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Abstract

The exterior boundary value problems of Laplace equation and linear elastic equations are
considered. A sories of approximate infinite boundary conditions are givem. Then the original
problem is reduced to a boundary value problem on a bounded domain. The finite element approxima-
tion of this problem and its error estimate are obtained. Finally, a numerical example shows that this
maothod is very effective.

P § 1. Introduction

Many boundary value problems of partial differential equations involving the
unbounded domain arise in practical applications, such as coupling of structurey
with foundation and environment and fluid flow around obstacles. In finding the
numerical solutions of this kind of problems, it is often a difficulty using the
clagsical finite element method or finite difference method. In engineering, the
usual method is to cut off the unbounded part of the domain and to set up an
artificial boundary condition at the mew boundary of the remaining bounded
domain. For example, the Dirichlet condition and Neumann condition are often
used for elliptic partial differential equations. In general, the artificial boundary
condition at the new boundary is only a rough approximation of the exact
boundary condition. Hence the remaining bounded domain must be quite large
when high accuracy is required. It is still difficult to compute the numerical
solution on a quite large domain.

Combining the finite element method and the classical analytical method, Han
and Ying™ proposed the local finite element method for solving the elliptic
boundary value problem on an unbounded domain. An exferior boundary value
problem of model equation du=0 has been considered. By cutting off the exterior
domain of a circle and getting the exact boundary condition at the new boundary
of the remaining bounded domain by the classical analytical method, the original
problem is reduced to an equivalent boundary value problem on a bounded
domain with integral boundary condition. This method is closely related to the
method of coupling of F. E. M. and canonical boundary reduction proposed by
Fong Kang™?, Their difference is in the form of the canonical integral equations.
But in both methods, the integrals have singular kernels, and thus they are not
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readily available for compution. In this paper, exterior boundary value problems
of Laplace equation and the linear elastic equations are considered. A series of
approximate infinite boundary conditions are given and applied to the finite
element method. The error estimate of the finite element approximate solution
ig obtained and a numerical example shows the effectivenecss of this method.

§ 2. An Exterior Boundary Value Problem of Laplace Equation

2.1. The continuous problem

Let I7; be a bounded, simple closed curve in R2?, and £ be the unbounded
domain with boundary I';. Consider the following problem:

— =0, Q,
ulr,=fi | (2.1)

% 18 bounded, when r — 4o,

This problem is defined on. an unbounded domain
. First the problem is reduced to a boundary
value problem on a bounded domain. In £, we
draw a circumference I', with radius R: then Q is
divided into two parts. The bounded part is
denoted by ; and £,=0Q\Q, is the wunbounded
part (see Fig. 1). Let u(r, 8) denote the solution
of problem (2.1), where a;=rcosf, v,=7rsiné.
If a cerfain boundary condition of u (s, ) on T,
is given, then we can consider problem (2.1) only
on the bounded domain £,. On domain Q,, u(r, §)

Fig 1 can be written, as
u(r, 9)——+2( ) (@q cos nf 4 b, sin nf), (2.2)
therefors
u(R,0) =X _n :
5 E = (@, cos nf+b, sin nd), (2.3)
On I, we have
u(R, 9)* g} (@, cos nf + b, sin nd) (2.2)
and
o “g?ﬂ - 2 ( —n?)(a, cos nf+b,, sin nd). (2.4)

From (2.4), we obtain the Fourier coofficients a,, b, (n=1, 2, ---):
1 (** Pu(B, ¢

= wn? Jo op* R
2.5)
1 [** FPu(RB, ; (
s an? Jo é‘iﬂ'ﬂ 2 smn@drp.

And we have
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vo 25 - :
MBS S L[F “gfj; 2)_ cos n(8—p) de=ga. (2.8)

Moreover, we have |
ou(R, 8)  ou(R,8)
on or

where % denotes the normal outer derivative on I',, Therefore, we obfain the

boundary condition on I,

ou(R, 8) 1 QPu(R, p) = i
o E —= | 20 co8 n(f —@)dp=ga. (2.7)
On @, u(r, #) is the solution of the following boundary value problem
—Aiﬁ-:[}, Qi:
“,P¢=fi: (2.8)
oui
1. 811- I’P = Ja.
Similarly, if we obtain the Fourier coefficients a,, b, by (2.2)’
: ﬂﬂ=_jhﬂr H(R: I;D)GGS g d@:
P i o 0
" g 1 Yo (2.9)
D= ;L u( R, @)sin np dp,

then from (2.8), we have

E_ L i
or r§1 wh Jo u(R, p)cos n(f—@)dp=go, (2.10)
or
r' Ty = : r‘ﬁ PR, ) sin ne do,
* T (2.11)
| + 1 " 8u(R, p) ;
bﬂ — L 3@ COs @ dg},
and
au’('R: 9) i ~ 1 '{ﬂﬂ 3'1&(R: ';D)__ 2 _m o
o RAERl T~ ap mrle—fde=g. (2.12)

Consequently, we have obtained three kinds of boundary conditions on I,.
Boundary condition (2.7) corresponds to the integral boundary condition with
weak singular kernel and (2.10) to the integral boundary condition with strong
singular kernel (see [1, 2]).

Now, we consider the boundary value problem(2.8) when boundary condition
(2.7) is used. It is convenient to consider the following problem

—du=f, &,
u|r,=0,
ouw 1.

|y, =90

Ty

(2.13)

Tet Ve{v€ HY(Q,); %|r,=0}. Then the boundary value problem (2.18) is
equivalent to the following variational problem |
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Find « € V, such that

a(y, v)+b(w, v)=f(v), Veel, (2.14)
where
alu, v) =L.:, Vu-Vode, f(v) mjﬂi fodw,
~s_1 [ _ .\ Ou(R, 8) dv(R,p)
by, 2) = 3}~ L cosn(f— )220 pe - didp,  (2.15)
and ou (;; 0) > -3'” (;z: "P) are understood as the digtributiions on [,.

- Theorem 2.1. a(u, v)+b(u, v) is @& symmetric and contéinuous V-elliptio
bilinear form on VX V.

Proof. We recall an equivalent definition of Sobolev space H*(I,)™

uCH (L) o u=92 - S (a, cos nd +b,, sin u8),

n=1

2 o0
S+ 2 (L+n?) (el + b)) <o, s€RM.

Assume that
. (B, )=+ E}(w“cosnﬁ—l—bnm'nnﬂ),
Co

(R, p)= 3 2 (¢, cos np+d, sin np).

Take the first derivative with reapeci to # and ¢

2u(E, 0) _ 1 1(—a, sin nf+b, o8 ),
_3’1?(63; @) _ i n{ — ¢, sin. np +d,, cos np ).

Then we have

b(u, v)= g —EEI—-J’ J:w (cos nfl cos npgin nf sin np) e (3%} 0) o (gp ?) dd dp

e 2 ﬂ'(ancn’l" bndn) -
n=1

Using the Cauchy inequality, we get
i 1/9F e 1/2
b, v) | <a| 3 a@+) ] [ 3 nie+dd) ]

ne=1

Iy

By the trace theorem, we obtain

|6(u, )] QUH%llmJ[WHi 0,0 ~ (2.16)

On the other hand, since &(u, u)>0, a(u, v)+b(wu, v) is V-elliptic. The proof is
completed.
Now, we congider the approximation of problem (2.13). Let

v_ 1 (%% cosn(f—p)\ Pul(R, p)
-2zl (325) ot P st

Consider the following problem
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e ————————

_Aui'fﬂf,

N ==
w|n=0, (2.18)
a_uH
L0 2 R
B |p, TR
It is equivalent to the variational problem

Find «” € V, such that

a(u¥, v) +by(u?, v) =F(v), Y2EV, (2.19)
where 1(2 ¥ ooan(8—a)\ du¥ (R, 6) 90(R, o)
Sy - o cosn(f—o u” (B, v{ 1S,
s, =2 [ [ (2% &N e

Theorem 2.2. Problem (2.19) has a unique solution u®,
Proof. For arbitrary u, €V, assume that

u(R, §) =—{—E§'-— 4= il (@q 008 nf +b, sin nf),

(R, ) = + ii (¢, 008 7 +d, sin n8).
Then we have

baCu, ) | = | 7 3 n(@oatbads) |<alulyar|olynn<Olulsalolso,

where ( is a constant independent of V. Moreover, we know thata(u, v) +by(u,v)
i§ a symmetric and continuous V-elliptic bilinear form omn V X V. The
conclusion then follows from the Lax-Milgram theorem.

The boundary conditions considered above are called global boundary
conditions., We can also obtain another kind of boundary conditions, the local

boundary conditions. Assume that -gq.—"'- has the following expansion on the

boundary I,

, ; o | K z |
2015 5 ER0. =

where Sg (K =1, 2, --+) are constants to be determined, and u(r, ) is the solution.
of problem (2.1). From

du(R, 8) _ i ._%(anmnﬂ—l-b,sinnﬂ),

or =1
_;9%“_%_551:_9)_.,, 3} (—n)(au 008 5+, sin nf),

we get

s

P [—ﬂ— g} (—n’)ESx](a,. cos nfd +-b, sin nf) =0.

Al

Then Sg(K =1, 2, 8, +++) satisfy the following linear algebraic equations
21 (—n?)E8g=—n, n=1,2,8 . (2.21)

Oonsider the approximation of the boundary condition (2 .20) . Assume that

ou(R, 0 1 & o &u(R, 0
T or 'EES; o5’
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where 8% (k=1, 2, +--, N) satisfy
N
M (—n?)*Sy=—n, a=1, 2, -, N,
k=1

For N=1, 2, 8, we have the following approximate boundary condifions
ou(R,8) 1 d*u(R,8§)

or B 382 7
ou(R, §8) (7 ?u(R, 6) | 1 du(R, 9))
or T R\6 @ 9° 6 opt !
ou(R, ) 5-1_(74_ Pu(R,0) 16 2u(R,60) | 1 &Fu(R,H)
or R\ 60 PR 860 o6* 60 00"

Obviously, it is inconvenient to use the local boundary condition for finite element
approximation when N>>1, but it iz convenient to use the global boundary
condition.

2.2. Finite element approz:lmatmn
For the sake of simplicity, let Iy be a polygonal line, and .7 be a triangulation

on {2, satisfying

(1) : 2=( | KU R),
| : EETs Red,
where K is a triangle, K is a curved triangle with a curved side on I, and
(1) hx/pr<oc, YK, K€Ts,
where | o .o
hye=diameter of K or K,

px =diameter of the inscribed circle of K or K,

h= max h_ﬁ'
EEEE}, :

Tisk |
Va(Q) ={v€H*(Q;), v|g(v|%) i8 a linear polynomial, vEK(KYET,, vlp=0},
We consider the approximate problem of (2.19): |
Find uj € V3, such that

a{uy, v) +oy(ur, vy=Ff(v), VYv&Vau (2.24)
Similarly, we have
Theorem 2.8. The variational problem (2.24) has a unique solution uy.
The remainder of this section is devoted to estim ating the error between exact
solution » and approximate solution u?. We have | ’

Theorem 2.4. There exists a constant C mdapendﬁnt of k and N, such that
e sup. b, w) —b(u, w) | } (3.25)

‘lw“i ﬂi

|l —uf 1, pﬁ;O{ 1nf 26—

Proof. Equality (2. 14) can be rewritten as T

a(u, v) +bhw(u, v)=f(0) +bx(u, v) —b(u, v), VveE/.
Gomblmng (2.24), we obfain
alu—uy, v) "'I"‘by(ﬂr fu;,,, 11) bN(u fu) b(u, fu), Yo E Va. ' (2.26)
Then i - ; .
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jud —ﬂﬂinﬁﬂh(uﬂ’ ~v, uy — ) +by(ul —v, uf —v)] -
=Ola(u—v, uid —0)+dx(u—2, uf —0) +b(u, ul —v) =by(u, uf —v)]

{0["1& 'Ul]:,,n‘"‘u; _lv"ifﬂl-l- Ib.ﬁ(ﬂ’ U _‘”) b('u: Ux —‘U) ]]: V‘”e Vl-
Therafore we have .

’by(ﬂ; w) —b{(u, fw)J_]’ ol I,

Ilwullnl |

| ed —wﬂi.n;'ﬁﬁ[llu—wli.n,—l- sup -
Wwe

By the triangle inequality
| "ﬁ—ﬂf"j_,p‘% "“""I’Hi.nf'i'ﬂuf_”“i-ﬂn
the proof-is compleied.

Remark 2.1. Theorem 2.4 is similar to the first Strang lemma™, the
difference ig in the second term.

Theorem 2.5. Assume that uC H*(Q) NH e
1.

1
2 (e, K=2; then

lu—2 11,0, <O( Alulao+—gz=rlol s ,, ) (2.27)
where U 48 a constant independent of h and N.
Proof. B}r Theorem 2.4, we obtain the estimation
”lﬂ, u |1’H'§O {:ulf ”:u; w 1, ﬂ;_]— Su’? le('u’: w)_b(’u'; w)! }‘
EVa "‘wﬂi.m

For the first term, we have™

t:!'é]‘,; "1"1‘:'_":'l |l1.ﬂ;‘€0hﬂuﬂﬂrﬂp

Therefore, we only need fo es

|bx (e, w) —b(u, w) | T

mate the second term. We have

1 j'ﬂ"'j’ﬂ“' ouw  ow

Exa

d

o Jo 99 dp i 7
= “2_1-1 (mnﬂn_l_bnfn) Ng;—l ; ﬂlﬁnﬁn—f—bnfn'
| i/4
<gr=r[ 3, @+ [ 3 n@rn ]’
where
u(R, 0) = ‘; z (@, cos nfl +b, sm nd),
w(R, §) =10 Z + 2 (&4 cos 8+ f, sin nf).
Finally, we obtain |
oty ) =bC, 0) | <gfger [l g l0ly . <o bl s 1, ol

Inequality (2.27) follows immediately.

§ 3. Linear Elastic Equations

Consider the boundary value -problem of linear elastic equations on tihe
unbounded domain Q with boundary I';:
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At a@=03 0,

Au .
At o0
A+ =0, 0,
po oy
{ v v _ (3.1)
ey 1 2y é, 2,
“Ipi=f1"
| 1’|P1=fﬂ.l

Lu, » are bounded, when r= (a2 +-92)1?—> 400,

In this section, a series of approximate infinite boundary conditions for the linear
elagtic equations are given. Similarly, the finite element approximation of problem
(3.1) can be obtained on a bounded domain. In Q, we draw a circumference I,
with radius B. Then & is divided info two parts as shown in Fig, 1. The solution
of problem (3.1) on the unbounded domain Q, satisfies

[ Ay 2te 99_o o
Mo o

dp+2TH 80 o o

A o oy
' o , ov _
15" oy ol

) P-‘=’EL(.R, 9)1
v 1"'='U(R, g):
. 4, v are bounded, when + — -+-o0,

Let p= ATH Q. The above problem can be rewritten asg

7
o
r x_m——@-il=o, Q,,
ap
Jv——===0, Q,,
ay 4
JOu oy __ (3.2)
am ay HPJ Qﬂj
'16]11_=%(.R, 9):
v|p,=v(R, 0),

L%, v are bounded, when ¢ — --c0,

where x=—£ >0, By these equations, we have

At
H(AP) +£1P= 01 Q’J

namely, | |
Ap=0, Qj. (3'3)
Moreover, we obtain
Au=0, O, (3.4)
Av=0, Q,. (3.8)

By the Fourier series, functions »#, v, p can be obtained with boundary values
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u(R,8), v(R, 8}, by a method similar to the discussion for Stokes equations™®, u, ¢
can be written as

U= (r"—ROW+&,

v=(r"—R)Was+G,,
where Wi, G4, W4, G5 are harmonic functions to be determined and

Gi|r,~u(R, ‘9) =¢1(8), Galr,=2(R, 0)=g:(6).
Hence G4, G satisfy
46=0, 4,

G‘|P'=g‘(9).ll e
@; is bounded, when r— oo, §=1, 2,
Gi(¢=1, 2) have the following expansion

G (r, 9)——— -+ E (@, cos nf + b, sin nf)r,

Ga(r, ) =2+ S (0, cos nf+d, sin nd) sy,

2 =]

where
f

[ i gi(ﬁjcoﬂnﬂdﬂ

]
p- —-le ¢:(8)sin nf 8,
q] J0

K o
R" " 92(6) 08 6 do,

b7

. 9a(B)sinnb df, n=0,1,2, .-

]
L

Function p also has the expansion
p(r, ) = 3} (P1n 008 n8-+pyy sin nf))r™,
where {Pya, Pas: n=2, 3, ---} are constants to be determined. By equalities
WL CES SUARYRNE A)

dov=A[(r*— R*)W o] =4 'a%:(‘?'wﬂ);

we have
Zom-12.
Fo, 1 &
> (‘-""Wﬂ). 7 oy’
and
Wy 1 Z; { D1 cO8(n+1) + po, sin(n+-1)4}r-1,
Wﬂ nzz{ph Ellll('I’Iil-[-].‘)9—--2!;;2n M(ﬁ+l)8}q¢‘ﬂ”1

On the other hand, we hava
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3W1 : BW:;) | 3G1 I_aGg

-—xp=—aﬁ+ﬂ==2mW1+2ng+(r“——Rﬂ)( 2 oy o "oy

or Oy
On the boundary Iy, we obtain

__{(9Gs  8Ga
(2aW1+2yWa) | r, + %p| r, ( ox Oy ) ]
A computation shows
QESW:l +2yW2 = ';— L
Therefore
1 3@1 ; BGE
(§+u)p r. \d Oy ) ,

and .

# (%—!—#) Dip = ('Hn—l) [ﬂiﬂ_i_ dﬂ-—i] s

L (%"‘#)Fﬂn: (“"“1) [bp-1tCas], n=2, 8, +*=s

Finally, we obtain the boundary conditions on I,

(—5¢+ 2 o) h. - le+ [

1 G (R, 8)
'r, +R ol ]

= 23—!—1 w n=1J0O 3@2 n 507
ov | ' i 1 G 1 8G4(R, &)
or 2391119) Iy 21 [(2x+2) or ‘& R 048 ]
o (2x+2) < (** &P(RB, @) cos n(f—p)
22 +1 [ a5 ﬂé;l .L ol n dop
_ 1 ou(R, ) ]
B ot :
e hmcgptmn-Rund 4 (8}; ) and - (;E ) have the following expansiong
ou(R, 9) _l_ & J‘ _ - |
3‘11' (R 9) =_ £ 2w . 3

Hence we obtain a series of approximate boundary conditions on [,

(—~ L+ poost) L [2et T 2ulR ) sinid—w) 4

18 2x+1
1 N Ax : %
| o [ 0B, p)sin n(p—0) dp|=H,

L > a7 u(®, p)sin n(p—0)dp |=H1.

On the domain £;=£2..\&2,, consider the approximate problem

1 |:(2H+2) ir“‘ 391&(_3,@) msn(t?-q») tp-l- 1 ov(R,0)

1
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S A = L

_op _
[ 2 o 0, &,
Aw—%—(} Q,
ou , ov
‘l -3?_1—3_@/ xP, Qi.t 3 6
"u’,PIEfl: ( ) )
wlﬁ_fﬂ:

(-2 pand)], -t

( g:i—}-pﬁmﬁ) =h¥,

For the finite element approximation of (8.6), let .7 be a triangulation of domain.
{2; a5 in section 2. Approximate » and v by pilecewise linear functions (function
o disappears in the variational formulation). Then the same error estimafion can

be obtained ag in Theorem 2.5.

§ 4. Numerical Example

F
Oonsider the following example:

- du=0, Q,
'MI ._1-'_'“‘ ” 1=1]1 "—'""-'——1-—-—-——__—.—1]1 =_1
x Lk V1+(y—0.5)* ~/1+(y+0.5)*" |
1 1 '
1 _1 : ; 4.1
) #ly1=In ~ @3+0.5° Hx,/’zvﬁ'—l-l-ﬁ'H o
1 1

—In ;
N +1.6° ~/ #°+0.5

~ % is bounded, when r —> co,

where Q={(z, y) €02, 1<|z| or 1< |y|} is the exterior domain of square [—17, 1]>.
The exact solution of problem (4.1) is

1 1
L e b = o e ¢ A o e

We take I', ag 8 circummference with radius 2. Then we can consider the finite
element approximation of » on the bounded domain £,={(=z, ) €| (o, y) €EQ and
¢<2}. The triangulation of £, is shown in Fig. 2; it is denoted by triangulation I.
In thig case 5=0.57. Then the mesh is refined by dividing every triangle into four
smaller triangles; it is denoted by triangulation JT and A=0.285. Refine it again and
the final mesh is denoted by triangunlation III, In this case A—=0.1425.

The relative arrors( 'H|’”Th | )are given in Figs, 3—6 for N=1, 2, 3, 4, 5. As
shown, it is sufficient to take N=5. The mammum relative error is 0.0162 for I,
0.0076 for II, and 0.0028 for III. Figs. 7—10 show the effect of N on the approxi-

mation. As shown, when N =5 the error concerning N in Theorem 2.5 can be

‘H’ﬂ=_1=1ﬂ

(4.2)
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neglected. Figs, 11—13 show the error in L. norm. |
Since there is no singularity in the integral, we need not do any special

treatment in the compuatation. The numerical example shows that this method is

very effective in solving the boundary value problem on an unbounded domain.
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