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SEVERAL ABSTRACT ITERATIVE SCHEMES
FOR SOLVING THE BIFURCATION
AT SIMPLE EIGENVALUES'

YaNe ZuoNg-HUA (&%)
(Shanghai University of Boience and Technology, Shanghat, China)

Tn this paper we consider the nonlinear operator squation rp=Ig+G(A, %), where L is a closed
linear operator of X = X, X is a real Banach space, with a simple eigen value Ag#0. We discretize its
japunov—Schmidt bifurcation equation instead of the ‘original nonlinear operator equation and
estimate the approximating order of cur approximate solution to the genuine sclution. Our meothod is
more convenient and more accurate. Meanwhile we put forward scveral abgiract Newton—type iterative
echemes, which are more efficient for practical computation, and get the Tesult of their super-linear
convergence. | | ‘ .
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We consider the nonlinear operator equation in a real Banach space X

where L is a closed linear operator of X—> X with a real simple eigenvalue Ao+#0,
suoh that Ao —L is a Fredholm operator of index Zero, and G(A, ) iz a ¥wioe
continuously differentiable operator of a meighborhood of (Ao, NHERX X—>X,
G, =6, G, =) =0(}a|®, G.(2, =) —~0(}«]? hold uniformly for A near Ao, 1t
ig well known that Ao 18 2 bifuroation point from the irivial solution of (1) (see [11).
That is, in the neighborhood of (Ae, 0) there exisid (M(8), x(8)) * (A, 8) which
gatisfies (1). Moreover ' -

?‘(0)57‘05 ._"-’(3)=3(%+ﬂ(6)); ue & N (Ml —L);
v(0)=8; v(e) ER(MI—L). '

Here N (Al — L) and R(hAel —I) denote the null space and the range of the operator
(Aol — L) respectively, A(g) and v(s) are continuously differentiable functions of 8,
In order to compute the bifurcation golution near the simple sigenvalue Ao, the
asnal method is first fo disoretize the original monlinear operator equation (1), and
then to solve the finite dimensional bifurcation problem. Convergence of this method
was proved by Atkinson™, and. Weiss™, When the eigenvalue 2o and its
corresponding eigenelement were bnown in advance, Westreich and Varol™ proposed
an abstract iterative scheme a8 follows. Let @ be the canonical projection of X-onto.
N(pI—L) and leb Q*=I-—-Q, By means of the Liapunov-Schmidt method, the
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nonlinear operator oquation (1) can be gxplre.@ed_hin"the equivalent form
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{MT_SMW*Q(“’ 8(to+0)), @
Asto = s L+ QA (A, 8(uot+v)), o
where 0 € R(AJ —L), Let ¢ be the bounded linedr’ functional such that ¢ [u] =1
and ¢[v] =0 for vy€E R(I—1L), ThenQa=¢ [#]uo for o€ X - For example, if aw, is
an eigenelement of L* (the adjoint of L)Gﬂl‘reﬂpondlng i0 Ao and 2w gatisfies the
normality condition <{ue, woy =1, ¢ [«] can be expressed by {z, wo). ‘Therefore, (1)
can also be expressed in the other equivalent form
{”:E“-‘(u'—Q'm-wfe(:u;f:s.(ww)), 3)
A A=A+ 5" 1P LG (A, e(uptw))], o o
The operator AT — L restrioted 0 R(AeI —L) has a uniformly bounded inverse for all
A Dnear Ag, RS TEE B
The following simple iterative scheme was proposed by Waestreich and Varol®
B L aE) =0, M) =hg,
' R I—GQL)v(s) = QG (s), suet2* (), .
L () =g+ s [G (M (8), s+ ()N,
They proved that A*(s) and 2*(e) converge to the solutions A(s) and v(s) of the
hifurcation equation (8) respectively. However, its convergeni rate is only linear.
In practical numerical pomputatidn', the disoretization of the original problem is still
needed. They pointed out that under some condition .the limit of the bifurcation
solution of the disoretized problem is the solution of the original bifurcation
equation (3). However, they did not give the approximating order.

. . In this paper, we bave two purposes. First, we propose several -Newton—-type
iterative schemes for solving bifurcation equations iand point oub that, their
convergent tate is super-linear, they may raise computational - efficiency. Secorid,
we directly discretize its Liapunov-Schmidt bifuroation equation. (8) instead of the
original nonlinear operator equation. Starting from this point of view, we obiain the
estimation of the approximating order of our approximate soluiion to the genuine
solution and prove that when XA, and w, are known in advance, the solution of the
disoretized bifurcation equation is more accurate and more cgnyvenient than the
solution of the approximate finite dimensional bifurcation problem.

t‘

2. Several lterative Schemes -~ = -

-_111 -.érdpri.tn ginnplify our notations, we deﬁote_' '-: o

' -

S h.r:,“ g
S @), s(uet () =@, @] =0(eD;
@), s(heh () =@, IGBI=0(D;

h e

S : o T _ : B TR s, RN ML A N
e Gu(9), (it () =G, IR} 508D,

The eqtm'ralent.-form -of the bifurcation equation {B). 38w vaafay e
T [ MI-QLye=e@ER s(mt)), L
AR ak ARG, He
. (A) The Newton iterative scheme | T |

@
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Ny: ey =0, K(&) =l - .
o, (W(e)I _ QL) (8) 4+ (Wt (8) — W (8) ) v*(8) L O
QG QR (s) — W(8)) +eQFE (M () — ()}, ()
NF+1(g) = Dot 81 [GF+ G (N (8) —A*(8)) + 8GU(P (&) —(s))]. (6
We have T , - g
Theorem 1. Suppose, in addition to the hypotheses in the introduction, [Gaa (A,

], |Gt o)1 and [Gu(r, )] are bounded uniformly mnear (o, 8). Then the
sequence defined by the Newton iterative scheme Ny converges quadratically to the solution
ofthe b%ﬁbrcgt&m sgmt*iaﬂ (4)‘.;-._ i i i BT 1 AT T

~ Proof. First of all, we prove that the mapping defined by Ny is & contraoction
mspping  which- maps the st 8, E)xT(4, M) into -itself. Here S{ko, E) =
{M [A—2o| < E|8]} and T (8, M)= {aﬁ__]]]-q:l\@jlﬂsl}, and the constant B and M will
be chosen later. s

By (B) weget . - Foawom T ou SEE M
(Fi(s) — N (8)) — st LERI (W ey~ (8)) _

. = M—'-l‘(s)+8“"¢[G"1“+¢[Gﬁ®“1(8)]‘—¢[Gﬁw"(s)]. -

Therefore - u _ .
Wei1(g) —A¥(8) = (1- s~1Pp[GE]) ¢ [Gio*2(e)]+ (1~ ) 1C10
. F L {e— M () e I —$lGH (@)D, M
Rewriting (B) vields - | o
() I-QL-QEI ()t (AF¥2(g) —NH(8)) (v(e) — "G \
rQ@-Q@Re). S ®

Substituting A*(s) —M*(s) in (8) by the right of (T), Wo 500 that

() I — L QG (8) + (3H(e) — D) (L— s P [T R ]

QG (6) — (M(s) — QG (1 e P LED
B (YO R BT OM SR :
Thus | - A T
P+i(e) 4+ W (8) I —QL— Q'] (v*(e) — s~ 1Q'G) (1— s 2¢ [GK]) 1 [Gir* ™ (8)]
= [M(8) I - L~ QG s QGE - Q" Giv*(8) — (v*(s) — 8~1Q"GY)
L (d— s I T (o — AR (8)) + 87 G [P] —$IGUH () D]
By the triangle inequality we have e 4 - F
() | — | (D I-@L—-Q@ - (1@ | +[67CED
e e L e H L OTI A
<| 0¥ I~ QL-@@) |- {ls QP + QG| - ()]
+ (12 | +le Q@D (L~ selEa D
(o (8) | |5 HTE | +{SIEEH (DI DY
From now on we will ‘use the sams. O 1o denote different constani whioh are

| ig@gpe:;dent of #. When ‘g ig small enoﬁéh; we can obtain

(B (@ I-Q L)<l (ol —Q L) +016|, |sQGEI<0lel,

T eRgI@n | <Ol (= [ pr@ DF<LiOlel, G <Oleli™ B
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j@@il<0lel, ls@al<ols], spt@al<olsl.
Noticing that Jv*(s) | =0(|s])," [Ae—2*"(e) |=0(|s]) and & 18 small enough, we gel
the inequality e omm sy gl s B | ? i

L | GH(6) T~ QE~QE - (1) |+ ED

_ (= |16 D 1] - 1 > ‘

Let M =2 sup(|s*Q"G| | QeI —Q"L)*]), here 80 18 & smmal] enough positive number.
When g is small encugh, by Jo*(s) | <M|s| we .deduoe | v**1(8) |<M|s|, Thatis,.
the mapping defined by the Newton iterative scheme Ny maps T'(¢, M) into itself.

. -On the other hand, by (6) ETREEE
D ea(e) —he) (1— e [GR]) =L@ £ 6 HIE o= R (0))
B PG (e) — ()],
Lot B =2sup li‘s—gﬁ(ﬂl_i}?a again choose & small enough to satisfy 1— Ié*"tf-i [G%] l}%

|l| iy

Thus by |A*(s) — 2| < F|a| we deduce |AR2(g) —Ao| <E{e|. That i the mapping
defined by the Newton iterative scheme N; maps Sk, E) into itself. Thus we have
proved that the mapping defined by the Newton iterative scheme N; maps S (Ao, B)
< T'(f, M) into itself. |

Next we congidet the rate of convergenoe. The original bifureation equation is

() I— QL) 89(8) =QG((8), s(uatr(8))), - @
A(s) —do+ 8 1A[G (M (8), 8(tot+v(8)))]. | (10)

Mhe left hand side of (9) is oqual to (A¥(s)I —Q*L) su(s) +sv*(e) (\(8) —A(8)) +
(A(8) — ¥ (e))e(v(s) — %(g)). The right hand side of (9) is equal to Q" (GF+GE(M(e)

Ak (8)) + Qs (v(a) —v*(8))) +-%~ QG (e (v(8) —o*(8))) '+ G (M) —N(8)Xs(1(8)
— % (8))) +-—12; Q"G%, (M (8) —A¥(8))?. Subtracting (6) % s from (9) yields

(A(e) — A+ () 8v*(8) + (W (8) I —Q"L) s(v(8) —a**1(8))
+ (M (8) —A*(s)) 8(v(8) —*(8)) .
—QFE(A(E) — W (0)) + Qe (v (e) — (&)

+1 Qs (0(8) —H(@))? FQ@L((6) — W (8)) (s(0(8) = *(e)))
+ 2 QEL(ME) ()
e e & L anangl %o a;ﬁéff | (¥ (s) I —Q"L) QG -s;;.%--_, el
[ (0(e) —o**3(e)) | <2{1Q'G* sv*(e) |+ 1M(&) —A**(2) ]
+ 2111l s (o) — @)+ L+ 116D
RO OINRECRROIES Hof

On the other-hand, the right-hand side of (10) is equal 0
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Ao+ 8~ [+ GE(M(8) —A*(8) ) +G“°s(w(s) — 'u"(s)) + = G"ia,(?t(e) —Ne(g))?

+ @5, (A(8) — A¥(8)) (8(v(8) —v%(8))) +~§+G u(s(w(s) — w"(a)))]

Subtracting (6) from (10) yields
A(8) — A (8) —'8'1¢ [GE(A(8) —A¥*1(8)) +G%a (v (s) —v¥**(2))

+-2— Fia(A(s) —14(8))*+ Fhu(h(e) —M(a)) (s(v(e)—v"(e)))
+1 @ua((e) = (@)
We again choose g small enough to satisfy.]s] 2ol 14 ||‘Q""' therefore

A(8) =N+ (8) | <2+ [p{] o] - |G} <} sCu(e) — v (e)) ]

HIGUI- [ <R 1+ 1B [4(6) ~2 @)

Je(w(e)— w“(s))ll FhEl- us(v(s)—'u*(a))uﬂ}. (12)

Combining (12) with (11) yields -
|8(v () —v**2(8)) | <O&*|s(w(e) — 'v"*i(s))ﬂ-*'a{l?vfﬂ) ?‘-"(8) "
2| A(8) —A*(e) | - |s(v(e) — -v"(a))ﬁ Ils(v(s)-*'v“(s)) 2%,

e

Note that
A(8) —A¥(8) | +| 8 (v(8) —v*(e))] 'ﬁ—— I?«-(B) —2¥(s) |2+ [ (v(e) =" (e |}
and g is small enongh, then we get '

le(v(8) —v*** (8)) | <O{jAr(s) — N‘(s) A HCIORLLON &2 (13)
Combining (13) with (12) yields
|A(8) — ?%"+1(8)l€0{|1(6) —a¥(a) |2+ [e(w(e) —v*(s)) [} (14)

Thus we obtain
ORI OIRI HCIOELA8ON
<O{|r(e) —N(a)|*+ e (v(8) —2*(e)) |7}.
It means that the sequence defined by the Newton iterative scheme N, mnverges

qua.dratm&lly to the solution of the bifurcation equation (4). Q. K. D.
(B) The half-Newton iterative scheme . |

Na: - - o%(8) =0, A'(8) =D,
(N () I-Q'L) gv¥*1 (g) =Q'*+ Q" Gis (V1 (8) — v *(8)),
AH1(g) = Ao+ 8 2H[G*+ Frs(vF+ (8) — ()],
The estimation of its approximating ordar is
|A(8) —W**1(8) |+ s (v(8) — —o*1(s)) |
R -@G{Isl Ia.(a) L‘(s)l—}-ls(v(s)—-w"(s))ﬂ’}
Its proof is. ﬂimila-r and m.mpler The advantage of the soheme Ny is that the 1tera'li1?e

equatluns ‘in 1t heed not’ aolving gimultaneously and it possesses higher convergens
yiite ‘than’ tﬂe gimple- iﬁerativa soheme without murea.smg ‘maoch: nore mmpnﬁng
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quantity. Moreover, according to different specifio ﬂnndiﬁonsg we can also propose
several different half-Newton iterative schemes in order to solve the bifurcation
equations conveniently and efficiently. We do not state them in detail. '

(0) The simpler iterative scheme - e

Ny: - %(e)=0, A°(s)=1l,

(Mol —Q*L)sv*** (8) = (ho—2A*(8)) sv*(8) +Q G (A*(8), s(uo+v*(8))),
ot AH1(8) =ho+ 8 [G(A*(8), 8(uotv*(s)))].

Becanse Ao —Q'L do mot vary with 'k, the computing quantiiy of solving

iteratively sv*t!(s) and A¥+i(g) is much less than that of the scheme I, in [4].

3. The Approximating Order of the Solution of Discretized
Bifurcation Equation to the Solution of , -
-the Original Bifurcation Equation

. In practiocal oﬁmputaﬁon we can not directly solve the bifurcation equation (4)
by any iterative scheme. We disoretize its bifurcation equstion instead of the original
nonlinear operator equation and then solve the disoretized -bifurcation equation by
some of the above iterative schemes. Let | . |
ua(8) = 572 (8) I~ QALa) QG (Ma(8) , 8o +0a(8))), (15)
| T 2a(8) =Rt e alGa(Ma(s), s(uotua(8)))], (16)
where Qi, Ly, G and ¢, are the approximations to @°, L, G and ¢ respectively
becanse they are disoretized. The uniform boundedness of (As(8)I—@QiLy)~" with
respeot 10 & near 0 can be deduced easily from the boundedness of (A(s)I—Q"L)™,
Therefore Fom |
(M@ I-@D) ~ @ I-GL)H
- | MO T~ QL) [ () I~ QL) — (I~ QL] Gale) I~ QL0
<O(|Mm(8) =M |+ A L—~QLD. |
Subtracting (16) from ihe aeqond formula of (3) yields
|A(e) —Ma(e) | =|&] "] PG (M(8), 8(uot 0(8)))]
__"ibn[Gn(%(B), S(ﬁo—l—‘ﬂh(ﬂ)))]l S e & pPE T S
<|a|{|pL[FQA(s), &(ot+2(8)))]—$[G(A(6), 8(tio+2(e)))]]
+ |G (A (8), 8{totv(s)))]—a[Gr(Ma(s), s(ue+0r(8) )1}
<ls|{lo— - 1G(A(e), s(tot v(8))) |+l L
RIOERIO) NN ORHCRRRON])A
e Dl ORB o W B SRl Y 4

@ (s,

IG (A (s), 8,(‘591'“.-?;(,9),%)5;?; (i (8); elug+o ()]
< ]]g;ifgu;g), 8 (Up-+v (8N QL (8), e(uo+ua(6)))]
: ,,1[.-» : .-. : J‘&- :,:.... i.‘:'::' f-ih &FF 5 g4 {, i ﬁ; T 7:'-:.' ol ; I .
, ﬂé—(ia_(a),; 8 (g -+ (8))) — G (M (3, 8(tota(e))]
o omedor ocd Jo ni s & g ] S

N A B YO NOTE A AN TICIORENOM Sy Eost PR
. whare the disoretizationgrror 4G~ Gal = 60, %+v,) —Ga(M;. to+va), We oblaln

Beoause



No. 3 SEVERAL ABSTRACT ITERATIVE SCHEMES FOR SOLVING... 207

4(8) = 1a(e) | <8l {IA&) ~Ma(e)  +]0(6) o (&) [+ b=l + |G- Gl}.

A7)
Subtraﬂtmg (15) from the first formula. of (8) ylelds

[o(8) —on(8) [ <|8] | (A(6) I~ QL) *QG((s), sl b0 GlT)

— (A (5) A= Q;Lh) _iQuGh (A (5) y & (200 + Vs (3) )) Il
<|e] | A () I-QL)QGM(s), s(tot+v(s)))
= (W (8) I~GL) QA (M(8), s(uotv(a)))|
[ M (DI-QGL) Q' F(A(8), 8ot (s)))

— QG (M(8), 8wt ()1}
<O|sl{|Me) — () |+ L- QL +1Q -4
Fle@—n@+Ie-GD. o+ 8D

by (17) and (18) we obtain

A (8) —hn(e) | <O 5| {I - MHG‘_G&II
+0e{|Q L QL] +1Q - &1},
lo(e) —ua(e) | <O\s|{| Q" L—QL} +][Q"— ]
s +]|@=Glt+0|d—dl.
Combining the above two inequalities we get
2(8) — (&) | +[v(e) —ua(e)]
<0|s|{|¢—¢l+[G—G]+1QL-QL| + Q" -} ..

So far we have proved

Theorem 2. Lei G(A, z) be continuously di ﬁ'mntmble with respect to A and
z, G, =0, |G, o)]|=0(2]") and |G\, o) =0(2|*). Then the solution
{7a(e), va(8)} of the discretized bifurcation equations (15) and (16) converges to the

sobution {A(8), v(&)} of the original bﬂrfurcatqm egmtm (3) Moreover, we haove the
estimation -

When Iﬂlﬁgo,

IF*-(S)—M(B)I—P-II@(B) 'vn(s)ll .
“éolsl{ﬂ';b ¢mﬂ+l|9‘ G‘n\|+||Q*L QILn|]+|lQ' inl}

Remark 1. By Theorem 2, we know that our method is more. aﬂﬂurate
especially for s near 0, However, in the error of the approximate solution by usual
method to disoretize the nonlinear operator equation first and then to solve the finite
dimensional bifurcation problem, there are |Ao—Am| and juo— —uos| which are the
errors of the approximate eigenvalue and the approximate eigenelement in addition
to the above disoretization errors of the opera.tor (see [2], [8]). Thus the ﬁomputaﬁwn
gtated in [4] is verified. % -

Remark 2. When 2, and %, are k:nown in a.dvanﬂa our method saves the step
of computing the approximate eigenvalue- and the approximate eigenelement and
deorease computations. In thig way, our method makeg computation of the bifurcation
problem more convenient and more efficient. In’ order to und Brs'l'.and the error of the
approximate soluifon we take an example, .
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_—_——-—-—_.—.—_—-—_—-

4. Example
Let 5 _ {y”=?~(y+y’),
o y(0) =y (@) =0,
Its equivalent integral equation is | |
y(t) = —?«EH (¢, 8) [y(s) +*y“’®]ds,
where | ¥

t(;:l;:’--s) : 8, .

s(m—1);
Ag ‘well known, A=—1 is a simple elgenvalue whose corresponding normal

eigenelement is A‘/ —gin ¢, By selfadjointness 1/ = gin £ i8 also tha normal eigenelement

H(, ) J=={

of the adjoint operator, - e S
@ =(-§- Pen sf_(s)tié)%-iﬂ 2
| .I * ¢lf] =\/‘% J’:Einw‘(s)ds_."
Let ,w=-%. The Liapum{r—sohmidt bifurcation e_c:lua_.'tlinnrl:ls'... _ _'
po () + (I+Q) -r H{(¢, s)v(s)ds= . (I—Q)rﬁ(t é) (s5ins+0(s)) " ds,
w=—1—g"" (—)J (j H{(t, s)(s sms-i—w(s))“ds)smtdt

.=._.1... —1(_2..)j [(ssms+w(s))"‘j H(t s)smtdt]ds

g™t (——)J (lens+w(s))“slnsds

Wae divide the interval [0, «] into m=2p equal submterva.ls Let {=4m/m and we
replace the above mtegral operators by numerical integral opemtors obfained by the
compound Slmpmn 8 quadrature rule. Thug we have ~

Aﬂ@)ﬁﬁ_(-{ Qﬂ)Hmfﬂr(sl -7’ ‘V’ | |
{""“"‘1"‘ (&)~ ﬁ'mﬁwf(ﬂﬂm#ﬂ‘”f) ﬁlﬂtn | (19)

where .
we | I s e e e
_ A :
1f5 is wen,
o B 3m
. L . LT if
s BRpRST R B oeET T lﬂdd,_
g Bfm J
< et iR LIS, A wInd i,

B (_4)1 e Iv""ljr 3 yﬂﬁ?(&lﬁ ;}’ Atk L. . -, S
fn(ﬁ, _) ((Bﬂlﬂtl—l-gvi)ﬂ _. ..a.' (smgﬂﬁi{_”n_{)g)l 5 iy
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/ w:lH (ti_:l ti) s %) "H-'JH (tl;r tf).l .I".r Iwm-lﬂ (t]_, tﬂ‘l—l) |

daapaduwu e nsd L X N W K | daspasIEEAER ARt Ban 4 n @

Hm= u’iﬂ (f‘i: ti): Tt wiH (th t.-i): TEL 'IUm._1H (t“.- t"""'i). Ry

\WJ_H (tm_j_, t]_), "‘, ‘H?,H (t-,_l, t_f)j "ty w“._]_H (tm_l, tm...l)

Qﬂ;lﬂiﬂt;lﬂiﬂfj_, gt ﬂﬂjﬁﬂ-hﬂiﬂf’, ser, UWpm-1 Hﬂ.ﬂtiﬂin tm—_1 \

2 ‘ . | — : _ : 4
Qﬂ=; wq 6N £;8iN Ty, ++», wySIN{SM T, <o+, Wp-1 80 % ED In-y ,
wiﬂi]ltm_.lm..]lfal, S ‘!ﬂjﬁﬂtm_iﬂinth e Wm_]_ﬂintm—lﬂintm-—l/

Ap(p) =pI+ (I —Qm) Ha.
Let h =-"-, We have | - s
|¢p—dal =0,
| 1G—G=Hf —Hanfn] =0,
1 Q" L— QL] = | (I—Q) H— (I —Qa) Hnl =0(r%),
., l@-Q@l=1T-@—T—Cn) | =0).

Aocording to Theorem 2, we obtain

_ | w(8) —pa(8) | +[o(e) —va(8) [ <Ofe|A%. |
Tn practical computation we use various Newton-type iterative schemes stated in this
paper 1o solve the discretized bifurcation equation. (19). .
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