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Introduction

For an aﬂ:it;a.rily refined system of knots, polynomial interpolation does not
guaraniee the convergency. Hence grew the piecewise interpolation. But the
currently widely spread spline interpolation has soms shortcomings in praotical
computation. Adding any new knot, we will have to solve a new linear system of
equations. Besides, spline functions always possess some degree of smoothness, and
the smooth spline interpolation is not a suitable means for approximation of a less
smooth funection, B

In this paper, we introduce a so called “regenerating kernel” B:(+4), with
which to derive a formula of interpolation, and construet a new simple iterative
method. Having got some approximation, we put a new knot in each step,
interpolate the error function and add the result to the previous approximation. In

this way we get another approximation. The formula i very simple and feagible for
computer nuse,

We have proven:

1) With a new knot, the error of approximalion decreases in the sence of
Sobolev norm

b b 3
[Iul[=J uﬂdm+J W) .

2) For an arbitrarily thickened knot system, the iterative process converges
uniformly. |

Actual computation has verified the theory. Error decreased monotonically.
When the knot system was refined, aconracy increased congiderably,

For the Lamp funetion, which has a tarning point (derivative discontinuous at
the origin), our result is better than that obtajned by cubic spline. '

* Received January 22, 1985.
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Definition.

_ 1 " o 2 b.
R.(y) 53h(5—a) [ch(z+y—a—b)+eh(|a Iy] b+a)], o<ed e<y<

The following are evident by definition.

1. R, (y) =R, (2)>0. (1)
2, R.(y) satisfies the differential eqnatmn |
~ PR, §;§ﬂ> LB L], i, (2)
Hence |
2 ;
g 1;;5—") >0, ey (3)
3. | d.%(y) >0, ae<y<az,
" cms; ) @
2\ Y
T - <@, @<y<b.
d Rm('y) gh d'Rm(y) o | B
4! ' dy yma0 dy g=b-0 0’ ﬂ{m{b. | ( )
5. GB(Y) ~ 9B (y) =1, a<o<b; (6)
d‘y =Dl dy y=e+0 ._
i dRu (&_ _— d-Rb(y) e : - ¢
da y=g+0 dy ) y=b-0 - (6 }
6. Using (3), (4), (6), it is easy to prove
dRa(‘y) | | |
- @
7. mex Ri(y) =mex By(y) = Ba(a) = Ba(b) = ghe7 =3 ®
1 et |
min Rn(y) '=Ru(b) =Ry(q) = sh(b—a)’ . | (9)
14+ch(b—a) - m—}—b e | o
min R,(y) = “Tshb—a) y=— o (10)
8. Let Wi= {u|u absolutely continuous, v & I?[a, b]}. For u, wEW%, we defing

the inner produoct

Now, we verify

For a<z<b,

- (Ro(w), u(®)) = j j +f m(*y)u(y)dw(j

(u; v) ==J: U dw.+J’:u’w' de.
(Bo(+), u(+))=u(z), a<az<b. | (11)

+Ii+f+) R (y)v' (y)dy
[T (=R @)+ Ru@))ulwddy + [ (~ Biw) + Ra(@))u(y)ay
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+. Ra(y)u(y)dy +J:j R, () (y)dy
- FR(Qul) |+ R (uly) 2.,

-1-1+12+13+I4+15+Iu.

Fa=I2=0 by (2). Bince R,(y), u(y) are continuous and R.(y), v’ (y) € L7, therefore
{g—0, I,—0, when £¢—0, Finally from equations (5) and (6)

Is+To=R,(v—e)u{zr—s) — R, (a+8)u(a+ &) |
w8 (Bu(@~0) — B(@+0)) u(@) =u(@).

Hence

(), u(y)) =u(@), a<a<b.
Similarly, by means of @7, it ig easy to verify o .
(Bo(+), u(+)) =ul@), (By(-), u(-)) =u®).
Finally, we have | | |
(Ro(+), u(+)) =u(e), a<o<b., (11)

Because of (11), we pgall R,(y) the regenerating kernel or kernel of regeneration.
9. Let g and 2z be two fixed points. Throughout we designate

¢k(') =Rh(‘)l ll’k(‘) ='th(')‘
For any 8 EW3, we have

@C), du()) =8(w), (12)

(B(+)s tu(e)) =8(z). (13)
Particularly, ¥
(Dr(e), Du(*)) =y (w) =B, (4), (14)
W)y Y (+)) =t (z) =R, (%), o | (15>
(Be(-)s ¥a(+)) =ulen) =t (¥) = By, (1) =R, ().  (16)

¢u (@) = Ry, (2), Y i{e) =R, () are orthonormalized by the Gram Schmidt Process as
qf’; (ﬂ':)_. ‘J’;{m)' So | |

bx (@) =anch(z), - 17

Vi (2) = Buhu () +7atf (2). (18)
We now verify that .
Hy (2) = 05,03 (4) P (&) + [Bxﬁk (W) + 7185 (2) 1z () 5 | (19)
satisties the condition of interpolation
Hu(ye) =8.(yy), Hi(m) =5 (%) . | (20)
That means H (z) is the interpolating function of 8,(z) with respect to knots v, z,,
Hy () = (Hy (), du(-)) |

= (08 (¥1) ¢;(') nE [ﬁkak (Yx) +’}’k5:r. (ﬁh) 1dz(), P (-))
= a0 (Un) (bi(<), Pu(+)) =0 (w) (Pr () Pa(+)) =84 (wy):



B i

368 " JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

st T S — S S e L — —

Hy(2%) = (Hy(+), NED)
= (0uds (G Pr(+) + [Bidu (W) + 70 @) T (+), (=)
s (axﬁn(ﬂk)‘ﬁ;c(')‘l' [ By S () + 7B (2) 1 (), 3’1-:(1,&;(-) —ﬁ;,-,qf-;,(-))

~ 2[R0 () + 1) JUEC), 9C)) S NOICIONIO)

"'-1— [ BB (tf) +7idx (2x) ] ‘“ﬁﬁn () = (%) «
Tk g
10. From ineguality (7), we have

| R, (y) — Ry () | < 91—l (21)
ie. R, (y) satigfies the Lipschitz condition.
11. The o, By, vx in (17), (18) are all bounded.

12 1= (5, Pr) =c2(Pr, br) =oichu(th) =Ry, (Y.
By (8), (10),

sh(b—a) _ o 1 2sh(b—a) _
B T By © i-eh{b—a)" (22)

2° As (o, I.EIE) =0, (f5, Yr)=1; from (18), we have
B (e, du) + 7.y, br) =0,
(Bxbu+ Yilk, Bubut+ridn)=1..

Brdu () +7 b‘;&h (z) =0,
B (a1e) + 2Buyidu () + v () =1.

That is

So

2 __ b ()
L b (W) P () — ‘ﬁ% (z) ' o

Since both the numerator and denominator of (23) are positive, S0

v 0.
The denominator in (23)

e (Vi) U (21) — de2)
"[2511(1—@) I' {eh (24— a—b)ch (22—~ a—b) +ob?(b—a)

+ [ch 2y, —a—b) +oh(2zz—a—b)]oh(b—a)
—ch2(yy+2—a—b) —ch?(b—a— |¥u—2%] )

— 20l (¢ +2e—a—byech(d—a— |ps—u|)}e (24)
For any A, B, -
| 1
ﬁh(-A;_B)Q(Gh A«ch B)ZI<g chA;c__hB .

Using this in (24), we get

@) ~ 330 > [ =] [ob*(b—a) ~eb*(b—a~|mu—uD)].
17 wié tax mowke |

lgs—2|=>D, 0<D<(b—a)/2, (25)
fthen - :
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e —————— ey e s e e e e — 2 e

_ 4sh? (b—a)ch(b—a)
sh(b—~a)[ch?(b—a)—ch?(b—a—D)]
o Ash(d—a)ch(b—a)

ch®(b—a) —oh?(b—ag—D)
g0 | By VP () (28)

_ Pi(th)
But 0<¢;(2) < (@) . Therefore

Pis

= CONSt,

[Ba] <|7a]e

§ 2

Let the value of function #(x) at n+1 points {@}§ be given as {u}2 and
v(2) €W} be the initial gness of ¥(z) (may be arbitrarily chosen). Set

01(@) =u(e) —v(x).
Let 95 be either of the two knots ,, #;, where |91 (#) |takes the maximum value, and
let 2; be the other knot point. Let ¢, (s) =R, (), ha1() =R, (2), 83(x) =58,(z) —

{0081 (y2) P1 (@) + [B101 (1) + 7181 (1) 11 (@) }.
In general, le¥ 4, be one of the first #--1 knots @9, ¥, ***, @, Where |3, (w) | takes

the maximum "Efa.lue, and let 2, be one of the rest # knots, which is the farthest
from Y- Let

$u(z) =R, (), P (2) =R, (2),
Ous1 (@) =8 (2) — {adi (%) b5 (@) + [BrSi (W) + 7152 () ] e (2) }.

The last one can be rewritten as

Ok41 (@) =31 (@) ~ g 10,3;(y,) ¢; (@) + (B3 () + 78, ) 1; (@)}, &=1, 2, «, n—1,
Or by the definition of &, (z),

w (@) = () +:_2: {08, (g;) 5 (=) + [8,8;(y;) +v:8,(2)] i (@) }+8,(2).

Theorem. Let w(z)C W3 Then for any initial approzimation w(z)EW3, we have
[8ns1] <[Ba| and max|3,(2) | >0, provided ~/ 7 h,~>0, where b, has the Jollowing
meaning: Sort @g, @y, -+, ¥ 10 gl ¥, @, -+, 2, such that ST <wy <<+ LB <h, Then

ho=max {|vo~a|, |wi—a} |37 |b—d,]}.
Proof.
Buea(*) s Ouea(s)) = (Bs, 8u) —2(8s, ardu () dr+ [Bids (W) +7:s (2x) i)
-+ (ol (W) Pt [Budu (W) + 70k () 10k, 0B (%) P
+ [ 8udu (%) + 78k (%) 1) = (8, S) — 211+ I,
1% (Caloulation of I,. From

(Bxs Pr) = (B, uh) = o1du ()
(B2 Yi.) = (Buy BrPut7iabn) = B (8u,w) + 74 (Brs i) = BB (W) +710s (),

we get

and

Iy =aid; (%) + [Bidu (%) +760s (2a) 12 - (27)



i.e. error function 8,(z) tends to zero at knotg #, when & tends to infinity.: .

Now we prove that 8;(») converges o zero uniformly on [a, b].
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2% Calcnlation of I,. ¢; and iy are orthonormal; so_
I 2=ﬂ§3§ (o) + [ B (fyiﬁ) + 7udulze) 17 (28)
Therefore |
g 4 (O41, Ser) = (31:: 3:-:) — o k(yi) = [Bkah (ﬂn)'F‘}’kSk(ﬂn)] :
i.e.. g
S 8%/ ® = | O "2'1'“;9:52 (ge) + [Bnﬁh(‘.’}k) "l“}’kax (%)] (29}
0, | ._ x
|8%s1l<<|8%] (the equality holds only when &, (y,.-,) -=0) (30)
That means error O, decreases monotonically in the sence of Sobolev norm:.
From (29), *
B DU ] 2 {0idic(9e) + [31551: () 7du(z) 1%} +. I 3n42f® - (81)
Hence, for any n' L | -

% {303 (5) + [Buda (t) + 70 @) Iy <u—ol® (32)
Naturally we get o | B o w2
O (Yp)—>0, k—>oo. | (83>

But | ; ‘. ’. (TR gl B s it : : AT

' R TN, e W, . (o, sh(b—a)_
ot =Pi (4 By ()2 Tl
This means a;; is positively bounded below S0 )
| o Bm(y;‘-,)—-}[) k—-}m i
Due to the way nf selection of Y
Iak(mi)lqlﬁfﬁ(yiﬁ)l: §=0,1, -,
,Therefore . T T T 5,
]31'(55) |'_"O: t=0, 15 ==t k:.k_'}m:

(34

Let g be the pomt where |8, () | takes the maximum value on [&, b], i.e.

Ian(‘yn) —max |8, (%) h

e [a,b]

- and let w"‘3' be one of the knot points, which is nearest to Yy - g

lan (yn) | < |aﬂ ('yﬂ) O (w{n)) | ) l 3.1'! (m(“}-l)__l
But

| Oa (¥n) — s (mE:”) I‘Q*l 81 (‘y..?) G I

 (35)

(36)

+ 2 {ﬁkak (‘.Un) qbk(yﬂ)—k [Bxﬁn (:un) "1‘71531:(%)] % (y..)}
s 2 {ﬂkan (%) 96#. (ﬂ“‘"}) = o [Bnak (yx) + 70 () 14fs (ﬂ?(“})}

"I 1+ I Q-
12 Estimation of I;. By the uniform continuity of u(z), we have
181 () — 31 (2) | <8,
whenever the knot system is snfficiently refined,
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2° Hstimation of Z,. In (19) we heve proven that R,, (%) eetlsﬁee the L1 pschitfz
condition. So - s | g -
10D — ) | <lialel

[ (92 — (@) | < |g—af? .
BRecalling the boundedness of aj; Brand vy, we have

| b (W) — D (@) | <L|yh— 2|,
l% (97) — % (ar-E"’) l <L Jyn—-wf")l

Hence, from (36)
[0a(Yn) —Bu (i) | <8+ L E lakb‘n(yn)llyn -

n—1

-+ L E | Buds (ye) +'J’n31s(ﬂh) [ |4—2]

1

<e+L 3 (n—-—l){z 55 (0s) + (B U+ nh () 1]

§e+1} \/m}a Hu-—fulj nad
where /, mmex[mi+1~@| Therefore | Ty
N X O E a.(msﬂ))|<zs o s (37)
when / n A, is euﬁelently small., Moreover, by (34), we also have
|84 (&™) | <.

Finally, from (36)
max |3, (z) | = |8, (47) | <3, (38)

re[a,b]

when the knot system is sufficiently refined.
Now we have proven that §,(z) converges to zero uniformly, when the knot

Bystem is sufficiently thickened.
Remark. During the selection of the first two knots, if we make

91— 21| = 21— 20| >2D,
then (25) (|4x—2|>=.D) will be valid for all k.

§ 3

Algorithm,
(1) Give the table of interpolation @y Uy ¢=0, 1, «--, n, and g, b,
(2) Select the initial guess v (x)of u(o):

- def,
3:1(8) = u(2) — v(2).
Compute 8:1(m) ~uy— =D, §=0,1, ... n

For k=1 to =,
(1) For ¢=0, 1, ---, %, select the knot point, where |§;(z) | takes the maximum
value.

Let '
|Ox (z3,) | = X |3 (2, [,
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' - . T, =7 Y Ox (m;,) =>DY . . e i
(2) For -s==0 1 , &, select a point from k+1 knot.s which is the farthest from
oy, i.e. |y—m| takes the maximum. value.
Let -

o] = _Igjlfux li—ails v o eam ¥ 0k

(8) Compute L m=, 3 (ﬂy) =>Dz,,.
mpua . i
.= {[oh (245 —a—b) -l—oh (b—a)] /zsh (b ) & P e

(). I]f e Qe
L¢.,,, (90 i (22) — B2 (ﬁk)

T NN . ']’mﬁn fﬁn) - .

| i Qbk(%) B
(4) Cﬁmputa Bfﬂ(m;), §==0, 1, +

Busa(@) =Di— {ﬂ»DY@m(wi) + [B»DY #+YhDﬁn=] lh: (fﬂf) }=> D,
b (@) =atu (@) =mBy, (@), .
F'»L'k (@) ‘Bk‘{bn (ﬂ") +1’k¢k (‘-F) HBER‘H: (%) +'}'JcRu(m):l

--------
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