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Abstract

This study deals with the theoretical basis of optimal control methods in primitive variable

formulation and penaity function formulation of Navier-Btokes problems. Numerical examples
demonstrating application are provided.

1. Introduction
”

The finite element formulation of the Navier-Stokes equation governing the flow
of a visoous inocompressible fluid can be clagsified into five basic categories: (1)
primitive variable formulation (or velocity-pressure formulation), (2) penalty
function formulation, (8) stream function formulation, (4) stream function—vortioity
formulation, and (b) optimal conirol formulation. Fach of them has relative
advantages and disadvantages. These formulations differ mainly in the way the
inoompressibility condition is ineluded in the formulation.

The optimal control formulation is to minimize the energy functional by the
introduction of the state veotor, which is a solution of a Stokes problem. The

incompressibility condition is treated as a constraint or is eliminated t0 introduce the
penalty funotion. |

2. Optimal Control Formulation

We consider the following boundary value problem of the stationary Navier-
- dtokes equations

C—vdut (UVU+Vp=f in Q,

J div =0 | in Q, | | Rk
uir,=0,(vSi—pn) =g omoQ=I'=IUT,

. Iy : :

- where # is the velocity of the fluid, » the pressure, 2 a bounded domain of R* with a
Lipschitz confinuous boundary.
We introduce the Sobolev space X = [ H*(£)]" with the norm

7l

)i = Sull, vREX,

* Received May 11, 1983.
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and seminorm
n
u|i=F|ul}, VucX.

Let Xo=[Hs(2)]", V={utluc X, @t|r,=0},Vi={u|ucV, divue=0}:s0 Xc¥VcX
and VnC:V.
We also introduce linear, bilinear and trilinear funotional:

B _ n aui awi
a0(w, ©) =»(Vat, Vo) —» 33 Jﬂ o B da,
G, v)=(dive, dive),

e (8, V) =ay(, v)+e7'G(u, v), Vu, v, wc X, (2.5
o (u; v, w)=((uV)v, w) =¢§1 L w! --g-z—:n wt dzx,

a(; U, w)=a, (& U, W) +a,(v; u, w), F, v)=Lf, vd+<g, VO,
We agssume € V' (dual space to V), g € [HV?(Iy)]* and HY*(I'y)= {the restriotion

to I'; of yog, g€ H'(2)}, o is the trace mapping from H(Q2) to HY2(IM), If u is
in HY23(I';), we deofine

5 Hﬁbﬂm.n= inf {||€J|1,- ﬁb='}’-:-9'fr.}-

ge H({)

Let H=/2(I'5) be the dual space to H2(I';), normed by
le* | —ara,ry= sup  [p*, pwirl/|wlijer, Yu"€H2(T,),

€ HY( )

where <+, +>p, denotes the duality between H*?(I'y) and H 2(I'y). It is not difficult
to prove {J, v>+<@g, U)r, VFEV', g €[H¥3(2)]", to be a linear continuous
tunctional on the space V', Therefore there is an FEF”’ such that

F, v={f, vO+g, O, YOCV (2.3)

EFHF-‘“:‘;- ”-f”-n Hﬂ”—lfﬂ, Iy»
where ||« |, denotes the dual norm of V",
In the velooity—pressure formulation, the variational form of (2.1) ig

to find # €V, such that
{aﬂ(u, V)ta(; 4, ©) =L{F, v), YOCEV,,
In the penalty function formulation, the variational form of (2.1) is
1o find &, €V such thai
{ws(u, v)ta (U, u, v)=<LF, v, Ve,
In both case, the variational form of (2.1) can be written as
to find # & H such that
{ A(e, v)+a:(u; #, v)=<{F, 6 vd), VvecH,.

In the case of (2.4), H =V, and A(#, ©) =ap(&4, ©); in the case of (2.5), H=¥ and
A(u: ‘U) 23:(“: U) :
We introduce the functional

J(0) =A@W—-§, v-§)/2, (2.7)
where £ is a solution of the following Stokes problem:

ECH, A, ) =<F, pp—ai(v; 0, m), Y9€EH, (2.8)

and

(2.4)

(2.5)

(2.6)
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Of course £ is a funoction of v through (2.8).
The optimal control problem associated with (2.8) is

find # € H such that J (u) =miH11 J (v), (2.9)
vE

It is obvious that (2.8), (2.9) have the structure of an optimal control problem
where v is the control veector and £ is the stato veotor. Equation (2.8) is a state
equation, while the funofional (2.7) is a cost funection.

It is clear that if # satisfies (2.6), then # is also the solution of (2.7), (2.9).
Inversely, if & is the gsolution of (2.8), (2.9) such that J (#) =0, then u also satisfies

(2.6).

3. The State Variable

From now on assume n<<4, In this case the trilinear form a,(&; v, w) is
continuous on H S0 we can. introduce the norm of @, (#; v, w) as follows:

- a1 (%; v, 1) |
Nmﬂ.ittluliﬂ‘ ];1 Ul |wi hPul)

from whioch we have

. O las (1 v, W) | <N |u|i|v].w]s, (3.2)
When meag I"3=0, a;(&; ©, ) is antisymmetrio with respect to v, w:

2:(%; 0, W) =—a,(4; w, v), YUETV,, v, WC X (3.8)
|  e(u v, ©)=0.
(3.2) shows that Y€ H, 3k (u) € H* (dual space to H) such that
<h(u), vO=(F, v)—a,(u; u, v), YOCH (3.4)

|R(we) |, =sup|<h(w), v>|/|v|:<|F|,+N|uli, (3.5)

Espema.lly, 1f Fe [IA3()]", then VucH, h(u) & [LV3(Q)]",
R (e) |, 3= 5‘113 |<F, v>—a(u; u, v) | /l®lo,a<< "F”n g+0(ul2  (3.8)

in view of the Sobolev embeddmg theorem I* ()G H(Q),

Lemmal. The mapping defined by (3.4) ur>h(w) is a cuntmum operator
from H imio H*, When F & [L**(Q)]" it is also continuous from H into [LA43 (£2) 1",
In the meantime the following estimates hold

IR (t) —R(2ts) | <N ([t |1+ || 1) ta—t0:]1, VH,, us€H, (3.7)
ﬁh(“lj —h(u,) lo, 420 ( |u111+ Iuﬂli) Iuﬂ‘“ulll_. Ve, u, € H, (3.8)

Proof. In fact,

h(w) —h(us), O)=a;(Ua—uy; t, V) +aq (2 10— u:, v), VoEcH,

By virtue of (3.2), (3.5) and (3.6) and the Sobolev embedding inequality, (3.7)
and (3.8) are obhtained.
Bilinear functional A(u, v) is continuous and coercive on H X H:

|A®, v) | <M|ujjv],,
Au, w) [ =y |u|i.
The introduotion of (3.4) into (2.8) leads to

and

(3.9)
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find £ € H such that A(§, n) =<hk(v), 9>, VnCH, | (3.10)

Of ocourse, there exists unique solution &=Tv for (3.10) acoording to Lax—Milgram’s
theorem, so the operator v—&=1v defined by (3. 10) is the mapping from H into H,
and

Po|i<v i R(®) |.<v*(|F|,+N|v|D), Vo€H, (3.11)
In addition, when F & [L*/?(2)]" and meas £'3=0, then Tv=§& [H**3(Q)]" and
| | 473 I’UIE) YveH, (3 12)

In other words, T ig a mappmg frem H 1111;0 [H248(2)]", In this cage, using
(8.7), (3.8) and Lax—Milgram’s theorem we can obtain:

Lemma 2. Suppose Q is a bounded domain of R® with Lipschitz boundary I,
Then the mapping T’ defined by (3.10) is continuous from H imio H, If the boundary is
of class C%, Fe [L**(2)]", and meas I'3=0, then T is also conténuous from H into
[H%*3(62)]" and the following holds:

[Tvi—Tvg 1QNP_1( .vi 1+ | Vg 1) U,—045]4, V”;[, UQEH, (3.13)
HTU;L—TURIQ 4;3@6( 1|11 (Vg 1) UV1—03 |3, Vvi_, ‘UQEH_ (3.14)

From Lemmas 1 and 2 we immediately obtain:

Lemma 3. Suppose Q is a bounded domain of R with boundary of class O3,
FecLY3()]" and meas I's=0, Then the opemtor T from H inio H, defined by
(3.10), is compact.

Lemma 4. Suppose Qis a bmmcieci doma@n of R* with L@pschmtz boundary
I'=I'1UIy, H=V,, Then the form ti>a;(W; w0, ) is weakly continuous in H, . e.

Uy —> u(weakly) in H=>1m a;(Un; Un, V) =a,(W; #, V), VOCH, (3.15)

A=

Proof. Sinoe the embedding operator HG [L?(2)]" is compact and an arbitrary
linear compact operator from a reflexive Banach space info a Banach space ig
oertainly a sirongly continuous operator, so #,,— & (st:mngly) in [L2(Q)]",

- Now, Vuc H, vu, wc X,

a(U; v, w)+a(@; w, V) =§P (vw) (un)ds -Jﬂm divudw=Jr (v_w) (un)ds,

Henoe _
a; (U; tf, w)=—a(lt; w, v)+ " (vw) (un)ds,

Let wE [Z2(Q2)]%; then |
| Iﬂ‘i(um: U, w) ﬂi(u u, w:)'

=@ (U —Up; W, B)+a;(Up; W, U—U,)

+L~ (u,—u)w(u,n) ds—-L (teen) (um—#)nds-

0,4)- ;
+O0 |8 —%]0,8/5,0 |80 |0,5/3,7([#]0,4,r+ |8nlo,4r).

It is well known that as g<2(n—l 1)/ (n—2), HY(Q)GLA(I) is ocompact, and
H'(Q)GL*(Q2). From this we have #,,—> # (strongly) in [Z¥3(I")]" and

<N |u—#,)o2|w|1,.(| 8]0+ |tn
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| @1 (Um; Wi, W) —ay (00; 1, W) |

<ON|w|y (Jee] 1+ |t |1) uu—umno,2+0|w]1(lu‘1+ |8 | 1) |8 — 2] 0,873, p.
Therefore

Lm oy (#,; &, W) =a,(u; 22, w)

H-— oo

in viéw of the boundedness of {#,} in H. Thus (3.15) holds by virtue of the density
of [Z(0)]" in H and the trilinearity of @, («; », ),

It is easy to obtain the following lemma from Lemma 4
Lemma 6. Suppose the condition of Lemma 4 is satisfied. Then the operator T
defined by (3.10) is weakly continuous from H into H:

U, —> U {weakly) in H=Tu,— Tu(weakly) in H., (3.16)

Lemma 6. Under the conditions of Lemmas 8 and 4 and FEC [ LY 3(9).] " the
operator T’ defined by (3.10) is strongly continuous from H into H:

Un—> U (weakly) in H=Tu,>Tu (strongly) in H, (3.17)

Proof. Suppose (3.17) is not true. Then there existy a. subsequence {#m,} suoh
that | |

- | Tttm,—Tt8]1>5, V&0, | (3.18)

But we also have #,,,~># in H and henoe {825} is uniformly bounded in H, As
T is compact, there exists a subsequence Uyt of {@0,,} with T",,,—~w in H, On
the other hand, &, — tt=>Tu,,~—> T4 by virtue of Lemma 5 As the weak limit is

unique we conclude that t0=T%, and thus Ty,,—>Tu in H. This contradicts
(3.18), and s0 we conoclude that T#,,— T in H , i.e. T ig strongly continuous.

Lemma 7. The operator T is Gateaus di ferentiable everywhere in H:
AT (Ww, v) = —a(u; w, V) —a(w; u, v), Yo, WEH, (3.19)

and T''(u) 4s Lipschitz continuous in H: | |
17 (1) — T (1) | <2N»~ |0ty — Wol:, Y., 4, €H,

(3.20)
Furthermore, tf the conditions of Lemma 8 are satis fied, Yu € H, T’ () is compact for

Proof. 1t is not di

fioult to obtain (3.19), To prove (3.20) we observe that

_A((T!(ui) —T’(ug))w, v) =a1(ug—u1; w, 'v) +t31(w; ﬂﬂ—uj_, v).
Hence - ' | | |

IT"(84) =T () | <v~2 sup 2oty 0. 0) e (10; y—tty, 0)|
v.wEH ‘ |wl1|v]-1
Employing (3.2) we obtain (3.20).
By virtue of (3.8) and the regular theorem for Stokes problems, 7" (u#)w &
H=*3(Q)GH, Henoe 7”(w) is compaoct. s
Let t€ R Tt follows that

A(T(u+tw), v) =(F, v>—a,(u+i1w; u+iw, v),
By virtue of (3.19) we obtain |

T'(u+tw) =Tu+ T’(ﬂj wi+T'(w)wi?/2, (3.21)
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- 4. The Existence Theorem

The variational problem (2.8) is equivalent to the following operator equation
u-=Tu, (4.1)

In other words, # is a solution of (2.8) if and only if # is a fixed point of 7',
Theorem 1. Suppose F & H* and

4Nv-2| Flf, <1, | (4.2)

K—{ulucH, |ul,<2|F]}. (4.3)
Then there exists a unique fized point of T in the set K,
Proof. First, we prove that T is a mapping K — K, If € K, then
|To| s <p (| F|,+N oD <o~ (| F|. +4Nv2?| F|) <27| F],
by virtue of (3.11) and (4.2).80T: K> K,
Secondly, T is a contraction mapping in K, In fact, if 4, ©,€ K, then in view
of (4.2), -

Let

lT‘!F]_—.{P"Un! <N»™ (lvlli_l" Ivﬂli) |vi*—vg|1'¢:zv1—vgll

So T is a contraction mapping K —> K, We conclude that the mapping T’ has a

unique fixed point in K,
It is well known that if A(u, v)=ay(®, ©v), H=VF, ﬂIld meas {3=0, then

problem (4.1) has at least a solution #* which satisfies

6| <y F,. ' | (4.4)
In addition, if - |
| Ny 2| F}, <1, | (4.4)*
then problem (4.1) has a unique solution which satisfies (4.4). In another case we

have:
- Theorem 2. Suppose A(u, v) =a.(u, v) FcH, H=V, meas I'3=0, and the
constants o, B are such that

v>a>0, v—cB/22a>0
where ¢ 18 a Sobolev embedding constant
[#]o,4<<c|tt|1, VHEX, n>4.

Then the penalty variational problem (2.5) for the Nawier-Stokes equation has 4
unique solution in the set Ki:

Ki={u|lucV, [diveal,<p, |u|i<a™|F|.} (4.5)
¢f |
(i) o N | Fj, <1, | (4.6)
(ii) the penalty parameter s is small enough such that |
0.5(s/a)*| F,<B. (.7)
Pyroof. It is easy to prove that .
|6 (#; ©, ©) | <0.5¢|w|] wauuﬂ, Yu, vEH, (4.8)

Lot Cu(w, ) =a,(w, ©)+a,(4; w, v), Then VuEC K,
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(1) Cu(~, +) is a continuous bilinear form on H X H,
(2) O4(+, +) is H-elliptic:
Ou(v, ©)=a|v|i, VOCH, (4.9)
In fact, by (4.8), (4.5) and (4.4), YyucK,,
Cu(®, ) =v|v|i+et|dive|i+a(n; v, ©) > —eB8/2) |v|i>alv]?, VOCH,
Hence the existence of the unique solution to
Cu(wp, v) =<F, v>, YwcH (4.10)
is guaranteed by Lax-Milgram’s theorem. That is, a mapping w—= P is well defined

by (4.10)
| Pu|;= [w]i<a™|F|,.

In addition, by virtue of (4.10) and (4.9) we have
s |divw|i+a|w|i<|F],|wl.
Using ab<<oa®+b?/(40") (where ¢>0 is an arbitrary oonstant) we have
7t |div |54 (a—0) |w i< | F|3/ (40).
Setting =0 and using (4.7) we obtain
4 [divw|o<<B,

Oonsequeﬁtly P is the mapping K, — K.
Furthermore, P is also a contraction mapping. In faot, if w, — P, and w,= Pu,,
we have

4, (01— Ws, U) +a; (U —ty; Wy, V) +ay(tly; Wy— w,, v) =0,
Setting ¥ =w; —w,, we obtain
Oy, (W —w;, w—w;) =a; (Us—ty; Wy, Wr—1w,),

It follows that
: Iwi‘-w:ali"gNﬂ_EﬂF”*lui—ﬂgli

by virtue of w, € Ky, Using (4.68) we conolude that P is a contraction mapping. So
= Pw has a unique fixed point in K,

Assume the (#,, p,) is the solution of (2.5) and (22, p) is the solution of (2.4),
Now we can state the following resulis.

Theorem 8. Under hypothesis (4.2) the following estimate holds

% —u, |1+ IIIP"*PE “0%‘313;

where ¢, 18 G constant.

For the proof see [13].

Lemma 8. Assume #* is a solution of (4.1) and condition (4.2) is satisfied.
Then 1 48 not an eigenvalue of TV (4*), i.e.

w—-I"(u" ) w=0=>w-=0, (4.11)
Proof. In fact,
A(w—T"(u)w, v) =A(w, v) +e,(U"; W, V) +a,(w; u*, v), YvEH,
Let C(u®; w, v)=A(w—-T"(u"w, v), Employing (3.9), (3.2), (4.2) and (4.8)
we obtain '
Cu"; w, w)=v(1—4Nv 3| F|,) |w|?>|w|?, YwcH, (4.12)
That is coercivemess of O(u*; », -). On the other band, C(u* -, +) iz also
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continuons on H X H. Henoce
O(u*; w, v) =0, VOoEH =Sw=0,
i.e. (4.11) is obtained.

5. The Minimizing Sequence

Let ./ (#) be a functional defined by (2.8)
J(U) =A(u—~Tu, u—Tu)~A(u—§, u—§), (5.1)
It is easy to check that J () is Gateaux differentiable everywhere in H, and
(Grad J (1), w)>—A(Tu—u, w—1"(4)w)
=~ A(Tu—u, w)+a, (4, w, Tu—u)
+a(w: u, Tu—u), vu, wec H, (5.2)

From this we conclude that if #* is a solution of (4.1), i.e. a fixed point of T, then
©* ig a stationary point of J:

Grad J (#") =0, . | (56.3)
If #° is a gtationary point of J, then we have, by (6.2), J
AW -, w-T"(uHw)=0, YwcH, (b.4)
From Lemmas 7 a.nd 8 we conclude that [ — 1" (u*) is an isomorphism of H, So
(5.4) yields
Tu" —u" =0,

Henoce we obtain the following theorem:

Theorem 4. Under condition (4.2), a solution of (4.1) is p stationary point of
J . Inversely, a stationary point of J is also a solution of (4.1),
Theorem 5. Suppose 2 is a bounded domain of R with Lipschitz bmmdmry I

and each of the following two hypotheses holds:

(1) A(s, ) =ao(+, »), H=V,, FGVE:, (5.5)

(@) A(s, ) =al-, »), H=X, Fe[I*@)]", I isofclass 0%, (5.6)

Then J (&) 15 weakly lower semicontinuous on H and achicves its infimum at some point
en H

Proof. Let #,—>u (weakly) in H,

(1) When (b.5) is valid, then by Lemma 5,

Tu,— Tu(weakly) in H,

(2) When (5. 6) is valid, then there oxigts a subsequenﬁe (still denoted by

{T'u,}) such that, by Lemma 8,
Tu,,— TPu (strongly) in H,
So we have 2, =y —Tly—> 2 =0—Tu (weakly) in H in either case. In addition,
A(Zp—2, Z0a—2)20=A(2n, 2m) >24(2,., 2)—A(2, 2),

Hence we got - | * |
| lim inf J (#,,) =J (@) . (5.7,

Similarly we ean prove that (5.7) is also true for the whole sequence {#,}. So we
oconclude that J i3 weakly lower semicontinuous on H
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o

On the other hand, J(#)>0, vuc H, Lot ::-'—ulg J(u), Assume {u,,.} is a
7 ]
minimizing sequenoce .

lim J(u,,.) =q,

M —aco

A(Zm, Zo) <M,

Henoe |2,|1<<c by virtue of (3.9), i. e. {Zm} is uniformly bounded. Furthermore, i
follows from equation (2.8) that

A, V) a1 (U Uy, ©) =LF, 0)—A(z,, ), (6.8)

From this,

S0
|t | 1 <2 (| F| v {2Zm]1) <Cs.

In the cage of (5.6), setting v=#,, in (5.8)
(F‘“O.5ﬂ”di? umuﬂ) IumliﬁuF“,-{-Hzmhﬁvﬂg

by viriue of (4.8), From the proof of Theorem 2 we know that if & ig small enough
wo have vy —0.5¢|div U,fle=v—0.6¢8>a, So {#,} i uniformly bounded. Thereforse
we ocan exiract a subsequence {#,,} of {&,} such that

U,,—> Uy(weakly) in H

and 3
. hm.f(u,,,,)-—mf.f(v) =, (5.9)
74 =0
Beocause J (&) is weakly lowser semicontinuous on I we have
a=lim J(#U,)>=J (), (6.10)
72 proa

But by the definition of &« we must have J(#f,) =a«, This shows J () =e,
Theorem 6. Suppose the conditions of Lemma 2 are satisfied. The minimizing
sequence {Ha} of J is such that

lim J (#) =0, (5.11)

Mm—oo

Then {U,} converges strongly to the solution & of (2.6),
9%, U, n H_ ; -. (5.12)

Proof. In the proof of Theorem 4 we showed that there exists a subsequence #.,,
of &,, such that ©#,,~—> 1, J (1) =inf J(®) =0, According to Lemma 3 there also
exists a subsequence (still denoted by #,,,) of #,,, such that .

TU,y— Tty (strongly) in H, (6.13)
In addition, (b.11) shows that o
im A(Zy,, 2,) =0, Zp=Un—TU,,

.~

lim |2, |10, °) - (5.14)

e o= =]

From (5.13)' and (5.14) we conclude that .
U,.,—> t{strongly) in H, 6 (6.15)
Using (6.5) we have -
A (8, v)+a1(u,,,,,, Uy, V) =LI, 0>—A(2Z,,, v) Yoc H,
Letting- mp—» 4+ <o we geot '
A(try, ©)+a1(ty; Uy, V) = <F v> \a‘vGH (5.16)
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by virtue of (5.14) and (5.15), i.e. 1, i8 a solution of (2.6),
It remaing to prove (5.12), Assume that it is not true. Then there exisis a
subsequence #,,, of &, such that

|umq—'uul1:}8, VB:}O. (5'17)

But #,,; is also a minimizing sequence of J which satisfies (6.11), Aoccording to the
previous discussion we obtain

¢, —> U, (sirongly) in H, (6.18)

where #&,,. is a subsequenoe of #,,, This contradiots assumption (6.17), and we have
(5.12),

6. The Construction of a Minimizing Sequence

Let us use the conjugate gradient method o make a minimizing sequence.
1° We take #, as the solution of the corresponding Stokes equation:

A(u,, ) =<F, v3, YvcH, (6.1)
Then compute go & .H by
f
’ A(go, v) =<Grad J(u,), vy, YvcH, (6.2)

and set {o=g,.
From m>0, assuming #,,, Om, {m» are known, compute Un.1, Fm+1, &mss by the
following steps:

oo Ap=arg min J (U,—ALn), Y1 =Un—Anlps. (6.3)
AER
3° Find g,+1 € H such that .
A(G 1, ©) =<Crad J (thns1), V>, VOCH, (6.4)
7m+1=-A-(gm+1: gm+1-gm)!/-‘4-(gm; gm); (65)
o cm+1=vgm+1+'}'m+1cin- | (6'6)

Let m4+-1=m, Go to step 2°, i
By means of (3.21) it is easy 1o check the following lemma: _
Lemma 8. Suppose J(n) is defined by (2.7) and (2.8), Then J(@—1iv) is a
polynomial of degree 4 of t: VIER, u, v H, “

2J (4 +10) = F () = ag+ oyt +ogt? +oat” -+ aat®, (6.7)

awhere
(o= A—-Tu, u-Tu), o,=24(u—Tu, v—T'(wW)v),
w—=A@—T (v, v—T (0)v)— A(u—Tu, T’(v)v), (6.8)
a=AT" (wv—v, T"(V)v), as=0.25AT"(v)v, T'(v)V), |

It is clear that, &=Tu, &=T"(w)v, &=T'(V)V/2 are the solutions of the
Sfollowing veriational problems respeciively: |
(A&, ) =<{F, p>—a1(w; u, n),
A&, m=—a(w; v, n)—a;(V; w, m), VNCH, (6.9)
A€, M =—a(v; 0, M),
Theorem 7. VYu,v & H,there exists a solution of the single variable minimization
problem -

Jh
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[ R e Vi <y

t* =arg min J (#+v)
teR

and t* i3 @ zero point of polynomial f'() =df /dt where f(t) i3 defined by (6.7).
Proof. It is known from Lemma 9 that

2J (+1v) =£f(1) =cﬁa+m1t+mgt“+a3t3+a4t4_
1° When £.%#0, one hag ay=A(&;, &) >0 owing to the coerciveness of A(+, ).
In this case f(¢) is a polynomial of degres 4, Certainly, f () achieves its infimum in

the finite interval.
2° When &:=0, one has a;=0. However,

ag = _A(v_gi.r 55’):0:
Oa=A(U—&, V—&)—24A(0—&, &) =A(U—&;, ©—&1),
Likewise, when ©—§&;+#0, a;>>0, f(¢) is the polynomial of degree 2, and

achieves its infimum in the finife interval,
3° When v—§;=0, £=0, one has ay=a3=as;=0. In thig case
—ay=A(u—§&, v—§)=0,
8o f(1) =ay, Of course, f(#) can achieve its infimum.
’ F/ () =a1/24+aat+ (8/2) st + 2at®,
Aoccording to 1°, 2° and 8° f'(#) is a polynomial of odd degree; henoe there exigts at
least a zero point of f'(2) at which f(?) achieves its infimum.

In practice, Theorem 7 i8 very important. Due o it, there are many improve-
ments in computational efficiency and accuracy for the conjugate gradient method
by reason that to solve the minimum problem (6.8) it only requires to find a
root of the equation of degree 3. If we employ an other method, for example, the
Fibonacci method the approximate solution would be obtained through successive
contraction of the interval; the number of iterations depends npon the precision. For
example, the interval is contracted to 1/100, and the number N of iterations ig 11.
Contracted to 1/1000, N =20. However, during the iteration J(#&,—Af,,) must be
computed one by one. In order o evaluate J it is necessary to compute e¢; and 4, and
to solve the Stokes problem once.

Table 1

a1{ -2+, ) Al-, =) to solve Blokes prob, | interval erToT

Fib. 12 12 12 [-1, 1] 10-2
Am
our 3 0 2 (—oo, +oo) 1.0-16
ol 3 1 1
N* 6 105 6 104 6 104
| ]

where N* is the number of multiplicative operators.

7. Numerical Examples

Two codes based on previous methods have been developed. They allow the
ocaloulation of the three dimensional viscous flow in the pumps, pipe and lubrical
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Numerical experiments have been completed for low and high Reynolds number
flow and various values of the pena,llza.’ﬂon parameter.
To examine the effect of the previous method on the acouracy of computed
pressure field and velooity field, an analytical example was studied by means of our
codes. Its exact solution (#*, »*) and approximate solution (&*, p*) are shown in
Tables 2 and 38,

Table 2 Comparison between z«* and 2»

2 u* errox
Be Hem=onl R,=5 R,=1000
£=10-5 e=10""7 _
1 0,500 0,567 0.506
2 0.500 0.554 0.506
3 0.499 0.540 0.506 0.0463
4 0.499 0.526 0.506 0.1328
;i 0.499 0.620 0.506
6 0.499 0.616 0.506
7 I 0.499 0.612 0.506
A 0.569 0.637 0.569
9 . 0579 0.632 ’ 0.584
10 0.520 0.528 0.509
11 0.614 0.624 0.614
12 Q. 630 0.620 0.630 -
13 0.645 0.616 0.645
14 | 0.660 0.612 0.660

Table 3 Comparison between p* and p*

| ;

at node pointa at Gaussian points
yid o* o o*
B, =5 R.,=1000 B, =5 E,=1000
g=10"0 e=10""7 =100 g=210""7
1 1.5881 1.881 2,000 1.9736 1.89736 1.998
2 1.872 1.872 1.0992 1.9690 1.9690 1.994
3 1.2865H 1.865 1.8184 1.9657 1.9655 1.990
4 1.8567 1.857 1.876 1.9611 1.9610 1.984
D 1.850 1.850 1.968 1.9578 1.9576 1.983
b 1.842 1.848 1.860 1.9532 1.9531 1.674
(i 1.835 1.835 1.952 1.9499 1.9497 1.974
o 2.180 2.180 2.000 1.9040H3 1.9452 1.870
9 2.171 % 8 1 1.4803 1.9419 1.941R8 1.966
10 2.162 2.162 1,954 1.9875 1.9376 1.962
11 2154 £.154 1.976 1.9341 1.9341 1.958
12 2.145 2.145 1.968 1.92495 1.9204 1.953
13 2.136 2.136 1.960
14 2 128 2.159 1.952
erIor G.0763 0.0116

m
If we caloulate tho pressure at the nodes by p, =—div #*/s or (p,, q)-

(div #*, ¢) =0, Yg& M, direcily, no good result w:

1l be obfaind. To our surprise, if

we'caloulate the pressure at Gaussian quadrature points, then we will obtain high
aocouracy at the nodes by the extrapolation method shown in Table 8. Examining
Tables 2 and 8 we see that the appromma.te ‘acouracy of the pressure is better than
that of velooity. -
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