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" THE HIGH ORDER EXPONENTIALLY
FITTED NONEQUIDISTANT EXTRAPOLATION
METHODS FOR STIFF SYSTEMS®
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(Shanghai Teachers University, Shanghat, China)

Abstract
A class of exponentially ﬁtte-:i nonoquidistant extrapolation methods based on an L-stabe linear

single-stop formuls are studied. Theorems about the extrapolation coefficients are given. Thees methods
koep good numerical stability, “quasi-L-stability”, whils raising the accuracy of the original formula.

: § 1. Introduction

In solving the initial value prubl_ei:u of O. D. K. s
" {y’ =f @),
o ly@)y=n

the stiffness Wili be_eomé a serious difficunlty when the ratio of the real part of the
eigenvalues of the J acobian J -=-2—£ is very large. Because of the importancy of this

class of problems, the research for efficient computing methods is significant.

The technique of extrapolation has been widely used, but most such methods
destroy the numerical stability when they raise the accuracy, and the amount of
work inereases as exponential of 2. J. R. Cash™ introduced exponential fitted
extrapolation methods to improve the gtability of local extrapolation, but the
eigenvalues of the Jacobian must be caleulated, and this costs a lot of machine time.

In this paper, a class of exponentially fitted nonequidistant exirapolation
(EFNE) methods are discussed, and the ozlculation of eigenvalues is no longer
needed. With the use of the strategy of nonequidistant extrapolation, the amount of
work increages linearly. Another advantage is that the new methods have quasi—I—

stability, which is analogous to L—stability.

§ 2. The Construction of EFNE Methods
Oonsider the linear single-step formula of order 3:
Jurr=Yat 3 h(2fua ) =G B @

When it is applied to the test equaiion

# Racoived Novembor 24, 1984.
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u VRN =T L . o o (2)
the characteristio funection is s | e SRS " B |

e R Lo E |

where ¢=2A. It is well known that (8) is I—acceptable and therefore (1) is T-stable.
Now we try to construct new methods of higher 'aiéﬂuraﬁy_baﬁéﬂ 011"(1). Assume that
Y1, ***, Ya have been calculated and the (n+1)th main step is to compute g,.:. Let &
be the step-length of this siep, choose real mumbers Myl (§=1, +-, 'm), and
caloulate g,y for m times (each calonlation denoted as yal1): .

- 1 a SR P S
S',,\,.;t;_'_ Yn +*3- ';n-:(gfﬁ_%‘“fffn) -g(';;) f n+-:_t:l | | @
1 am~1 ' 1/ mi—1 N2
) = =
W=y, st g (T W)@t S, ) - (T 8 f %
QGenerally, lot my=1, m,%m,, i« 7. Then take the linear combination
yﬁ+1=§ﬂﬂﬁ1-' A - - (B)

Connect (4), (B) using (8), and we have the characteristic function of the EFNE
methods: # *_ P

 R(g) =X 0B} (-%—) By (U2 g). - (6)

fml ™My
Choose , so that R(g) can approximate to e? as closely as pdésibla, ie. _
- @t § Qe PUOSEEOERS, ., 0 LT )
where p (positive integer) should be as large as possible, WL
Definition 1. An EFNE method is of order p if
R(g) = e+ 0y 197+ O(g*), , (8)
where Cor1% 0 is the error constant of the method. | | -_ | |
The following theorems show how u/s are chosen and how m is confined.
These theorems are generally true for exponentially fitted nonequidistant

extrapolation methods based on formmulae different from (1). |
Theorem 2. Let m>1,i=2, ., m, and myemy, i<, Denole

o {i+4 . . ;
Qy= 1+(mi+fl) r By J=2, =y, m<4, (9)
| oL Ty
SN L e
1. |
A= ;- y E1= (1: D: R O)T
e R W L, B
e | R
Then the coefficients u; in (8) can be determined by N
Ayu=¢y. o - (10)
Proof. Let -
= p1{_9 \ p1{ m—1
'Rj RE ( m,) RE( m;" g)
- (1+g/3my) (1+ (m;—1)g/3m,)

(1~2¢/3m;+ (¢/ms)?/6) (1 —2(m;~1)gq/3m,+ ((my—1)g/m;) /6) *
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O - = I

In R;=:21 %E( —1)*+1(g/8my)"+ (29/3my— ((g/m;)*/6)*
4 (=) ((my—1)g/3ms) - (2(ms— 1) g/3my— (my—1)q/my)°/6)'] +0(q")
- - > 24,9°+0(q9"), |

e ) — — T il
=5 %29 — 375 1 Tg48

where #u are defined as in (9) _ | . ow w ] .
Using Taylor’s expansion of ¢® and negleciing the high order terms, we have

- -V R R Y IR W RO
R(q) EH,R, Eu,.exp(‘g 75 ﬂﬂﬂ- ~ 270 f!ag!-? 6431&*& )+C?”(? )

= S ___l'_':';_. 1 E__;_:l_-_ ' IB-'.“ 7
BQE“’(-l_ 75 9~ oo T gag )0

NPT P o 1 (2 T N .
o (31— (Buaas)a ~ g (Bron)e*— 535 (Fwaw) £+ )0a"-
11 is obvious that the EFNE method is of order p (=m+2) if and only if

 R(@=e(1+dpag™ +0(g))
with dy.17%0, that i8, |

m

m :
EHJ= 1’ ; ﬂ#ﬂ"!“‘ 0, q':m 21 e mﬁ.é'
-1 o

=1
This is just (10). B |

By using Theorem 2 the coefficients in the EFNE methods of orders 4 to 6 can
be calculated easily, and the error constants ¢y.s can be calculated by (8) (seé Table1).

: - Table 1
& | " , i I | .o | B g
4 ; 2 —1/7 | 8/7 R _ _0.00026 o
5 | 1 | 2 | 8 N 24/5 —81/20 0.00006
- e | 1| 2| 3| a | ~erm0 248/5 — 0477 /100 3584/75 | —0.0000073
R A A A P TSN M S— T

In this paper, m/'s are decided previously and /s vary along with m/s. But how
we can choose m,’s 80 that the absolute values of 4's become small and the numerical

stability becomes better is still an open problem.
Unfortunately we cannot construct new methods of order greater than 6 simply

using (4) and () due to the following theorem:

Theorem 3. Let A, e be defined as in Theorem 2 with m>4. Then (10) s

enconsisient. | |
Proof. Obviously we only need to prove the case m=>b.
It is easy to testify that the group of polynomials |

U A et (L)t e, (A —2)T



‘No. 4' THE HIGH ORDER EXPONENTIALLY FITTED NONEQUIDISTANT... 345

ia lmearly dependent. In fact, there exists a veotor e:

e . 21 =
(c:l.’ Ca, C3, 4, cﬁ) gji} 3 1:' 'ﬁ': )

such that | - |
c;—l—El e, (34 (1 —2)*2)=0.

)
So we can find an elementary matrix (singe ¢5-cannot be Zero)

%: | 1 _ :
; ) 3 .X-= 2 ..' . ..
| | G’1 e . 3 i

such that the elements of the last row of X A4 are a11 zor0. But
- Xe= (1,0, ++, 0, 07,

This verifies the conclnmon for m=5. | - -
We can get an EFNE method of order greater than 6 by add_mg a node in the

last extrapolation, i.e. choose s> Mg > and calculate

: (5)
y' +_l_l y + 1 » yﬂ-"'l

¥ | ' g1
successively. The theorem for «; should accordlngly be modified, but it is beyond ouxr
discussion.

§ 3. Convergency and Stability

Nntdce that an EFNE method is equwa.lent to a one-step multlderwa.twe method |
when both are applied to the test equation (2), that is, they have the same
characteristic function. R. Jeltsch®™ has established the theory of multistep-
multiderivative methods. We will gquote some of his results to simplify our proof.
Theorem 4. The EFNE méthods are convergent is the serse of Dahlquist and

Henrict.
Proof. Now that

(L, 9)—-§ ~R(g) =0,

50 the chamctenstac function (6) is the unique branch, Since ¥ m=1 we have po(l)
= ¢ —1 and therefore the methods are stable (zero—stable).
Since {(¢)=R(q) and R(g) is ana,lytm in a neighborhood of the orlgm (because

R(0)=1) and p>4, we have |
ZCQ)_G‘;'—R(Q) __Bq-=0,+1qp+1+o(gp+ﬂ), 'op+1'f‘0-' B

By Theorem 2 of [5], the EFNE methods are convergent. g
Before the discussion of numerical stability, we first give
Definition 5. A single-step method ¢ said to be quasi-L—siable @f it ds stqﬁiy

giable and its characteristic function R(q) satisfies
lim |R(g)|=0.

Be g-+—on

Sinee (1) is L-stable and for (3) we have |
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i . SRR i LR ¥ & Vﬂl'. 3
lim IR%(Q')|== Im [Ry(¢)|=0, . . .
Re g —+oa Reg——aa ‘ (11) :
Jm [Big)|= Lm |Ri(g)|=0,
: III:IU_' e b o= Imq-r-—m ; : -

(11) holds for (6). This means that if an EFNE method is Au—atable it must be

quagi-L-stable. We gketch the regmns of absolute sta.blhty of the EFNE methods
of orders 4 to 6 in Fig. 1. i _

Wae can see that the methods of orders 4 and b are L—stable and almost L-stable

respectwely, and the ‘method of order 6 is quasi—L~stable, They are much betber
than Gea.r s methﬂds The cnmparlsﬂn is given in Ta.bla 2

- Table 2
EFNE GEAR EFNE . |  GEAR =
4 0 S & TR 73°
S o eee oz T e | s

In order to indicate more precisely the nﬁmerical stability- near 't_hé ‘origin, we
introduce the followmg symbols.
Let B>0,

D=D(R) {geC: |QIQR}_

A= {g€T: [R(g)| <1}, .
dA, be the boundary of 4, and A4S be the complement of A,

D*=4:nD, D-=A,nD,
—{g€C: Re(¢)>0},  H-={g€C: Re(q)<0}.
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il S —r el

.- Theorem 6. Lé @ ((, q) {—R(qg)=0 be ths chamctersstw eqmtwn ﬂf the

EFNE ‘meﬂwds and | a o

A —pi(C(ﬂ))/pu(C(O))

be a positive real numbér, Let’
R(Q) 6“C1+dp+1q9+ oy gﬂn"l" )r p+14‘0 (12)

Then there evists R:?O such that
4 2 r=24,nD
is a continuois smooth curve, the magmwrg axis at the omg-m cmd demdes D into twa
parts il taamge-n.ts - _ﬁ
a) If pis odd and - -
a.1) dy1(—1)®HD2L0, tkan D*— {0} cHY
8.2) dy1(—1)®V/2>0 then D"cCH™.

b) If pis even and dyyay=0, 3=1, s—1, 8< 28, dgpasHh0,
b.1) dppo(—1)P3+*<0, thﬂﬂ-ﬂ”“ {0} H*;.
b.2) dpin(—1)"**>0, then D"CH".

Proof. The first part of the theorem can be verified direotly by Theorem 1 of
{6] since the EFNE mathﬂdﬂ are Gonvergent and eongistent. Therefore wo only need

to prove the second part.:
Now we write ¢ =24 where i?= —1,
a) Assume that p is odd. Then by (12) =
| R(iy) | = €] |1 +-dpsa (—1) #3110 (g*9) |
- qu-b (1 1. 2d#+1 ( _ 1) (r+1).fﬁgp+i 40 (gﬁfﬂ))

Obviously, there ex;lﬂ’cﬂ suﬂielenﬂy small R>0 such that dﬁ.i( -1) {”"'W’ <0 implles
| R(éy) | <1, i.e. D¥— {0} H*. Otherwise D" H™.
b) Let p be even. Now dp4o; may be zero, j=1, «--. Assume dy,5,#0 (s-::ﬂp) Then

B | = (0] LB dpragoa ), ;;;.-(-—1>*ﬂf‘=+“yf+-’”+0E_yﬁﬂ”ﬂ)

=Eg_rt(1+2dp+m( l)pjﬂ+syp+ﬂs+0(yp+"l+ﬂ))
Then b. 1), b. 2) can be easily established as a) is. oy T
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. ‘We sgee that for the EFNE method of order 4, de=0.00135, ds(—1)%<0,
Therefore we have D*— {0} < H* near the origin. (In faot, i} is IL—stable.) And for
the method of order B, dg=—0.00006 and. de(—1)3>0. So D~CH", that is, 1t
cannot be L-stable. So we can verify for the method of order 6.

§ 4. The Strategy of Step—Length Control

From Table 1 we see that the nodea of lower order method ﬁommde with those

of higher order ones. So it is natural to consider a sirategy of step——length conirol
like embedded methods.

Let g/(1s+1) be the true solutmn a-,t fpss ¢ a.nd 44,1 the compuiing value using the
method of order s. Then

Yhi1— — i (tas1) "Oﬁih’ﬂ“-o(hpﬂ): -
21— g (fays) = Oy +0(19%%).
Neglecting the high order terms, we have

| 20, :l|‘= ly,’;n-yﬁiﬂ

or

+1
! | OIH' I I yn+jjap+¥n+1 I e

If we want to ehouse a. new step—length % such that s )

,-“'; o l0ﬂ+1}’lp+1[ <8, , | -i S, |
where ¢ is the permimible EI‘I‘DI‘ given previously, then |
. 5 p+1 = |
;?Ea_-h 8 " Ee
. | i1 —YRi g
We usually take = . 7 | |
| Ty Frnew=0.9%.

§ 5. Numerical Exaﬁlples

. 1. Consider the problem: i
{u’,=998u+1998u,

= —099u--1990 2, u(0) =.:JL-' v(0) -;-:LO_

The true solution is AU
{u=2a" — g~ 100
pe= —gF g~ 1000, -
The comparison of the accuracy of computing resulis using the EFNE methods of

orders 4 to 6 and the original formula is given in Table 8 with a fixed step—length.
One can see a.t once that the accumﬂy is 1mproved when extrapolation ig used. |

Table 8

M

order 8 ordex4 |  .order5 = | = order6 _ t

max . | _ * . 8.6E-11 0.5
ih 3.1B-3. 3.8E-5 1.1B-5 1.68-6 | 2.0
g 5.55-9 . 6.4E-11 2.2E-11 2.98-12 | = 20.0

____-__-___-__-—#n——_—___'—'—_-_-

6.6E-6 . 1.8E-7 . 2.1BE-8




No. 4 THE HIGH ORDER EXPONENTIALLY FITTED NONEQUIDISTANT.. 348

___—ﬂ#ﬂ—ﬂlﬂ-l‘—_—.__- s

2. The example for testing the program for stiff systems introduoed by Krogh™:

gy = — By+ Uw, : o (12)
-—1 1 1 1A 21 ]
; 1 1 =1 1 11. ‘75'2
U=3 1 1 »a diF "|mf
1 o | 1 1. ST

- o y=Uz, w= (212 ﬁ_,.—zi%')“', -

| i B=U diag'(ﬁ:l ﬁﬂ Bl Bl)U: 2’; - ""Bﬂi"*'ﬁ: i#ll 2, 3; 4.
The true solution - -
_ B
14o06% " |
If 2,(0) = —1, then ¢;= — (1-+8:). The true solution of (12) is given by y=Uz. Let
B8,=1000, 800, —10, 0.001 respectively.

The computing results by the method of order 5 are given in Table 4. The
method of order 4 is also used to control the step—lengih.

g‘-

»

) Table 4
ﬁ
mAax 8rror step number gvaluation LU ﬂt:;EEnggﬂ'bh time

0.27E~-6 11 112 11 0.91E-3 0,0101399
0.37E-5 17 192 17 0.63FK-2 0.106844

0.12E-5 34 471 34 0,.32E-1 1.09392
0.61E-~5 47 653 47 g.21 10,048

0.25E-5 . 66 877 66 1.53 100,999
0.60E-5 86 1086 86 12.6 I 1070.00

Table 5 gives the computing results using Gear’s method.

Table 5
M
. averago .

Max error step number evaluation LU 1 stop-lengt] time

0.9E-T7 70 ‘ 179 7 0.15E-3 0.0102437
0.26B-5 110 262 12 0.95F-83 0.104887
0.22E-5 168 405 15 0.60E-2 1.012267
0.208-5 216 523 20 0.46E-1 10.011079
0.30B-5 | 956 616 25 0.41 102.47713
0.128-5 283 693 29 I 3.8 1025.7769

Comparing with Gear’s method the EFNE methods have the following advan-
tages:
1. Simple construction and program. It can start working by itself and change

its step—length easily.
9. Iis numerieal stability is better than that of Gear’s.

3. High aceuracy.
The chief shortcoming, as that of the general extrapolation methods, is that the

amount of work is larcge.
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“ fPhel author is indebted to Professor Kuang Jiso—zun and Wang Guo-rong for
their help and guide. | ‘
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