuan-miao, Superconvergence of finite element solution and its derivatives, *Ibid.*, 3 (1981), 118—125.
- [12] Chen Chuan-miao, Superconvergence of finite element approximations to nonlinear elliptic problems, in Proceedings of the China-France Symposium on Finite Element Methods (ed. by Feng Kang and J. L. Lions), 622-640, Science Press, Beijing, 1983.
- [13] J. Douglas, T. Dupont, M. F. Wheeler, An L^{*} estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, *EAIRO*, R2 (1974), 61—66.
- [14] J. Bramble, A. Schatz, Higher order local accuracy by averaging in the finite element method, Math. Comp., 31 (1977), 94—111.
- [15] V. Thomee, High order local approximations to derivatives in the finite element methods, Math. Comp., 31 (1977), 652—660.
- [16] M. Zlamal, Superconvergence and reduced integration in the finite element method, Math. Comp., 32 (1978), 663—685.
- [17] P. Lesaint, M. Zlamal, Superconvergence of the gradient of finite element solutions, RAIRO, 13: 2 (1979), 139—166.