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Abstract

The classical Enestrom-Kakeya Theorem, which provides an upper bound for the moduli of the
zeros of any polynomial with positive coefficients, has been recently extended by Anderson, Saff and
Varga to the case of any complex polynomial having no zercs on the ray [0, 4- oo). Their extension is
sharp in the sonse that, given such a complex polynomial p,(2) of degree n3=1, 2 sequence of multiplier .
polynomials {qﬂ.‘ (2) }iey can be found for which the Enestrém-Kakeya upper bound, applied to the }
products @, (¢} -p,(2) , converges, in the limit as ¢ tends to oo, to the maximum of the moduli of the
zeros of p,(2) . Here, the rate of convergence of these upper bounds (o the maximum of the modunli of
the zeros of p,(2)) is studied. It is shown that the obtained rate of convergence is best possible.

§ 1. Introduction

With =, denoting the set of all complex polynomials of degree exactly n, and
with ‘
:r:r;:':={pn(z) =ga:, z: @;>0 for all j=0, 1 ..., n}, (1.1)

a useful form of the clasgical Enestrém-Kakeya Theorem'®® due in fact to
Enestrom'™, is the following

Theorem A. For any p,(2) El—in a; 2’ in o} with n>1, define

g iy w s a4 | . _I
olpd:=ninic} ot Aad: - mex{ A .2

Then, all the zeros of p,(2) lie in the annulys .
alp.] < |2|<B[pal. | (1.3)
Evidently, if i

p(Pa):=max{|z]|: Pa(2;) =0}
denotes the speotral radius of any complex polynomial p,(z) in &, with a> 1, then
the Enestrém-Kakeya Theorem asderts that

| Bl o) =p(p,), for all p, E ;! for all n>>1. (1.4)
* Received Januvary 28, 1983,
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The sharpness of this inequality in (1.4) had already been studied in 1913 by
Hurwitz®., For a recent (corrected) form of Hurwitz’'s original contribution
which gives the precise conditions on p,{(2) in @} so that equality holds in (1.4),
see [1].

To go beyond the case of polynomials having only positive real eoeflicients, as
treated in (1.4), consider more generally any complex polynomial p,(z) in =, with
w>>1, and suppose that a multiplier polynomial @,(2) in =, can be found such that
Q.(2) » p.(2) is in &},.. Then, applying the Enestrom--Kakeya Theorem to the

product Qm(2)pa(2) gives (of. (1.4)) BlQnoal=p (Qmps), but a3 p(Qmpa) = p(20),
then
BLCn Pl ?P(:pn) . (1.5)
This upper bound B[Qmp.] for p(w,) is called a generalized Enestrdm-Kakeya
functional for p.(z), when such a multiplier polynomial exists. On setting
Tm 2 =1 Da(2) Emy: Pu(2) has no zeros on the ray [0, +o0)}, (1.6)
for any n>1,
% was shown in Anderson, Saff and Varga [2, Prop. 1] that the existence of
stuch a multiplier poWnomial @,(2) €x, for p,(2) for which @n(2)  Ps(2) ExFi4n, 18

equivalent with p, €&, Moreover, for p, €&, it easily follows (cf. {2]) that there
exists a least nonnegative integer me (depending on. p,) such that the set

mm(?n) < - {Qm(z) C Ton’ Qm(ﬁ).?n(ﬁ) €W$+n}

is nonempty for each mz=>m,. Now,

V= Tm{ Pn) ' = INF{B[Qmpn] Qmemm(?n)}: m ==y, (17)

gives the optimal (least) upper bound estimate of p(p,) of this generalized
Enestrém-Kakeya functional, when restricted to polynomial multipliers @,(z) of

degree m. Moreover, with (1.5) and (1.7), it is evident that the z,(p.)’s are
monotone decreasing:

Trme ( Pu) 2 Tmy+1{ Pn) = Tmes2(Pn) 2 =p(2a). (1.8)

Because of the inequalities of (1.8), it is natural to ask if the sequence
{Tm (Pu) }=m, tends 10 p(p,), a8 m—>oo. An affirmative answer to this question,

established in [2, Theorem 1], is stated ag
Thoorem B. For any p,(2) in &, with n=>1,

lim 7, ( Pa) = p (D0)- (1.9)

7 BT

Another question that can be asked is to characterize those elements p,(z) in &,
(with »> 1) for which there exists some positive integer

My=My (‘pﬂ)
guch that

Tm(Da) =P (Pn)

for all m > m1(ps). To answer this question, it is convenient to define the subset
ite Of %, (for each nz>1) by
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i) all zeros of p,(2) of modulus o(p,) are simple;

ii) if {&;,);=1 denotes the set of all zeros of p,(z) on the
oirole |z| =p(p,), then arg &; is a (nonzero) rational
multiple of 2z, i.e., there is a positive integer D and (1.10)
positive integers n, such that arg &;=2ma,/D with 0<(n,
< D for all 1<j<r;

{ iif) for every zero & of p.(2) with |£|<p(p.), then £P&

L [0,+oc0).

Then (ef. [2, Theorem 2]), we have .
Theorem C. Given p,(2) in &, with n=l, lhere exists a positave integer

My= 1 (D,) SUch that

Pn(ﬂ) € i, i -

T Pn) = p(0s) for all m=>my(py) (1.11)

¢ff 0.(2) 18 an element of %,.
We remark that the condition (1.10iii) above, nsed in defining s#,, strengthens

the analogous condition in [2, eq. (1.14iii)].
With the above results, we come 10 the main problem of this paper. For each

2. (2) in #,\ %, with n>1, it necessarily follows from Theorem C that
Tw( Dp) > p( pa) for all m=me(pa), (1.12)

while from (1.9),
Hm v pa) = p(Da)-

M= oo

What then is the rate of convergence of 7,(p,) t0 p(p,), as m—> oo, for each p,(z)
in £,\#,? Our main result, Theorem 1 below, gives an upper bound for this rate of

convergence,
Theorem 1. For each p.(z) in @ \%, with n>=>1, there exisis a monnegaiive

constani o for which - .
Em['rm(pn)“P(?n)]"ﬂ'- | (1.13)

This result i3 best poséibla in the sense that there is a polynomial, namely Pa(2) =
(1+2)? with p(pa) =1, which satisfies the above hypotheses, for which

mﬁﬂﬂ[ﬁ.(gﬂ) —1]=A, (1.14)

where A==1.27846 i3 the unigque positive zero of (A—1)e*—1=0.

It may be of iridependent interest that the proof of (1.13) makes use of
number~theoretic results, The proof of (1.13) will be given in Section 2, while
that of (1.14) will be given in Section 8.

We remark that Theorem 1 automatically applies to any 2,(2) in £,\&, whose
zor08 £, = | £, | €™ are such that all &, s are rational numbers. This is the case for

the partioular polynomial py(2):= (1+2)? of Theorem 1.
For any p.(z) satisfying the hypotheses of Theorem 1 and for any &>0, it

follows from (1.12) and (1.13) that

g8

£ Ps) <Tm(Ps) <p(Ps) —
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for all m sufficiently large. This implies that the rate of convergence of T Dn) 1O
p(p,) is no worse than linear in 1/ m, while the example Pa(2):=(1+42)? in (1.14)
shows that this rate can be exactly linear in 1/m.

§ 2. Proof of (1.3) of Theorem 1

Fix any p,(z) in #,, where n>>1. Without loss of generality (of. [2]), we may
assume that p,(z) is monio, real, and is normalized so that p(p,) =1. Thus, we can

write
Pa(z) = [1(z—£)), ~ (2.1)
and we can set
£ =1, where 0<r,<1, 0<8,<1(1<j<n). (2.2)
With Z+ denoting the set of all positive integers, we next define the sets
={1CZ*"&& [0, +oo)}, 1<j<n, (2.3)

80 tha,t (of. [2]) S —Z*\{sd,} 21 if #;=mn;/d; it rational (where n, and d, are positive
integers, in lowest tgrms), ag well as §,=Z* if 6, ig irrational. Thus, |
T:=='Dl Sy=2%\ ) {sd;};s. | (2.4)

&8s rationnl

Bince 1€ 8, for all 1<j<n, we can write
T:={ty}i=1, where lmi <{;<<-+s, with ]]'im 5y = 00, (2.5)

For some elementary number-theoretic properties of the set T, define
D:=1l.0.m. {d;}}_4 (where D:=1 if all #,/s are irrational). (2.6)
Then, as a eoﬁsequenne of the Chinese Remainder Theorem (of. [6, p. 249]), it is
easily verified that 7 is periodic with period D, i.e., if, for any positive integer a,
$j41, s+, ***, ;41 aTe the consecutive elements of 7 in the interval [a, a-+ D), then

the consecutive elements of 7" in [a+ D, a+2D) are exactly given by biprex =11+ D
for all 1<Z<i. This implies that 7 is an infinite set (of. (2.5)), and that the

maximum gap, ¢, between consecutive terms of 7 is finite:
g 1= Taix [t]g+1 = t;;] < 00, (2 'T)
-

Next, since p,(z) is also reaﬂ, we cap write (2.1) in the form

pa(2)= L] (= + 8) 11 [+ — 2r, cos 20, )o+ 1], (2.8)

joul

where 0< 8;'5;1 (if the first product is not vacuous), and where 0<#,<1/2 (if the
second produot is not vacuous). Since the quadratic factors in the second product of
(2.8) are derived only from non—real zeros of p,(z) in the open upper—half plane,
wo set

o T {9;, 0y is irrational, with 0<§,<<1/2}. (2.9)

Olaarly, I is either empty or a finite non-empty set.
- For additional notation, let {z) denote » minus its nearest integer, for z any

real number, with the convention that {z):=1/2 when s=n+1/2, » an integer.
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Our objective now is to consiruct a suitable subset 7 of the set 7', defined in
(2.4). If I =@, set U:=T. If I+@, let r be the largest positive integer for which
numbers @y, @, ---, #, vcan be found in 7 such that {#,};., and {1} are linearly
independent over the rational numbers. Recalling the periodic nature of the set T
= {¢,}72, and the fact that £,—1, then {1+mD}>_, is an infinite subset of T', where
D ig defined in (2.6) and where m ig any positive integer.

~ Fixing one such set {#,}}.; such that {#,}].; and {1} are lincarly independent
over the rational numbers, consider next the r—dimensional real vector

[K(1+mD)bp, K(A+mD)bap, -+, {(L+mD)6,>] (2.10)
for each m=1,

which, by definition, lies in the r—dimensional “unit” hyperoube |a] <1/2 (1<i<
r). Now, the linear independence of the {#,};_; and {1} insures (cf. [7]) that the
points of (2.10) are asymptotically uniformly distributed in this unit hypercube.

Next, let {o;}}-; and & be any r-+1 positive constants satisfying .
O0<La;—0<ay+8<1/2, for all 1<j<r. (2.11)

(Later, a determination of the a,/s and & will be made.)
This bringg us to
Lemma 1. For any choice of pos%w& numbers {6}iey and 8 satisfying (2.11),
there exists an in ﬁmﬁa sequence {m}u Of Positive integers with my<<mgq<<:--, such that
;—d<{(A+m,D)6,><ea;+5, for all i>1, (2.12)
g dl 1<j<r. '
Thus, if Utem{ug=14+mD}2,, then U ds an infinite subsei of T. Moreover, the
mezAmum gap, g, between suoccessive elements of U 43 bounded:
| 9:“1]133{%&”1"'%:}{4“33 (2.13)

Proof. If I=@, then U=T by dﬂﬁnltlon and U is independent of the a,/s and
8. That U is an infinite set possessing a finite maximum gap between successive
elements, is a consequence of (2.7). Thus, assume that I+A@, and let {#;}}1 be a
largest subset of I such that {4,};., and {1} are linearly independent over the
rational numbers, and let {9,},‘,“ denote the elements of the (possibly empty) set
I\ {8} 1.

A regult of Slater™ - 8% giyeg that, for any irrational numbers {i,}], which,
with {1}, are linearly independent over the rational numbers, and fo= any olosed
convex subset V' (with nonempty interior) of the unit hypercube (@, =3, ---, @),
where |oy|<1/2 for 1<i<r, there exigt infinitely many positive integers m<C
Mg, *++ such that

| [{mafrs), (mﬂh); o lmafr,»] €V for all t=>1, (2.14)
and such that

max [1404 — ;] < -+ 00, _ﬁ (2.15)

Now, the irrational numbers {Dﬁ;},,i are, with {1}, evidently linearly independent
over the rational numbers and (of. (2.11))

Vim{(2s, 23, *+, @) 10y~ 5<2;<<ayy +8 for all 1<j<r} (2.16)
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is a particular closed convex subset of our unit hypercube. Thus, an easy
consequence of Slater’s result is that there exist infinitely many positive integers
My < Mg<+» such that

[ +mD)b1p, KA+m D), -, KA+mD)E>] €V, (2.17)

for all i2=1,
and such that | |
max [y —my] < +oo. (2,18)
=

Clearly, (2.17) and (2.18) imply the desired results of (2.12) and (2.13).

This brings us to the selection of the positive numbers {a,};_; and &, which
satisty (2.11). If 7+@, assume first that the irrational numbers {8,};., (which,
with {1}, are linearly independent over the rational numbers) exhaust the set I of
(2.9). In this case, any choice of positive numbers {e}}., and 8, satisfying (2.11),
is acceptable. If {#};.; does not exhaust I, let {8,}:_,,, denote the remaining
elements of I. As {f,}}.; is a largest subset of T for which {6,};., and {1} are lineaxly
independent over the rational numbers, then each 8, (for r + 1<l <s) is a linear
combination (with rational coefficients) of {f,};.; and {1}, i.e., with fy: =1 for

convenience, we can write
A

' - kzﬂ er.x B, Tor all r+1<l<s, (2.19)

where ¢,;, are rational mumbers. On muitiplying (2.19) by the least common
multiple of the denominators of the non-zero [¢;;(, (2.19) becomes

9;--0— EO;,E &y, Tor all r4-1<I<s, (2.20)
p k= .

where O and O,,; are integers. It ig evident that O,#%0 (r+1<I=<s), and, as 8, is
irrational, that ;;1 1O, %] :>0-(a'+1€3€§s).
With D defined as in (2.6) and for any positive integer m, (2 .26) yields

(1+m13)9:——5— ;; Crx(1+mD)g,, r+1<l<s. (2.21)
I E

From the definition of (&), it is evident from (2.21) that
(A+mDYy = L) 316, ((1+mD)6,,
_ ; -

where 1;(m) is some integer, so that

{+mD)EY| = | B 4 S0, 1K (14+mD)B . (2.22)

Now, for each I with r+1<<I<s,
| | g ci;?ﬁmfﬂ == 0 (2 . 23)

is 2 plane through the origin in r—dimensional space. As the number of such planes
ig finite, there is a cone (with nonempty interior) in the positive-hyperoctant of
this real r—dimensional space, having a8 boundaries the coordinate planes and/or
the planes of (2.23). Thus, we can extract a closed hypercube H from the interior
of this cone, whose coordinate intervals are {oz—3, a;+98} for 1<k<r. In fact, we



No. 3 ON THE RATE OF OVERCONVERGENCE OF THE GENERALIZED... 281
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can choose the positive numbers {a;}}.; and & so that
0-<m;,—3<1m.,+3{1/2, for all 1%?5*@1‘, (2.24)
and so that the planes

r

“iémj | EEIG;,RQ}E=O, L+1<r<s, (2.2b)
i =

which are translates of the planes of (2.23), do not intersect our hypercube H, for

all choices of u;(m) and for all r+1<I<s.
Fixing our hypercube H in this way, we have, from Lemma 1, the existence of

the sequence {m;};-; of positive integers such that (2.12) and (2.13) are valid. In
particular, (2.12) implies that the vector

(A +mDYOs>, {(L+mD)sY, -+ ((L+mD)8,>]

ig in our hypercube H for all m;. Moreover, with this sequence {m,}i;, the fact
that the planes of (2.2b) do not intersect H, gives us, from (2,22), that

min{|{(L+mD)3>|:m € {mde, and r+1<l<s} = 1r>0. (2.26)
This will be used below.
Next, with upg=14+mD (of. Lemma 1), we set (cf. (2.1))
# n
Pi(w):=T] (w— &) <for each 11, (2.27)

feal
Lemma 2. For each 1>>1, there evists a polynomial G,(w) such that
1) Gh(w) 48 monde with all its coefficients positive;
iil) Pi(w) divides Gi{w);
i) BLG(w)]<n (where B is defined in (1.2)); (2.28)
iv) there 48 a constani M (independent of 1) such that
deg (Gh{w))< M.

Proof. CQonsider the representation of p,(z) in (2.8). If the first produect in
(2.8) is not vacuous, then —3§;=|3,|e**/® are the real negative zeros of p,(z). In
this case, the set T' of (2.4) contains only odd positive integers, so that the same is
true for the set U:={u:=1+mD}24, since D is necessarily even in this case. In
general, it follows from (2.27) and (2.8) that |

P(w) = :q(w ~+8¢) f]; [2?—2p§* cos (29::%;9.,;) wri], (2.29)

for i=1. | . B '
Consider ‘any term of the first product of (2.29). As §,>>0, then B[w- 3] =
o<1, Consider next any term of the second product in (2.29), say

ri%— 2y 008 (205 ;) « w -+, (2.30)
For any rational §,, it follows from (2.4) and (2.6) that
008 (2mu, 8,) <oos(2a/D) <1, for all iZ1., (2.31)

Thus, on applying the angle—doubling procedure of the proof of [2, Prop. 1] a
finite number of times (depending only on I}), there exists a monic real polynomial
Qwm(w), depending on ¢ and &, but whose degree (which depends only on D)is
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bounded, such that @, (w) times the polynomial in (2.30) has positive coefficients,
and such that (of. (1.2)) |

BLQn(w) - [rF* — 20} cos(2mub,) - w+w?]} <2, (2.82)
for all 1=1, all 6§, rational.

Next, we consider the quadratio in (2.30) when 0; is irrational, First, suppose
that #; is one of the {#,};.; which, with {1}, are linearly independent over the
rational numbers. Referring to (2.12) of Lemma 1 and the definition wi=14+mD,
then -
U<y — 0wty <ay+8<1/2, for all I>1, (2.33)
where {a}%.; and & satisfy (2.11). Thus, as in (2.81), (2.33) insures that

cos (2muy 0;) <cos[2mw (o, —8)] <1, for all I>1.
As in the previous case of §, rational, the angle—doubling procedure of [2, Prop. 1]
can be applied a finite number of times (depending only on «;—8), and there is
again a monic real polynomial @, (w) whose degree is bounded, such that (2.32) is
valid for all 1>>1, when 8, ig an irrational number from the partioular set {4}i,.

Finally, suppose that 6, is in {§;}_,,;:=1 \{0i}i_:. Recalling (2.28), we see that
min | g6 | =>v>0, for all 11, |

r
g0 that

008 (2w, ;) <cosr<<1, for all I>1.

Ag in the previous cases of §, rational and 0,€ {6i}1-1, the angle-doubling procedure
applied a finite number of times (depending only on %) produces a real monio
polynomial Q. (w), depending on I and 8,, but whose degree is bounded, such that
(2.82) is valid for all I>1. - . |

Now, on multiplying all the terms of (2.29) together, along with their
associated multipliers Q,(w), we obtain 2 monic real polynomial G;(w), where
Pi(w) divides G4(w) and where deg [Gy{w)] << M for all I<1. Moreover, from [2,
Lemma 1], (2.28iii) iy further satisfied, i.e., BlG:(w)] <n for 2ll =1, where n ig
the degree of p,(2) in #,. J |

This brings us to the Proof of (1.13) of Theorem 1. Asin [2, p. 19], we form,
for each 7>>0, the product polynomial

Hy(z; n)i= 0"+ 2 e )@ (%) for all j2=1, (2.34)
where Gf;(w) satisfies (2.28). Because @,(w) has all positive coefticients from (2.28i),
the polynomial H,(z; n) of (2.34) has all positive coefficients, so that the Enestrim-~
Kakeya functional 8 of (1.2) can be applied to it. Setting #y:== (B[G,]) ¥, it
follows, as in [2], that | . |
BLH (z; n)] = (B[G])Y<n™, for all 121, (2.3b)
the last inequality following from (2.28iii). As n, the degree of our given p,(2), is
fixed and a8 u;—>oc ag j—»oco from Lemma 1, the inequality of (2.86) then gives us

that

BLH, (5 m)]<1+221 0(L), agjsco. (2.36)

|
Uy 7

Now, deg (H,(2; ;) =u,(deg Gy) +u,—1, so that (2.86) implies (ef. (1.7)) that
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which further implies, from (1.8) and (2.281?} that
In 1 ;
| . 2.87
Tu;{]f#f]‘%l'f" u? O ( uf ), ag 3—»oC ( )
Thus
g (M +1) [ 000 =11 < (M +1) 1m0 (=) asj->eo,
| j
80 that
hm{u;(M+1) [T ey — 11T << (M +1) lnn (2.38)
Next, eonmdar any integer k satisfying
w,(M+1)<b<u, .« (M+1). (2.39)
Because of the monotone decreasing nature of the v,’s from (1.18), it follows that
Bl — 1] <tgua (M +1) [ a0sn—11, (2.40)

for all k satisfying (2.39). But as w,.y<u;+ ¢ from (2.13) of Lemma 1, then (2.40)
vields

. kf‘rk— 1] ﬁuj(ﬂf—l-l) [T—'HJ{H.FI) —1] "‘I"g(.M "[""1) [THJ{]"+1) _1] . (2 .41)
Ag the last term of (2.41) tends to zero from (1.9) of Theorem B, we deduce with
(2.38) that

Tim m [z, —1] < (M—I—l)ln ",

oo

which gives the desired result (1.13) of Theorem 1. l
We remark that our proof of Theorem 1 assumes only that p,(z) €&, with
nz=1. Obwoualy, if pa(2) €&%,, then from (1.11), there holds

hm m [T Ps) —p(2a)] =0,

i.e. o of (1.18) is necessarily zero in this cage.

3. Proof of (1.14) of Theorem 1

Consider

pa(2): = (1+2)1=14-2242°, (3.1)
80 that p(py) =1. Olearly, pa(2) is an element of both i and &, so that its agsociated
nonnegative integer mo (of. (1.7)) is given by my=0. Next, as pa(2) has a zero of
multiplicity two at = —1, then (1.10i) fails, so that p, € &,\ #,. Moreover, as both
zeros of py(z) have argument m=2zd, there are no irrational #,s, so that the
hypotheses of Theorem 1 hold for p.. Moreover, 7m: = 7m( p2), defined in (1.7),
necesgsarily satisfies (of. (1.12))

tm>1, for all m>=0. (3.2)

For each nonnegative integer m, we next set
Jm(e): = (2m~+1)c** — (2m+-3) ™™+ -2, (3.3)



284 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

Lemma 3. For each nonnegaiive integer m, fn has & unique posilive 2610, Cm,
which satisfies

B I (3.4)
Moreover,
2=ﬂu:}ﬂ1:}‘”:"0m>ﬂm+1}"'- (3 -5)
In addition,
2m -2 '
Op >—5—— for every m=1. (3.6)

Proof. By Descartes’ Rule of Signs, f, has a unique positive zero for each
nonnegative integer m. Since f,, (1) = —4 and since f,(¢)>>0 for all sufficiently
large ¢, then ¢,>>1, establishing (8.4). Now, fo(2)~=0, whenoe ¢=2. Next, with
(3.8) and (3.4),

Jmr1{Cm) = (2m+-3)cz" (¢ —1)7>0,
80 that ¢n>>e,,1 for all m>=0, which gives (3.5). Finally, with (3.3),

fm(zmwz =(1 1 )ﬂmﬂ_( 1 ) 0c ¢ __2<0,

2m—+1 2m +1 2m+1 2m +1
for all m>1, so that cm}(gg +i) which establishes (3.6). |}
Lemma 4. For each nonnegailive integer m, |
T om S s (3.7)

. 2m
Proof. Congider Qom(z) = 2 g,2', where the g,/'s are recursively defined by

9s-at+(2—Cm)gs—1— (2%“1)91“%95-:-1, §=0,1, -, 2m—1, (3.8)

where ¢g.ai=0=:¢_3, and where g¢;:=1. Because these ¢,/s in (3.8) satisfy a
homogeneous linear difference equation, it can be verified that the g¢,/¢ can be
explicitly expressed as

¢s= (en+L)7H{ (=1 [+ Den-+ (G+2)em] +0'},

jee =2 —1 e 2m, (3.9)
Now, rearranging the terms in (3.8) gives
9-2t2¢51+g5=Cm(¢s-1+2¢;+q401), §=0,1, «r, 2m—1, (8.10)
from which it recursively follows that (eof. (3.4))
Qo t+2q; 1 +q;=¢;'>0, 5=0,1, -+, 2m, (3.11)

‘Obviously, ag the expression on the right in (8.9) containg only positive terms
when g is even, then ¢4,>0 for all j=0, 1, ---, m. In particular,

Moreover, with (3 .9) and with the fact that f,,(c,) =0, it can be verified that
Jom—1 o i ggﬂm e ﬂm?ﬂm} 0. (3 . 13)

(In fact, it is (3.13) which, upon working backwards, leads to the definition of

fale) in (8.8)) |
Next, multiplying (3.18) by ¢, and using the case j=2m of (3.9), gives
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e e CE . TS A—

O Gom—1+ 2qam) = (en+1) %> { (Bm+L)ci"*+ (2m+-2) oS pp2l,
As ¢,>1 from (3.4) and as m>0, it follows that |
O Gam—142G0m) > (Om+1) 2052 {1+ 20, +Cr} =™
Thus, with the case j=2m of (3.11),

2 g 2m
Next, the product Qo (z) » pa(z) = (;—Eu T )- (1+2)? can be expressed as
- 21 +2 em42
Qam (2) « pa(2) = E} 7l = E} (gs—a+2g;-1+9,)7, (3.15)

wheTe ¢_a'=q_1:=qams1 :=G@am+a=0. Clearly, from (3.11) —(8.18), woe see that
Qo D2 € Tmao. Next, from (3.10) and (3.18), we deduce thai the ratios v/ 7Vir1 Of
the coefficients of Qan(2)*+ pa(2) in (3.15) satisfy -

Y —¢,, forj=0,1,-,2m—1, and 2m+1,
i+

while (8.14) gives that the remaining coeflicient ratio satisfies

establighes (3.7). |
Lemma 8. For each nonnegaiive integer m, let ¢ be a fived number satisfying
1< 0<0n, and let the associated numbers {p }izt” (depending on o) be defined recursively

by
—O0Pj-1— (2‘3'—1)?!"'" (2"6)?5+1+Pi+ﬂ=01 j=01 1, e 2m, (3-16)

swhere p_q: = 0= Dopmsa, and where py:=1. Then,
| p,>0, for all j=0,1, -, 2m+1. (3.17)
Proof. Set
g () 1= — %8 (2k+3)t+(2k+2), %=0,1, .-, m, - (3.18)
(1) = — (2k+3) % —1)<0 for any ¢>1; £=0, 1, >, m.
Thus, as 1<e<en and a8 cxpa<cy (cf. (3.5)), then

glﬁ (ck-!-i) >g?ﬁ (ﬂk) # and gm(ﬁ) :’\"'gm(cm) . (3 .19)
Now, direct use of (3,18) and the fact that fi(cx) =0 gives that

g0 that

2 -
gu(lx) = { 2]; ) )Hrr-—:t(f’k);
so that with (3.19), -

Y
gulow) = ( gg ii’ )91:-:1 (o) 7"( 2}3 =T )9#-—1(01:-1), k=1, 2, +-, m.
Thus, with the second inequality of (3.19), the above Inequalities can. be used
recursively to deduce

90 (©) > gn(om) >(Z2E2N 0 s (0ns) > (2mFB) g a(omr) > >L2ED go(oo).

But as ¢p=2 from (3.5) of Lemma 3 and as go(¢o) =0, then
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gn(0)>0, m=0, 1, -, (3.20)

which will be used helow.
Now, the explicit solution of the coefficients {p}273% in (8.16) can be verified
to be

Bi= oy (= 1)/ [2m+2—j— (14+7)6™*] + (2m+8)o*1},

j=‘ _1: 0: Tty 2m+2; (321)

where p_1:=0:=psn.3, and where py:=1, In the case when j is odd, say §=2I+1,
(8.21) gives -

Parya= (G) {(214-2)09"‘+3+(2m+3)c“+“—-(2m+1-—23)}, =0, 1,

As e>>1, the quantity in braces above i3 bounded below by 41+4, so that w1th
(3.20),

Dae1>>0 for 1=0, 1, «--, m,. (3.22)
In the case when j is even, say j=21, the assumption ¢>>1 and (8.21) give (cf.
(3.3))
gme) ( Pﬂ - pg;ﬁ) = 26?3 _ (2m 1+-8) e (¢ —1) 42
o >2e - 2m4-3)e ™M (2 —1) +2= — . (c),
for any =0, 1, -+, m. But ag 1<e<<c,, we see from Lemma 8 that f,(¢)>0, so
that |
Po>> P>+ > Pam > 0= Pap 2. (3.23)
Thus, (3.22) and (3.28) give the desired result of (3.17). }
Lemma 8. For all nonnegaiive integers m, | -
T | (3.24)
Proof. From (3.7) of Lemma 2, 7o, <c, for any nonnegative integer m.

Suppose, on the contrary, that there is a nonnegative integer m, for which 7n<<em,
so that (of. (3.2)) 1<7sm<<cn. For any choice of ¢ with 1< 7y, < ¢ <0, there exists a

2hi

Qom(2) in oy, with Qﬂm‘PﬂEWzm-;-z such that B[Qampﬂ]*iﬂ Writing Qam(2) = 2 9,

B [Qompa] <<c¢ implies that

¢1-2+2¢; 1+q;<0(gs_1+2¢;+q441), =0, 1, -, 2m+1,

or equivalently, : - : ,
¢y—at+{(2—¢)gsa— (23—1)9’3;“’?5-&1{01 §=0, 1, «-, 2m+1, (3.2b)

where ¢_o!=¢q_31: = 0= :q@ams1 = ' Gamsa- With this value of ¢, let the positive
numbers {py}¢=5" (depending on ¢) be defined from (3.16) of Lemma 5. Multiplying
(8.25) by p; and summing on j gives .

Om+1

2 p;[gs_at+(2—0c)g; 1— (2¢—1)g;~eg;51] <0,

HGWEver the left side of the above expression ig

2m+1

_gu sl T (qo—1)p;+(2— G)PH:{ "‘_Pﬁa] = 0
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“al =g il s

from (3.16) of Lemma 5. This contradiction establishes the desired result of (3.24)
that vam=0m- [ - -

It now follows, for ms(2):= (1+2)? in #,\#,, that the associated optimal
generalized Enestrém-Kakeya functionals 75, (p.) satisfy (ef. (3.24) and (3.6))

1
2m +1’

However, a sharp asympwtié behavior of e, can be obtained. Let A>1 be the
unique positive zero of (A—1)eé*—1, i.e.,

o (Ds) = 0 >1+ for all m>1. (3.26)

A==1.278464543, (3.27)
It can then be verified from (3.3) that
Cn =11 2mﬁ'+1 | 2(;“;_2%—- O ((gml 737)- as M—>co0, (8.28)
With (3.28), we now establish
Lemma 7. We have (¢f. (8.27))
lim m(zs( pa) —1) =A. (3.29)

THE—xoh

Proof. From (83.24) and (8.28), it follows that lim (2m + 1) (zs,—1) =A. But

as (2m+1) (zam—1) =2m(zgn—1) + (vo0m — 1), and 28 74, = cp—>1 as m—> oo from
(3.28), then

lim 27 (7 —1) = A. (3.30)

TR 0y

Similarly, we know (ef. (1.8)) that vomea <Tompz<7an for all m=>0, whence
@m~+1) (Tomsa— L) < (2m+1) (Tomps — 1) < (2m+ 1) (zam—1),

or equivalently,
(2‘?”.- "]"2) (Tﬂm.].g —1) — (Tﬂm.[.ﬂ e 1) = (2% ‘]“1) (‘I-"ﬂm.[_i e 1) <2m ('L"gm "1) -+ ("I«'gm o 1) -

Sinee vamea—1 and 7o, —1 both tend to zero as m—>oo, the above inequalities, with
(3.30), imply that

lim (2m+1) (#amsa—1) =A,

Tl =r O

which, with (3.30), gives the desired result of (3.29). ||
We gtate without proof that, for this polynomial ps(z):== (1+42)?, the following
sharper result can be shown:

Toms1(Pa) =T2m(Pa), for all m>0,
g0 that

To (Eﬂ) ==T1 (Eﬂ) Z Ty (52) =Ta(§ﬂ) Paall
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