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Abstract. We try to give a brief survey about using multiple level set meth-

ods for identifying piecewise constant or piecewise smooth functions. A general

framework is presented. Application using this general framework for different

practical problems are shown. We try to show some details in applying the gen-

eral approach for applications to: image segmentation, optimal shape design,

elliptic inverse coefficient identification, electricall impedance tomography and

positron emission tomography. Numerical experiments are also presented for

some of the problems.
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1. Introduction

In this work, we are trying to give a brief survey about using multiple level
set methods for identifying piecewise constant or piecewise smooth functions. We
try to present a general framework and then show various applications of this ba-
sic approach. The general approach presented here is originated from [12, 55, 8].
The applications we have surveyed have used this general approach or could be
reformulated using this general approach for multiple level set ideas.

The general minimization problem we shall consider in this work is given in the
form:

(1) min
q∈K

F (q),

where K is a space or set containing piecewise constant functions over a given
domain Ω and possibly with some other extra constraints. Such kinds of minimiza-
tion problems arise from inverse problems, optimal shape design problems, medical
imaging and other applications.

In order to find a piecewise constant function, we essentially need to find the
values for the constants and the location of the discontinuities. For some applica-
tions, the values of the constants are known and we only need to find the locations
of the discontinuities. For two-dimensional problems, to find the locations of the
discontinuities is to find the curves that separate the constant regions. For three
dimensional problems, to find the discontinuity is to find the surface between the
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regions. In practical simulations, we need to use a mesh or grid. For the applica-
tions we shall consider, each constant region normally contains many mesh or grid
points.

Minimization using shape derivatives have been used for finding curves and sur-
faces. We shall give a brief overview in Section 2 for this kind of approach. One
of the potential limitations of this kind of approach is that it is difficult to handle
the case that the curve or surface may disappear, merge with each other, or pinch
off with each other. In this work, we shall present a different approach of using
level sets to represent piecewise constant functions and embed this representation
in frameworks for solving a variety of inverse problems and minimization problems
with piecewise constant functions. As computational techniques, level set methods
have several advantages in moving curves in 2D and surfaces in 3D. In section 3,
we give an overview of the multiple level set idea first proposed in [55]. We try to
supply some of the details in calculations related to gradient methods for level set
ideas. It is shown that we can easily combine level set methods to calculate gradi-
ents for the considered minimization problems. Sections 4-9 are devoted to different
applications. In §4, we show how to apply the level set methods for segmentation of
digital images following [11, 12, 10, 9, 55]. The minimization functional is slightly
different from the original Chan-Vese functional [9, 55]. In §5, we reformulate the
optimal shape design problem of Osher and Santosa [42] into the framework of mul-
tiple level set methods. Applications for identifying the coefficient from an elliptic
equation are presented in §6 following Chan and Tai [8]. In the original calculation
of [8], augmented Lagrangian method was used to deal with the equation constraint.
In §6, we show the formulation without using the augmented Lagrangian methods
and some numerical tests are presented. In §7, we show applications of the level set
methods for electrical impedance following Chung-Chan-Tai [18]. A similar appli-
cation using level set methods for PET medical imaging is discussed in §8 following
Lysaker et al [36]. In the last section §9, we show a variant of the level set methods
which can be used to trace free boundary for the obstacle problems [37]. In the
conclusion, we briefly mention some of the key issues in using level set methods for
practical applications.

As the application of level set methods for identifying piecewise constant func-
tions is relatively new, the works we have surveyed are mostly recent works of
our research group and we must apologize for possible omissions for other recently
related works.

2. Minimization using shape derivatives

If the constant values for a 2D piecewise constant function are known, then we
just need to identify the location of the discontinuities. For such a kind of appli-
cations, the minimization problem (1) can often be transformed into the following
minimization problem:

(2) min
Γ
F (Γ).

That is, we trying to find a curve Γ which minimizes the functional F (Γ). Tradi-
tionally, a curve is parameterized as:

x = x(s) s ∈ [0, 1].

Correspondingly, the minimization problem (2) could be transformed into

(3) min
x(s)

F (x(s)).
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One of the common ways to find a curve which is a minimizer for (3) is to use the
gradient method. First we discretize the interval [0, 1] for the space variable into
s0 = 0 < s1 < s2 < · · · < sNs = 1. Then we update xn

i ≈ xn(si) by the formula

(4) xn+1
i = xn

i − αn ∂F

∂xi
(xn).

One can also introduce an artificial time variable t and use more sophisticated
methods to solve the following equation to steady state:

(5) xt = −∂F
∂x

.

The weak point of such an approach is that it is hard to handle topological changes
of the curves. The above procedure is sometimes referred to as particle tracing
method with clear reference that the point xn

i is used to trace the location of the
point xi at a given iteration. If the curve disappears, splits or merges during the
iterations, then the iteration (4) will break down and some extra care must be taken
to handle such kind of situations. In addition, there are also other difficulties related
to numerical instability. For example, if the points on the curve get clustered, then
the equation (5) is getting more and more stiff which will require smaller and
smaller time steps to be used for the discretization of the time variables. The
level set method is a good alternative for overcoming these difficulties. The level
set method does not need to trace particles on the curves. Instead, a curve is
represented implicitly by the zero level set of a function. By dynamically updating
the level set function, the zero level set of the function is also changed. Thus, to
find a curve, we just need to find the corresponding function associated with this
curve. By modifying the values of a function, we can easily get the zero level curve
to disappear, split or merge. We shall supply the details about the level set strategy
in the next section and show applications afterwards.

3. Minimization using level set methods

The level set method was proposed in Osher and Sethian [43] for tracing in-
terfaces between different phases of fluid flows. Later, it has been used for many
different kind of applications involving movement of interfaces for different kind of
physical problems, see [41, 48, 40, 44, 57]. In the following, we shall present a ”uni-
fied” framework, first presented in [55, 8], of using multiple level sets to represent
piecewise smooth functions, and use this in various problems to identify piecewise
constant functions.

3.1. An overview of level set methods. For simplicity, let us proceed with two
dimensional problems. Let Γ be a closed curve in Ω ⊂ R2. Associated with Γ, we
define a φ as a signed distance function by:

φ(x) =
{

distance(x,Γ), x ∈ interior of Γ
−distance(x,Γ), x ∈ exterior of Γ.

It is clear that Γ is the zero level set of the function φ. In case that Γ is not
closed, but divide the domain into two parts, then the function can be defined to
be positive on one side of the curve and negative on the other side of the curve.
The function φ is called a level set function for Γ. It is clear that φ satisfies the
partial differential equation:

(6) |∇φ| = 1, in Ω.

However, φ is not the only function that satisfies equation (6) in the distribution
sense. In order to define a unique solution for the equation, we need to introduce the
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concept of viscosity solution. The existence and uniqueness of viscosity solutions
for linear and nonlinear partial differential equations is an active research field with
rich literature results [19]. One way to introduce the viscosity function is to add an
extra time variables t. Let φ̃ be any function such that Γ is the zero level set curve
of φ̃ and φ̃ is positive inside Γ and negative outside Γ. Then the distance function
φ is the steady state of the following time dependent equation (c.f. [41, 44, 40]):

(7)
∂d

∂t
+ sign(d)(|∇d| − 1) = 0 d(x, 0) = d0 = φ̃,

i.e. d(x, t; φ̃) → φ(x) as t → ∞. Moreover the steady state is unique. In appli-
cations given later, we only need the value of d in a band of width ε around Γ.
Correspondingly, we only need to solve equation (7) for t ≤ O(ε).

Once the level set function is defined, we can use it to represent general piecewise
constant functions. For example, assuming that q(x) equals c1 inside Γ and equals
c2 outside Γ, it is easy to see that q can be represented as:

(8) q = c1H(φ) + c2 (1−H(φ)) ,

where the Heaviside function H(φ) is defined by:

H(φ) =
{

1, φ > 0
0, φ ≤ 0.

In order to identify the function q, we just need to identify the level set function φ
and the piecewise constant values ci’s.

If the function q(x) has many pieces, then we need to use multiple level set
functions. We shall follow the ideas of Chan and Vese [9, 55]. Assume that we have
two closed curves Γ1 and Γ2, and we associate the two level set functions φj , j = 1, 2
with these curves. Then the domain Ω is divided into four parts:

Ω1 = {x ∈ Ω, φ1(x) > 0, φ2(x) > 0} ,
Ω2 = {x ∈ Ω, φ1(x) > 0, φ2(x) < 0} ,
Ω3 = {x ∈ Ω, φ1(x) < 0, φ2(x) > 0} ,(9)
Ω4 = {x ∈ Ω, φ1(x) < 0, φ2(x) < 0} .

Using the Heaviside function again, we can express q with possibly up to four pieces
of constant values as:

(10)
q = c1H(φ1)H(φ2) + c2H(φ1)(1−H(φ2))+

+c3(1−H(φ1))H(φ2) + c4(1−H(φ1))(1−H(φ2)).

By generalizing, we see that n level set functions give the possibility of 2n regions.
For i = 1, 2, · · · , 2n, let

bin(i− 1) = (bi1, b
i
2, · · · , bin)

be the binary representation of i − 1, where bij = 0 or 1. A piecewise constant
function q with constant values ci, i = 1, 2, · · · 2n could be represented as:

(11) q =
2n∑
i=1

ci

n∏
j=1

Ri(φj),

where

Ri(φj) =
{

H(φj), if bij = 0;
1−H(φj), if bij = 1.
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Even if we the true q needs less than 2n distinct regions, we can still use n level set
functions since some subdomains are allowed to be empty. In using such a repre-
sentation, we only need to determine the maximum number of level set functions
we want to use before we start.

For some applications, the function value inside each region may not be a con-
stant and may change slowly. For these problems, we may try to use quadratic,
cubic or some higher order polynomials to approximate the function inside each
region. Representations (10) and (11) can be easily generalized to higher order ap-
proximations, see [55, 14] for some details about using this idea for image problems.
In this work, we shall only concentrate on applications with piecewise constant func-
tions.

3.2. The level set dictionary. For every level set function φi, its zero level set
represents a curve Γi. It is therefore not surprising that most of the geometrical
quantities of the curve Γi can be represented in term of the function φi. Here, we
try to recall some of the standard level set dictionary from [41, 40]. First, it is easy
to see that

N =
∇φi

|∇φi|
is the unit normal vector of Γi pointing to the interior. The mean curventure of
the curve is

κ = −∇ · ∇φi

|∇φi|
.

Moreover, we have that

Length of Γi =
∫

Rn

δ(φi)|∇φ|dx =
∫

Rn

|∇H(φi)|dx.∫
Γi

p(x)ds =
∫

Rn

p(x)δ(φi(x))|∇φ(x)|dx =
∫

Rn

p(x)|∇H(φi(x))|dx.

If we denote ωi = {x| φi(x) > 0}, it is easy to see that

Area of ωi =
∫

Rn

H(φ)dx,∫
ωi

p(x)dx =
∫

Rn

p(x)H(φ(x))dx.

3.3. Combining level set methods with gradient type of methods. Gra-
dient type methods will be used to find the minimizers with respect to ci and φi.
For minimization problem (1), assume that K is a space or set containing piecewise
constant functions over a domain Ω and possibly with some other extra constraints.
For any given q ∈ K, it can be represented as in (11). To use gradient methods to
minimize a functional F on K, we shall calculate the Gateaux differential of F [22,
p.23]. The Gateaux differential shall be defined in the sense of distributions. For
a given F : V 7→ R, which maps elements from a space V to real numbers, we say
that G(q) is the Gateaux differential of F (q) if

lim
ε→0

F (q + εµ)− F (q)
ε

=
∫

Ω

G(q)µdx, ∀µ ∈ C∞0 (Ω).

Normally, we write ∂F/∂q = G(q). Under appropriate continuity assumptions on
the derivatives and related functions, the following relations are true:

(12)
∂F

∂ci
=

∫
Ω

∂F

∂q

∂q

∂ci
dx,

∂F

∂φi
=
∂F

∂q

∂q

∂φi
.
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The above formulas are essentially the chain’s rule. In the appendix, we give a brief
explanation about how to get these formulas under proper continuity assumptions
on F and it derivatives. For many problems, we know how to compute ∂F/∂q and
there are ready softwares to compute them. In order to use the level set method,
we just need to compute the derivatives ∂q/∂ci and ∂q/∂φi as given later in (14)
and (16).

Let us first consider a simple case where we only have one level set function and
the piecewise constant function q(x) is represented as in (8). Then it is easy to see
that:

∂F

∂c1
=

∫
Ω

∂F

∂q
H(φ)dx,

∂F

∂c2
=

∫
Ω

∂F

∂q
(1−H(φ))dx,

(13)
∂F

∂φ
= (c1 − c2)δ(φ)

∂F

∂q
.

In the above, δ denotes the Dirac function, i.e. δ(0) = 1 and δ(x) = 0,∀x 6= 0. If
we define Ω1 = {x|x ∈ Ω, φ > 0}, Ω2 = {x|x ∈ Ω, φ ≤ 0}, then it is easy to see
that:

∂F

∂c1
=

∫
Ω1

∂F

∂q
dx,

∂F

∂c2
=

∫
Ω2

∂F

∂q
dx.

Now we consider the more general case of n level set functions as given in (11).
From (11), we see that:

(14)
∂q

∂ci
=

n∏
j=1

Ri(φj),
∂q

∂φi
=

2n∑
i=1

ci

( n∏
j=1,j 6=i

Ri(φj)
)
D(φi),

where

D(φi) =
{

δ(φi), if bij = 0;
−δ(φi), if bij = 1.

Define Ωi to be the support set for
∏n

j=1Ri(φj), i.e.

(15) Ωi = support of
n∏

j=1

Ri(φj).

It is easy to see that Ωi is the region that q = ci. It can be seen that ∂q/∂ci is
nonzero only in the region Ωi corresponding to q = ci. Inside this region, ∂q/∂ci =
1. Correspondingly, we have that

(16)
∂F

∂ci
=

∫
Ωi

∂F

∂q
dx.

In applications given later, we need to use the length of the curves as regular-
ization functionals. The purpose of using this regularization term is to prevent the
zero level curves becoming oscillatory. For gradient methods, we need to calculate
the Gateaux differential for the length functional:

R(φj) =
∫

Ω

|∇H(φj)|dx =
∫

Ω

δ(φj)|∇φj |dx.

To get the differential of R with respect to φj in a direction µj , we proceed

∂R

∂φj
· µj =

∫
Ω

δ′(φj)µj |∇φj |dx+
∫

Ω

δ(φj)
∇φj

|∇φj |
· ∇µjdx.
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Applying Greens formula to the last term which can be theoretically verified by
replacing the delta function by a smooth function and then passing to the limit, we
will get that

(17)

∂R

∂φj
· µj =

∫
Ω

δ′(φj)µj |∇φj |dx−
∫

Ω

∇ ·
(
δ(φj)

∇φj

|∇φj |

)
µjdx

=
∫

Ω

δ′(φj)µj |∇φj |dx−
∫

Ω

(
δ′(φj)

|∇φj |2

|∇φj |
µj+δ(φ)µj∇ · ∇φj

|∇φj |

)
dx

= −
∫

Ω

δ(φ)µj∇ · ∇φj

|∇φj |
dx,

which indicates that

(18)
∂R

∂φj
= −δ(φj)∇ · ∇φj

|∇φj |
.

3.4. Smooth Approximations to H and δ Functions. In numerical implemen-
tations, it is desirable to replace the Heaviside function H and the delta function
δ by some smoothed counterparts. These epsilon-approximations are designed so
that they are everywhere non-zero. This is useful for ”growing” level sets in interior
regions (e.g. inside of annular regions). Another clear motivation of using smoothed
approximations is to get the involved functionals differentiable. In our simulations,
the following smoothed functions for the Heaviside-function H and delta-function
δ have been used (c.f. [55]):

Hε(φ) =
1
π

tan−1 φ

ε
+

1
2
,(19)

δε(φ) =
ε

π (φ2 + ε2)
.(20)

In order to have a good accuracy, we need to choose ε sufficiently small. For small ε,
δε is a smooth function, but with very sharp singular layers. This makes it difficult
to represent the δε function in discretization. From our numerical experience, it
was found that it is not good to use too small ε for Hε and δε.

However, there are also some other alternatives to deal with the singular function
δ(φ). For example, we can replace the δ(φ) function just by constant 1 or by |∇φ|
in the gradient and it can be proved that the direction is still a decent direction for
some applications. For example, the decent direction used in [42, 31] are equal to
replace δ by 1 in our calculated derivatives. For many other applications considered
in [40, 48], the decent directions are equal to replace the δ function by |∇φ| in
our calculated derivatives. For some applications, replacing δ(φ) by |∇φ| could
accelerate the convergence of the resulting schemes and offer some other other
advantages, see [38, p.392].

3.5. Some new level set techniques without using H and δ functions.
Recently, different efforts have been devoted to develop efficient techniques to use
level set methods to identify multiple phases without using the Heaviside and delta
functions H and δ, see [50, 34, 13, 33]. These techniques are able to decompose
a domain into different subdomains. It is important that all the above mentioned
techniques could automatically avoid overlaps and vacuum between the subdmains.
Moreover, they also avoided the use of the the Heaviside and delta functionsH and δ
so that no regularization is needed for these singular functions. The schemes of [50,
13] are fast and do not require gradient calculations during the iterations. Similarly
to [55, 8], one can use k level set functions to identify 2k phases. The technique of
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[34] is able to use just one level set function to identify arbitrary number of phases.
Moreover, the associated minimization functional and the constraints involved are
smooth. The level set function converges to a piecewise constant function. The
method of [34] is not trying to move the interfaces during the iterations. Instead it
is just trying determine which point is inside a regions and which point is outside a
region using some minimization functionals under some constraint. This has some
advantages in treating geometries, for example, in a situation where inside ”holes”
need to be identified. The methods of [33] combines the advantages of both [50]
and [34]. At convergence, the level set functions converges to ±1, i.e. the level set
functions satisfy φ2 = 1.

In the next few sections, we shall outline some problems where the multiple level
set methods can be applied. These new level set techniques can be applied to these
problems without any difficulties, even though we will only try to show applications
of the approach outlined in section 3.1–3.4.

4. Image segmentation

For some applications, we need to find the location of discontinuities for the
intensity values of a given digitall image and this process is often called image seg-
mentation. One of such applications is the segmentation of images from medical
magnetic resonance imaging (MRI). A typical MR image contains different regions
and inside each region the image intensity value varies slowly. For clinical purposes,
it is very important to accurately identify the boundary between the different re-
gions. The thickness of some of the special regions give important information for
doctors in practical clinical diagnose.

Following [39], it was proposed in Chan and Vese [11, 12, 10, 9] that we can
use piecewise consant functions (or higher order polynomials) to approximate the
image functions. For one level set function, the minimization functional used in
Chan and Vese [11, 12] is

(21) G(ci, φ) =
∫

Ω

1
2
|c1 − qd|2H(φ)dx

+
∫

Ω

1
2
|c2 − qd|2(1−H(φ))dx+ β

∫
Ω

|∇H(φ)|dx.

It is easy to extend the above formulation to multiple level set functions, see [55].
If we use the general framework we have presented in section 3, we find that the

Mumford-Shah minimization functional [39] can be written in the following form:

(22) F (ci, φi) =
∫

Ω

1
2
|q − qd|2dx+ β

∑
i

∫
Ω

|∇H(φi)|dx.

Both (21) and (22) have been referred as the Chan-Vese model for segmentation
problems. The formulation (22) bears more of the natures of the general formulation
of [8, §3].

Using (12) and (18), it is easy to see that the differentials of F defined in (22)
are given by:

∂F

∂φi
= (q − qd)

∂q

∂φi
− βδ(φi)∇ · ∇φi

|∇φi|
.

Let Ωi to be defined as in (15), we get from (12) that
∂F

∂ci
=

∫
Ω

(q − qd)
∂q

∂ci
= ci|Ωi| −

∫
Ωi

qddx.

In the above, |Ωi| denotes the measure of Ωi.
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For one level set function, it is interesting to observe that F (ci, φi) = G(ci, φi) if
we do not replace H by its smoothed counter part. However, the functional values
of F and G, especially the derivatives ∂F/∂φi and ∂G/∂φi, are different if we use
smoothed approximations for H and δ. The following gradient algorithm have been
used to find a minimizer for the functional (22):

Algorithm 1. Determine how many level set functions we need to use. Choose
initial level set functions φ0

i and the time step ∆t. For k ≥ 1,
• Update the constant values by

(23) cki =
∫

Ωi

qddx

/
|Ωi|.

• Update the level set functions by

(24) φk
i = φk−1

i −∆t
∂F

∂φi
(cki , φ

k−1
i ).

• If ”necessary”, reinitialize the level set functions φk
i , i.e. set d0 = φk

i .
Choose an appropriate τ0 and solve equation (7) to t = τ0. The reinitialized
φk

i is then taken as

(25) φk
i := d(x, τ0;φk

i ).

• Update qk as in the following and go to the next iteration:

qk =
2n∑
i=1

cki

n∏
j=1

Ri(φk
j ).

The above algorithm is essentially the same algorithm used in [55, 8]. As the
functional (22) is quadratic with respect to ci, we are trying to find the ci values
by enforcing ∂F/∂ci = 0 in (23). The time step ∆t in the gradient updating (24)
is normally fixed or obtained by a line search. After some updating of φi as in
(24), the functions φi are not distance functions any more. Thus, we try to project
them back to be distance functions as in (25). However, it is suggested not to
do this reinitialization very often. We shall reinitialize after a fixed number of
updating or when the level set functions φi have under-taken a sufficient amount of
changes (for example, sufficiently many nodal values of φi have changed sign). For
some applications, we could recover the level set functions even without reinitialize
the level set functions. There are different methods available in the literature for
reinitialize the level set functions, see [40, 48, 47, 54, 56].

As the derivatives of the functional (22) differs from (21), we have tried to
compare their numerical performances. Intensive numerical experiments have been
done in Hodneland [28]. It seems that the scheme with (22) is more stable, otherwise
the performance is nearly the same. We show some of the obtained results in
the Figure 1. The numerical tests seem to indicate that it is better to use the
total variational norm of φi instead of length of the zero level curve of φi as the
regularization term. The results obtained have been compared with the widely
used SPM (Statistical Parametrical Mapping, http://www.fil.ion.ucl.ac.uk/spm)
algorithm. When the noise level is low, the level set method is as good as SPM.
For higher level noise, the level set method gives better results [28], especially if
the intensity value inside each region is inhomogeneous (i.e. the value is not nearly
constant, but varies rather much), then the level set segmentation is much better.

In Algorithm 1, a gradient method is used to find the minimizer for the cost
functional. We shall note that one can also use other methods to find the minimizer.
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Figure 1. Segmentation of an MR brain image using functional (22).

See [27] for some recently developed fast methods for the level set segmentation. In
a related survey paper [14], one could also find some more applications of the level
set idea and variational PDE for image processing problems.

5. Optimal shape design problems

In applications, we often need to design shapes that minimize or maximize some
given criteria. Some optimal shape design problems of such a kind can be formulated
as identification problems for piecewise constant functions. The problem given in
this section represents such a kind of optimal shape design problems and it is taken
from Osher and Santosa [42], see also [4, 5, 46, 35] for some more problems that
are similar in nature to what is given below.

Consider a drum head with a fixed shape Ω ⊂ R2 and variable density q(x). The
resonant frequencies of the drum are found by solving the eigenvalue problem

−∆u = λq(x)u, x ∈ Ω, u = 0, x ∈ ∂Ω.

Let S ⊂ Ω be a domain inside Ω. We do not assume any topology on S. We assume
that the density q(x) takes on two values, i.e q(x) = c1 inside S and q(x) = c2
outside S. We will deal only with the first two eigenvalues λ1 and λ2. It is known
that λ1 and λ2 are distinct. The optimization problems we want to consider is to
find the minimizers for

(26) max
S

λ1 or min
S
λ1 or max

S
(λ2 − λ1).

subject to the constraint
|S| = c0,

where |S| is the area of S and c0 is a prescribed number.
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We use the Lagrange multiplier method to solve the optimization problem (26).
For a given level set function φ associated with S, let F (φ) = λ1 or −λ1 or λ2 −
λ1 depending on the minimization property we want. Let G(φ) = |S| − c0 =∫
Ω
H(φ)dx − c0 be the constraint function on the mass. The Lagrangian, with

multiplier ν, is given by

(27) L(φ, ν) = F (φ) + νG(φ).

The necessary condition for a saddle point is

(28)
∂L(φ, ν)
∂φ

=
∂F (φ)
∂φ

+ ν
∂G(φ)
∂φ

= 0, G(φ) = 0.

In order to show how we calculate the gradient, we let for example F (φ) = λ1.
Then, the eigenpair (u1, λ1) solves

(29) −∆u1 = λ1q(x)u1, x ∈ Ω, u1 = 0, x ∈ ∂Ω.

Differentiating with respect to q in a direction µ on both sides gives us:

−∆
(
∂u1

∂q
· µ

)
− λ1q(x)

(
∂u1

∂q
· µ

)
= qu1

(
∂λ1

∂q
· µ

)
+ λ1µu1.

Due to the reason that u1 is the eigenfunction for λ1, it is easy to see that the
left-hand side is orthogonal to u1. Multiplying both sides with u1 and use (29), we
get

∂λ1

∂q
· µ = −

λ1

∫
Ω
µu2

1dx∫
Ω
q(x)u2

1dx
.

Thus
∂λ1

∂q
= − λ1u

2
1∫

Ω
q(x)u2

1dx
.

Using the chain rule (12), it is easy to get ∂λ1/∂φ. From the fact that ∂G/∂φ =
δ(φ), we easily can derive the formula for ∂L/∂φ. Once the gradient is known, one
can use a gradient method of Uzawa type or projected gradient method to find a
saddle point for the Lagrangian L.

Before we conclude, we just want to emphasis that the results we have presented
above in this section is completely due to [42]. We just want to show that we can
formulate their problem and approach in the general level set formulation we have
presented. The gradient calculation we have given above is also essentially the same
as the one given in [42]. In [42], they try to find a decent direction. The decent
direction they got is equivalent to replace the δ function in our gradeint by constant
1. See [42] for some intensive numerical tests for this optimal shape design problem.

6. An elliptic inverse problem

Consider the partial differential equation:

(30)
{
−∇ · (q(x)∇u) = f in Ω ⊂ R2,

u = 0 on ∂Ω.

We want to use observations of the solution u to recover the coefficient q(x) which is
assumed to be piewise constant. This is a typical example for ill-posed problems. A
small error in the observation for the state variable u could produce a large error in
the recovered coefficient q(x). Even as a purely academic problem, this seemingly
simple problem is rather difficult to solve by numerical schemes. In the presence of
noise in the observation data, it has been shown theoretically, c.f. [23, 24, 51, 52, 53],
that the approximation error increases as the mesh size decreases. Up to now, it
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seems that there are not many available algorithms that can solve this inverse
problem with relatively large noise on a sufficient fine mesh.

The desire to recover accurately the geometry of the coefficient discontinuities
have motivated a number of approaches in the literature [6, 7, 15, 3, 25, 16]. One
approach is to use a regularization of the coefficient which respects the jumps and
the geometry of the discontinuities. For example, in our earlier work [6, 7], the
Total Variation norm regularization technique is combined with the augmented
Lagrangain technique of [29, 32] for this purpose. Other works along this line are
[16, 15], etc. An alternative approach is to model the geometry of the discontinuities
implicitly in the representation of the coefficient. Specifically, several approaches
using level set ideas have been recently proposed for this purpose; see [31, 4, 5, 21,
27] for some poineering work in this direction. In Ito-Kunisch-Li [31], level set ideas
are used for elliptic inverse problems similar to the ones we are considering in this
paper. Another related work is Ben Ameur-Chavent-Jaffré [1]. In [1], piecewise
contants are used to approximate the coefficient and they try to adaptively refine
the mesh until some given criteria are meet. For our level set approach, we use a
fixed fine mesh, but we use the level set functions to find the best partition of the
domain into piecewise contant regions to give a best match for the measurement.

Due to the ill-posedness of the problem, output-least-squares method is often
used for recovering q(x). Assume that ud is an observation for u, the minimization
functional for the output-least-squares method is:

(31) F =
∫

Ω

1
2
|u− ud|2dx+ β

∫
Ω

|∇q|dx.

In the above, u is the solution of (30) with a given q and
∫
Ω
|∇q|dx is the total

variation norm of q. In case we only have a sparse observation or other kind of
observations for u, the modifications needed for the numerical scheme is minor. We
shall use level set method to represent the coefficient q(x). So the function q(x)
depends on the level set functions φi and the constant values ci. From the chain
rule (12), we just need to calculate ∂F/∂q in order to get ∂F/∂φi and ∂F/∂ci.
Differentiating with respect to q in a direction µ for equation (30), we get that

(32) −∇ ·
(
q(x)∇

(
∂u

∂q
· µ

))
−∇ · (µ∇u) = 0.

In the above, ∂u
∂q · µ denotes the derivative of u in a direction µ at a given q. The

precise definition of this derivative can be given as:

(33)
∂u

∂q
· µ = lim

ε→0

u(q + εµ)− u(q)
ε

.

For general problem, the limit above is related to a proper norm. For this concrete
problem, the limit above is understood in the norm of H1

0 (Ω).
Define z(x) ∈ H1

0 (Ω) to be the solution of

(34) −∇ · (q(x)∇z) = u− ud in Ω, z = 0 on ∂Ω.

From the variational forms for the weak solutions for (32) and (34), it is easy to
get that

∂F

∂q
· µ =

∫
Ω

(
(u− ud)

(
∂u

∂q
· µ

)
+ β

∇q · ∇µ
|∇q|

)
dx

=
∫

Ω

(
µ∇u · ∇z + β

∇q · ∇µ
|∇q|

)
dx.



SURVEY ON MULTIPLE LEVEL SET METHODS 37

Again, ∂F
∂q ·µ above is the directional derivative of F which could be defined similarly

as in (33). From the above, we get that

∂F

∂q
= −∇u · ∇z − β∇ ·

(
∇q
|∇q|

)
.

In order to compute ∂F/∂q once, we need to solve both equations (30) and (34)
once. The following algorithm could be used to recover the coefficient q(x):

Algorithm 2. Determine how many level set functions we need to use. Choose
initial level set functions φ0

i , constant values c0i . For k ≥ 1,
• Update qk by

qk =
2n∑
i=1

ck−1
i

n∏
j=1

Ri(φk−1
j ).

• Compute uk and zk from equations (30) and (34).
• Choose the step size αn

i and update the constant values by

cki = ck−1
i − αn

i

∫
Ωi

∂F

∂q
(qk, zk, uk)dx.

• Choose the step size σn
i and update the level set functions as:

φk
i = φk−1

i − σn
i

∂F

∂q
(qk, zk, uk)

∂q

∂φi
(cki , φ

k−1
i ).

• If ”necessary”, reinitialize the level set functions φk
i , i.e. set d0 = φk

i .
Choose an appropriate τ0 and solve equation (7) to t = τ0. The reinitialized
φk

i is then taken as

(35) φk
i := d(x, τ0;φk

i ).

• Go to the next iteration if not converged.

Similar to image segmentation, the reinitialization step (35) should not be done
very often. The above algorithm differs from the algorithm of Chan and Tai [26, 8].
In Chan and Tai [26, 8], augmented Lagrangian method was used to enforce the
equation constraint (30). The cost per iteration for the above algorithm is somehow
more expensive than the augmented Lagrangian approach. However, the above
algorithm seems to be more stable with respect to initial guess and converges faster
when the iterative solution is still far from the true solution. For numerical purpose,
the details explained in [8] for calculating the gradients and the other technical
devices are all relevant for the above scheme. The step sizes αn

i and σn
i could be

fixed during the iterations. One can also use a line search to find the step sizes.
To guarantee that the recovered q is positive, we assume that the constant values
ci ∈ [ai, bi] and ai, bi are known a priori. One test example is shown in Figure 2 and
3. The true coefficient, solution u and the curve for the discontinuity is shown in
Figure 2. The identified coefficient and the curve for different iterations are shown
in Figure 3. In the test, we have used Ω = [0, 1] × [0, 1], mesh size h = 1/64,
β = 5 × 10−6, times steps αn

i = 0.01, σn
i = 5. The ε value used for Hε and δε is

ε = h. With 1% noise in the observation, it is remarkable to see that the algorithm
is able to recover the concave part of the curves and the sharp corners of the curves
are also captured rather well. Note especially that the region inside the concave
part of the curve on the left side is very thin and the algorithm is still able to
identify this region rather accurately.
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Figure 2. The exact q(x) and the location of the discontinuity

7. Electrical impedance tomography

There are a variety of medical problems for which it would be useful to know the
time-varying distribution of electrical properties inside a human body [2, 17, 20, 45].
One way to identify the electrical properties inside the body is to apply some current
with some low angular frequencies. This will produce a magnetic field inside the
body. Under the condition that the angular frequency and the conductivity are
low, one can get from the Maxwell’s equation that the electric potential u in the
body is governed by the equation

(36) ∇(q(x, ω)∇u) = 0.

Here u is the electric potential or voltage, and ω is the angular frequency of the
applied current which is assumed to be fixed for the setting of the problem. Instead
of reducing the Maxwell’s equation to the elliptic equation (36), one can also try
to reduce it to the Helmholtz equation as in [21]. In practice, we apply currents
to electrodes on the surface of the body. These currents produce a current density
on the surface whose inward pointing normal component is known. The current
will produce some electric potentials which we shall measure on the surface of the
human body. Mathematically, we say that we have N functions gi defined on the
surface ∂Ω. This will produce N solutions to (36), i.e.

(37) ∇(q(x)∇ui) = 0 in Ω,
∂ui

∂n
= gi.

We assume that we have measured the values of ui on ∂Ω, i.e. we have measure-
ments mi = ui|∂Ω. We shall use mi to recover a piecewise constant q(x). For
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Figure 3. The identified zero level curve with 1% noise. The
initial curve is a circle. It automatically splits into two separated
regions during the iterations.

physical reasons, we need to require that∫
∂Ω

uids = 0,
∫

∂Ω

gids = 0.

We shall use the output-least-squares method similarly as in [17, 20, 45] to find q.
The minimization functional is

F (q) =
1
2

N∑
i=1

∫
∂Ω

|ui(q)−mi|2 ds+ β

∫
Ω

|∇q| dx.
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Figure 4. Recovered discontinuity using different number of
boundary measurements. More measurements give a better accu-
racy for the recovered curve.

For a given q, let ui = ui(q) be the corresponding solution of (37) and define zi be
the solutions of

−∇ · (q∇zi) = 0 in Ω

q
∂zi

∂n
= ui −mi on ∂Ω,

∫
∂Ω

zids = 0.

it can be shown that

dF

dq
= −

N∑
i=1

∇ui · ∇zi − β∇ ·
(
∇q
|∇q|

)
.

See Chung, Chan and Tai [18] for the details. Once we get ∂F/∂q, it is easy to
use (12) to get ∂F/∂φi if we represent q using level set functions as in (11). An
algorithm similar to Algorithm 2 could be used to update the level set functions
φk

i and the constant values cki . In Figure 4, we present some numerical results with
4, 12 and 60 observations. The observations contain 1% of noise. The dotted line
shows the true discontinuity. The solid line is the recovered discontinuity. More
measurements give a better accuracy for the recovered curve. Compared with other
approaches, it seems that our algorithm is more robust with respect to noise.

8. Positron Emission Tomography

In PET (positron emission tomography), a compound containing a radiative
isotope is injected into a human body and forms an unknown emission density
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q(x) ≥ 0, x ∈ Ω. The positron emitted finds a nearby electron and annihilates into
two photons. The two photons travels at almost opposite directions. A detector
ring surrounds the patient and collects all emissions. For an emission event to be
counted, both photons must be registered nearly simultaneously at two opposite
detectors. Regions with higher concentration of radioactivity causes a higher emis-
sion rate. Given the total number of measured counts at each detector pair, the
challenge is to locate all emission sources inside the detector ring (c.f. [36, 30]).
Mathematically, the recovery of q(x) can be formulated in the following way. First,
we cover the domain Ω by a uniform square mesh. Assume the squares are indexed
by i = 1, 2, · · ·B and q(x) is a constant qi inside each square. The detector pairs
are indexed by j = 1, 2, · · · , T . If there are k detectors, we can have maximumly
k(k−1)/2 detector pairs, i.e. T ≤ k(k−1)/2. The two photons emits in two random
directions. For a given intensity q(x), the maximum probable measurement we get
is ~n = P~q, where ~n = {nj}B

j=1 and ~q = {qi}T
i=1 is the vector for q. The detection

probability matrix P is given, see [36, 30] for some details about how to get the
matrix P .

Based on some statistical arguments, it turns out that we need to solve the
following minimization problem in order to find a q for a given measurement ~n:

(38) min
~q
F (~q), F (~q) =

( B∑
i=1

qi −
T∑

j=1

nj log(P~q)j

)
.

We can see that the gradient of F (~q) is given by:

∂F

∂~q
= e− P t(~n./P~q).

In the above, e is the vector whose elements are all 1, P t is the transpose of P
and (~n./P~q) is the elementwise division of vector ~n by vector P~q. We assume
the q is piecewise constant, i.e. the qi values may equal to the same constant for
many elements inside a given region, and thus can be represented by the level set
representation shown in §3. Let ~φ = {φk}B

k=1 be the vector for the values for a
given level set function φ over the squared elements. Using chain rule (12), it is
easy to see that

∂F

∂ck
= h2

B∑
i=1

∂F

∂qi

∂qi
∂ck

,
∂F

∂φk
=
∂F

∂qk

∂qk
∂φk

.

In the above, h is the mesh size. If we need more than one level set function, we
just need to calculate the gradient similarly for each level set function. Once the
gradients are known, we can use an algorithm similar to Algorithm 2 to update the
level set functions and the constant values.

In Figures 5 and 6, we present one test example with a synthetic data set. For
this example, the true λ has three regions. The constant values are assumed to be
known. In the computation, we perturb the constant values by 10% and then fix
them during the iterations. The initial level set functions give four regions. The
extra region disappears during the iterations. The recovered and the true λ are
shown in Figure 5 and the evolution of the level set functions are shown in Figure
6. We refer to [36] for more numerical experiments.
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Figure 5. The recovered and the true λ function. Left: recov-
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Figure 6. Evolutions of the two level set functions. From left to
right: initial level set functions, 50, 150 and 650 iterations.

9. Other applications in brief

The level set method is designed to trace moving interfaces, thus it is natural
to use it for different kind of free boundary problems related to partial differential
equations. See [41, 49] for some application to Stefen type of problems, [46] for
constructing obstacles, [44, 57] for some other applications. However, for some
free boundary problems, we need to consider some variants of the level set idea in
order to use the level set function with the partial differential equations for free
boundary problems. Consider a model free boundary problem which comes from
minimization problem (1) with:

(39) F (v) =
∫

Ω

1
2
|∇v|2 − fv, K = {v| v ∈ H1

0 (Ω), v ≥ ψ}.

In the above ψ is the obstacle function and ψ ≤ 0 on ∂Ω. The solution u for (39)
is unique and it can be formally written as the function satisfying

−∆u ≥ f, u ≥ ψ, (−∆u− f) · (u− ψ) = 0.

To find the solution u, we need to find the contact region Ω+ = {x u(x) = ψ(x), x ∈
Ω}. Once we know Ω+, the value of u in Ω\Ω+ can be obtained from solving

−∆u = f in Ω\Ω+, u = 0 on ∂Ω, u = ψ on ∂Ω+.
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In order to find u, we essentially just need to find Γ = ∂Ω+. Inside Γ, u = ψ and
outside Γ, u is the solution of the Poisson equation.

It is not easy to use the level set idea sketched in §3.1 directly for this free
boundary problem. However, we note that for any v ∈ K, there exists a φ ∈ H1

0 (Ω)
(may not be unique) such that

(40) a). v = ψ + φH(φ), or b). v = ψ + φ+ |φ|.

For any given φ, let v = v(φ) to be one of the two representations given in (40).
We shall consider the following minimization problem:

(41) min
φ∈H1

0 (Ω)
F (v(φ)).

If φ is a solution for (41), then v(φ) is a solution for (1) with F and K given in
(39). However, we shall note that the minimizer for (40) is not unique. If we replace
H(φ) by Hε(φ) or replace |φ| by φ/

√
φ2 + ε, then the minimization problem (40)

has a unique solution. Using the chain rule (12), it is easy to calculate that the
derivatives with representation (40.a) and (40.b) and they are given respectively by

a).
∂F

∂φ
=
∂F

∂v

∂v

∂φ
= (−∆v − f)(Hε(φ) + φδε(φ)).(42)

b).
∂F

∂φ
=
∂F

∂v

∂v

∂φ
= (−∆v − f)

(
1 +

φ√
φ2 + ε

)
.(43)

In simulations, the functions are approximated by discretized functions with a
given mesh size. We need to choose ε properly so that the error introduced by ε
is comparable with the discretization error, see Majava and Tai [37] for the details
about the analysis and some numerical experiments. In Figure 7 and 8, we show
some of the experimental results taken from Majava and Tai [37]. The results are
produced using the gradient methods φn+1 = φn − α∂F/∂φ(φn) and with a fixed
step size α. We take ε = h2 for (42) and ε = h4 for (43). The step size is taken to
be α = 10−4 or α = 10−5 and we have not tried to optimize α.
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Figure 7. The obstacle and the analytical solution u.

10. Conclusions

There are many applications that we need to find the minimizer of a cost func-
tional with respect to piecewise constant functions. We have illustrated how to use
multiple level sets to represent piecewise constant functions. A uniform, powerful
and general framework for solving a wide variety of inverse problems and optimiza-
tion probems are given in this work. It is assumed that the recovered function is
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Figure 8. Errors between the obtained result u∗ and the ana-
lytical solution u. Top: 65× 65 grid pints; bottom: 129× 129 grid
points. Left: results using (42) and gradient decent method, right:
results using (43) and gradient decent method

constant inside each region. It is easy to extend the idea to case that the recovered
function is a polynomial of a given order inside each region.

11. Appendix

In this appendix, we give a brief account about the chain’s rules in (12). Under
proper assumptions on F and its derivatives, it is true that the following Taylor
expansion is correct:

(44) F (q + µ)− F (q) =
∫

Ω

G(q)µdx+ o(‖µ‖)‖µ‖.

In the above, ‖µ‖ is a proper norm for µ. If q is represented using the level set
functions as in (11), then q is a function of the level set functions φi and the constant
values ci, i.e.

q = q(φi, ci).
If we perturb the value of ci by εi and define µi = q(φi, ci + εi)− q(φi, ci), it is easy
to get the following relation from (44):

(45)
F (q(φi, ci + εi))− F (q(φi, ci))

εi
=

∫
Ω

G(q + µi)
µi

εi
dx+ o(‖µi‖)

∥∥∥∥µi

εi

∥∥∥∥.
Assuming that G(·) is continuous and also noting that

lim
εi→0

µi

εi
=

∂q

∂ci
,

we get the first formula in (12) by letting εi → 0 and using (45). The second formula
in (12) is also easy to derive from (44) just if the needed continuity assumptions
are valid for F and it derivatives.
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