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Abstract

An order interval secant method is given. Its rate of convergenece is faster than that of order
jnterval Newton method in [17. The existence and uniqueness of a solution to nonlinear sysiems
and convergence of the interval iterative sequence are also proved.

Suppose f:DCR*—> K", X =z, g] = {s E R* | s<a<a} = D. A gimple interval
Newton method for testing the existence and uniqueness of solutions %o the
nonlinear equations

, ety s @)

and an order interval Newton method for solving nonlinear equations (1), were
given in [1]. This paper is to give an order interval secant method without the
derivative calculation of f, which converges faster than the order interval Newion
method. The convergence of this iterative method, as well as the existence and
unigueness of solutions to (1), are proved.

Notations used in this paper are the same as those in [1].

First, the definition of order convexity in [2] has to be generalized.

Definition 1. If there ewist 6 nonsingular matriz PE€L(R") and AE (0, 1) so
that |

Pf(ho+ (1—A)g) <APF () + (L~A) Pf () @)

for f:DCRr—>Rr in X = [z, ] and for any comparable v, € X (z<y or z22y), then
f i3 called P-order convex. Moreover, if

Pf (z) < Pf (y) ' (3)
for any s<z<y<z, then f is called P-isotone convex in X. If (2) ts replaced by
Pf(a+ (1—N)g) =APf (@) + 1—A) Pf(y), (2

then f is called P-order concave (or P-order upper conver) in X, Moreover, if (3) i3
valid then f 48 called P—isolone concave in X. _ -
Remark 1. If P=1I (the identity matrix), if is the order convexity defined
by [2]. That f is P-order convex in X implies that F =Pf ig order convex in X.
Definition 2. Suppose P is nonsingular, and s<o<y<z for any two poinis &=
(@4, <+, Tu)T and y= (Y1, *, Ya)” on the interval X = (v, «]. Let F=Pf, Az, y)=
(@:;) nxn 48 Called an nth-order difference mairiz, where

i
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Fi(‘y"“ :_g: (9 — o) ek)—F;(y~ gl (?}E—%)ﬂk)

Gy = - ; 4
‘ Ys— & % | (4)
poe P ~Fy— @u=80e) ;1 .. pimd e n
81— @y
If Ai(x, 4) is the i—th row of matriz A{z, v ), by (4),
Y1— 1
Ai‘(m: y) (g"_m>= (&iij b ﬂln) E =Fi(y)_Fl(m): £=11 *et, B, |
* ’yn_mn
then
Alw, ¥)(y—2)=F(y) —F(2), (b)

Lemma 1. Suppose f és P-order convew in X =[5, 2] and F=Pf; then, for
any 5<o<yYy<r,

Az, ) (y—a) <F(y)—F (2) <A@, y) 4—2), (6)
where z=y—t(y—a) <y, £=o+t(y—=z), $t€(0, 1), Az, ) and A(z, y) are nith—
order dufference matriced of F defined as (4). ’

If f i3 P-order concave, then for any v<ao<y<z,
Az, 7) (y—2)>F @) —F (@) >A(z, 9) (y—0), ()
Proof. Because f is P—order convex on X = [z, ], by (2),
F)<itF(z)+(1-H)F(y),
or F(z) —F(y<t(F(z)—F ()
for z=y—t(y—2) and £¢€ (0, 1). Then

F(y) —F (@) <(F@) — F @) == (F@) ~Fy—t@y—2))).
By (4) and (b), we have h
F@y) - F@) <= F@) ~F@) =+ AG, 4) @) = AG, 9) (-2,

Therefore, the right inequality in (6) holds. From same reason, if we set
¥ =x+i(y—2), by (2) we have

F@)-F@)>LF @) ~F@) =LA@, ) (o) = A, 7)(y—2).

Hence (6) holds.

(6") can be proved similarly.

Lemma 2. Suppose f is P-order conves in X = [z, ] and G—differentiable, and
set 2=y —~t{y—w), ¥ =c+i(y—=). Then, for any s<o<y<z and i€ (0, 1),

(1) F'(2) (y—o)<F (@) -F(@)<F (y) (y—2) (7)
and lim A(z, #)=F'(2), lim A(z, 9)=F'(¥),
(i) F'(m)<A(w, 7)<A(z, Y<A(, Y)<F(y). (8)

Moreover, suppose F'(z) end Az, y) are nonsingular for any s<es<y<r,
F ()10 and A(z, y)*>=0. Then

F'(2) 2 Az, )2 Az, )7 '= AR, @) 7'=F (y) 720 (9)
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and . | “ |
Az, HA(e, y)'<l, A(s, ) A(2, y) 1<, - (10)

Proof. Because F = Pf is G-differentiable in X a,nd by Lemma 1. Letting { —0
in (6) we have (7). By (7) and (5),
F(y) —~F(z)=A(z, y) (y—o)<F'(y) (y—2).
Since y —«>>0, hence __
A(ﬂ:l y) QF"(Q).
Similarly, if we set 2=y —#(y—o),
Fy)—F(2)=A(z, ) y—0)<F'(y) (y—2),
Since y—2>>0, hence
Az, ) <F'(y).
By (6) and (6), we get
Az, y) <Az, 1),
Therefore, the right inequality in (8) holds. The left inequality in (8) can be

proved similarly.
Left muljlphcatmg the right inequality in (8) with #'(¢)~*, we have

Fl(y)~A(z, y)<lI,
Right mulﬁplmatmg the above inequality with A(#, ¥)™*, we have
Az, )72 F (y)7'>0,
Similarly for the other parts of (9) and (10).

Remark 2. If f is P-order concave in X, results similar to Lemma 2 can be
obtained, i.e.

F(y) (y—a)y<F (@) —F(o)<F'(z) (y—2), (7"
F{y)<AQz, ) <Az, ) <A(w, 2)=F'(2), (8°)
F'(y)"'=Az, 9) 1=A(z, y)'2Al, 2)7'=F (2)7, 9"
Az, DA, i<I, Az, ) A, 7)1, (107)

Order Interval Secant Method. When f is P-order convex in X = [z, z] and
satisly .
Pf(2) <0< Pf (=), (11)
the order interval secant method is defined as follows.

Algorithm 1. Let X°=[2° 3°]=[#, z] =X. Define

: X¥*: = [8ha¥, Sz*] = [2"7, 2] (12)
for k=0, 1, »--, where
g+ =St =" — [A (g, *)17F (a"),
=Syt =oF— [A(S, )17 F (@),
and the auxiliary points 2 =P —f, (&8 — o), 0<t;<C1, are chosen such that F(2*) >0.
Because F is order convex in X, F is continnous in X. Therefore, when F(z*) =0

there always exists a poinf 2* such that F (") >0.
Theorem 1. Let f: XCR*—> R" be P—isotone conver in X = [z, x] and satisfy
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condition (11). If F=2DPf is G—differentiable in X, F' and the nith—order difference
mairizc Az, §) of F are nonsingular, F'(y)7'=0 and Az, y) 120 for any <<
y<<z, then the inierval sequence {X¥*, k=0, 1, ---} defined by Algorithm 1 converges to
the unique solution =" of (1) in X, and .

W (X*1) =W (N X", k=0, 1, -, (13)

where N, is the Newton operator Nyg=ax—f (z¥)7*f (), for Vo € L% %] . Moreover, &f
|7 (y) — F' () | <L|y—=| (14)

for Yo, y& X, then i g | o |
[W (XM | <[W(NXP) [ <O|W(XH)]7, (15)

where C 18 a postiive constani. |
Proof. First, we prove by induction that the interval segquence of (12)
satigfies - -

X¥H = (8,3, S¥7] cN X*<cX* Fk=0,1, .-, (18)
where N, X*=[N ;,,m" N, z¥], and i . % . |
Pf(:v")QO‘QPf (a:"’) =0, 1, <=, h (17)
(16) has an eqmﬁ*alent form | - R
gh< Ny = 855" = pF Lt = gﬁ"%ﬁ woLxh k=0, 1, e, (16")

When k=0, (17) holds by assumption. By (8)— (11), we have
w5t =Sz’ = 2" — [4(2°, 2] F (2 =3’ — [Pf' (2%)] 7 Pf (2" = Noz®=a0,
=8z’ =20 — A(2*, 2°)1F (@) <z’ [Pf (") ] Pf (2°) = Nga:”’é;m“ |
T — =7 — 2%+ A(2°, 2°)1F (2% — A, T 1R (2% -
=20— gz — A(a®, 2) P [F @) —F(@")] + [4(2°, )7 =A@, 2°) HFE
= A(z®, z%)1[I—A(2° 5*) A, %)~ F (z°) =0,
i.e. (16) holds when %=0. .
Now we suppose (17) and (16) hold for k, and we will prove them for t-+1. By

induction hypothesis and (8), (10}, (11), we have
P =F (g% + A2, pHHL) (g#H — k)
— F(a*) — A(a¥, 3" A(a¥, %) “LF (%)
—~ [T — A(?, s**) AP, 2% LB {0
F(z*+Y) = F{(z*) + A(g*H, Z¥) (g7 — 75
= F(z¥) = A(z"*, 2¥) A(Z*, o) F (z*)
~ [I— A@*, ) A(F, 7)1 F (@) >0,
i.e. (17) holds for k+1. By (9) and (10), we have :
mk-i—ﬂ_mk-i-i A(mlﬁij gh+1) -1 F(,_.Bk+1) :_.,.mk+1 F (g1 -1 F(a:"""'"i) N.. imk—f-i;,mkﬂ
kT2 o gkt A(gki-i E+1‘) -1z (I_k+1> éﬂ:ﬁ&i F (ﬂ:""'l) -1 (Ek&l‘) N E+1£mk+1
, B[R @H:l) F(mk+1)] -
+ A(EEH: 57&-!—1) ~1 EI A(Ek-l-i ?:-!—1) A(zlaﬂ _k+1> -—1] F(E‘““)}'O
i.e. (16) holds for #+1. Therefore, (18) and (17) hold for any k. Thus

a;i-l-ﬂ mk-l'ﬂ s m]ﬁ-i‘i mk-l-l A (mlﬁ+1
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ﬁkf"% EBH <N bm"k_
Therefore, W (X*H1) = ghtt gt N gk Nogé=W (N, X*).
By Theorem 3.2 in [1], we have |

Hm ZTT;;E:" =lim Nyz*=2",

K=yoo w00
Thus Hm 2% =lim g**! =g*,
R=son ™ Fe—s o

i.e. {X*}—z" when k> co. |
If (14) holds, let [F'(2°)~*|<8. By the mean value theorem,

Bt — M| = | /@8 (B (@) (&~ 2%) ~ [F (@) - F (@)D
=8| F(2") ~F @) - F' (@) (2"~ %) | = = 8L a*— 2",

By (13), we get (15), where O-—-—é— 8L is a constant.

(15) indicates that the order inferval secant method (12) converges fagter than
the order interval Newion method. In computation the auxiliary points z¥ must be
80 chosen that F(z*) >0. Ordinarily #,«1, i.e. #* is very close to z*.

It must be noticed in Theorem 1 that condition (11) is necessary. However, if
J is P—isotope éoncave, the order interval secant method (12) has t0 be modified as
follows.

Algorithm 2. Let X°=[z° 2°] =[x, 7] =X. Define
Xktl. _ @ﬂ;k, S;;:E"] s [Ekfi-lj EHi] (18)
for £=0, 1, ---, where |
ks =§k‘fk=fk'—‘4 (z*, Ek)'ﬁiF(:Ek),
ThLs = S % = g A(EBJ %) 1 F(z¥).,
The auxiliary point P =gF 41, (¥ — %), 0<t<1, aTe so chosen that F (2% <0.

We have, as similar to Theorem 1, the following convergence theorem about
Algorithm 2.

Theorem 2. Lot f: X CR*—> R* is P—isotone concave on X =[x, 2] and satisfy
condition (11). If F=Pf is G—differentiable in X , (&) and the nth—order difference
matriz Ao, y) of F are non-singular, F'(z) =0 and A(z, y) =0 for any o<
y<x, then the interval sequence {X%* k=0, 1, +--} define by Algorithm 2 converges to
the unique solution z* of (1) in X, and -

. W (X4 =W (W, XP),
where | Nwp=o—f (@) 7f (@), k=01, -

The proof of this theorem is similar t0 that of Theorem 1. The two theorems
turn out the sufficient condition for the existence and uniqueness of the solution of
equation (1) in X. In actual computation it is required that the Jacobian matrix
F'(2) of F=PFf be a monofone matrix (or A(z, 4) >0 for any #, y< X ). However,
condition (11) is in fact equivalent to N X% X° where No=z— 4 (z, £)'Pf(2) is a
simple Newton operator. By Theorem 2.1 in [1], only if ¥ X*C X? for a certain
k can the solution of (1) in X exist, i.e. condition (11) can be réplaced by the
fullowing condition




40 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

Pf (5*) SOPS (2¥),
Now we compute an example, which is Example in [1], with the order inferval
secant method, and compare the computational results with those in [1],

Ezample.

—zi+ 52~ w1+ 20, — 3 3 6
7@~ ya-simnr19)% [(s)(5)]

"_fi

0 . o o
Let P—( 1), ﬁhanF=Pf=( ) It is easy to verify that F'(z) =0

and # is order convex in X and

F(g“)m( _;:)<0< F(E“)=(§).

Therefore, the conditions of Theorem 1 are satisfied. We solve the equations
with Algorithm 1. The computational results are given in Table 1, where the
results of the interval Newton method are faken from [1].

2

[ TE—

Table 1 Comparison between the Interval seecant method and the interval Newion method

K | )| fnterval socant method Xk 2%, z%] interval Newton method X*=[z*, 2]

e (3 (2] 3 @)

3.5993999 1891260 3.38358 D.25384

)
; [(3 4999992)’ ( 1’?7315{])] ] [(3 39978) (4 21482
. (s (

|
5 [(4.999610719) (5.00000741)] [(4 6504{}) (5.00020)
(

)
. 81643659 5.00515698 4.01412 .03251
) )] (3:s2075) (4 0130)

6658883/ \4.00574929 .81375/° 01346

)
]
j

3.999928398 /' \4.00000067 3.87872/" \4.00006
4 [(4.9999999995) (5.00000{)0001)] [ 4.954496) (50{3{}0004)]
8.99989990998 /7 \ 4.0000000001 3.998790)" \4.0000047

In computation by the interval secant method, anxilary point #*= 2% — ¥, (z* — z¥)
may auntomatically be chosen. In thig example, #=0.1 and #,=0.01(£>>2), the

exact solution z* =(5.0, 4.0). When k—4, let 2* = %(g‘*—l—i*) , 2 =4.9999999998, z%—

3.9999999999 for the interval secant method, and z¥=4.9772482, z3=3.999374 for
the interval Newton method. The interval Newton method is less accurate than the
interval secant method. But in amount of computation, the interval secant method
has to compute a more divided difference matrix and its inverse matrix. In general,
the Algorithm has a high efficiency.
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