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L. Introduction
The problems involving combustion are increasingly imporiant, and are
attracting more and more attention. The fask for the computational mathematicians

is to compute acoupately the flow fields with combustion waves. The transition from
deflagration to detonation is an important problem in the combustion phenomenon.

Because the velocity and the sirength of detonation are muoch larger than those of

deflagration, detonation is much more. dangerous than deflagration. [1] has
computed the flow fields generated by accelerated flames using the floating-shock-
fitting method. [2] has also compuied such problems using the random choice
method and showed how to determine the transition from deflagration to detonation
by numerical methods. In this paper the singularify—separating method (S. 8. M.
for short) is nsed to compute the whole flow fields with transition 1o detonation. The
comparison bétween the results of the random choice method (R. C. M. for short) and
our method is presented. Because there are many complicated interactions between
different discontinuity lines, such a combustion problem is a good choice for festing
numerical methods. The solution obtained by 8. 8. M. has the second order accuracy
not only in the smooth regions but also in the regions near the discontinuity lines.

II. Formulation of the Problem

The system of nonlinear gas dynamicsis
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Throughout this paper, the subsoript 1 refers to burned gas and the subscnpt 0
unburned gas, ¥ stands for the velooity of the reacting front, @ for the .‘energy
released by unit gas in the process of reaction, -y for ratio of ﬂp&ﬂlﬁﬁ heats, p, u, p and

¢ for the. density, gas velocity, pressure and sound velocity respectively. The
rala’slonﬂ of combustlon wave in the polytropic gas are

po(to—V) = ps(us~V), ' | (2)

s po(uo-V)"“+po=pi(u1—-V)ﬂ+ga1, (3)
. b1 L g SN )

Yo—1 po .},1_1 PI+Q ( Pi)(?ﬂ“"?:l) (4)

From the above formulae the following formulas for the strong detonation, the O-J
detonation and the weak deﬂa.gmtwn can be -obtained. The relations of the strnng

deotonation are

P1— Po
71 :1L P |
e B N
. Yo—1 B0 7 Do -
and . | T |
I . wy =+ Y (Ps; Do, Po). . (N

Here, the uppar sign stands for the first family of waves and the lower sign for the
gecond family, and
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The relatlon.ﬂ Df the o-J detona,tmn are
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Because there are wo characteristio lines entering = weak daﬂagratmn front in one
side and only one in the other side, there mlmt be one more condition for
-~ determining a weak deflagration. The following fﬂrmula for the velocity of weak
deﬂagra‘luon is used in our compuiation (see [2])

F’=uo+K(——) (18)
where the constants K antl Q are defermined by expenmanta Buppose that

: N k st e O '
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The relations of weak deflagration are

14y M3 J( vi—voM2 \? Dy M3 (Yo—v1)08 e
= Dol eE S TR | |
b1 Pﬂ( vi+1 | €1 ot I ) * Tolys+1) N 7o—1 (?’“. )Q)),

| (15)

wy=uFY(p1; Po, Po)s | (16)

the formula for ¥ is the same as (8) and the formula for py is the same as (6).
Make the first family of combustion waves as an example. The solation of the
Riemann problem of combustion gas is illustrated in Figs. 1—3.

Fig.1 A Rlamann solation with | Fig. 2 A Riemann solution with
' & right C-J detonation . a strong detonation

The solution with a O-J detonation is shown in Fig. 1. There are a shock or a
rarefaction wave on the left side, a contact discontinuity in. the middle and a O-J
detonation followed by a rarefaction wave on the right side. The solufion with a
strong detonation is shown in Fig. 2. The solution with a weak deflagration is
shown in Fig. 8. The condition
for the iransition from deflagra- 5/
tion to detonation used here is
the same a3 in [2], that is 3t _ \ |
there is no solutiom for the “-%ﬁ- "?/ b 42
Riemann problem with k RN ¥l &7

problem Wwiih & Wea - CeZ s @ &
deflagration, a transition happens, *?'?J-%ﬁ 2 N / s
and we must solve the Riemann oy " \‘ &
problem with a sirong detonation e /
instead. '- ' ' »
~ In this paper 8. 8. M. is used
for computation of the two
examples in [2], the ignition problem and the accelerated flame problem. Not only
are the problems with the same medium solved but also $hose with different media.

“Assume thi ,ré&gtjo:gfba.]g{eﬂplaoe in & tnbe with n.._ijl'osed end. Let the origin O be

3

the closed end, ‘and “the o itive o—axis be al{jng-tha iube. The state of gas at rest is

Fig. 3 A Riemann solation with a deﬂagratian wWave

(@, O.=1, p(z, 0)=1, u(s, 0)=0, z>0,

) The fgnition problem can be described as follows. Assume tha Q=20, §=2;
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deflagration are produced and there is a shock wave before each deflagration. Affer
the lefi-facing shock is reflocted from the closed end, the reflected shock wave interacts
with $wo combustion waves successively. When the reflected gshock first hits the right
deflagration, the iransition from the deflagration to the detonation occurs. The
fOllOWiJlg t+wo caSeB are Gﬂﬂipﬂted: _ _ _ :

@ yi=7e=1.4, £=0.1, and @ 7:=1.85, y,=1.4, K=0.105,

9) The accelerated flame problem can be described as follows. The gas is ignited
at z=0. When the flame propagates to z==5, its speed coefficient K is suddenly
inoreased by a finite inorement AK. The parameters are Q=2.6, y1=70—1.26,
Q=27, K =0.03367 and 4K =0.08667. The transition does not happen immediatoly
-fior a shook hits the deflagration, but a little later when the deflagration meeis a
pontact discontinuity line. | _

Il Numerical Methods © -

The main idea of 8. 8. M. is the following:
1) Use the coordinate transformation. |
| o—z(t) 5 58 e !
&= T () — 3y s )

to iransform en arbjtrdty subregion, with boundaries are z,(t) and m,1(f) into a
strip whose boundaries are £ =4 and £ =¢+1 on the £-¢ plane. Such a transformation
makes it easy o establish the difference scheme in each rectangular region.

92) Establish the difference scheme in each subregion. Let the differential
equation be « - | R |

o e B o :
G S —+\G 3 0. w (18)

(Here, U is a vector whose components are %, p, p- The ajr'a‘tém of equaftions (1) can
be transformed into three equations with a form of (18) by multiplying it from the
left hand by a transformation matrix.) In what fo]low.s'__ WE usethe notation o=A»A ;d.’i,
where A is the characteristio value in (18). If |o| <1, we take the explicit scheme:
At the auxiliary level the formula is C B B
GEUE2 = (1F 0%/2) GRUE £ AT % /2,
where we take the upper sign if 0>0 or the lower sigﬁ_ 1f r.:r<’.0 At the regular level
the formula is | | | e icn i
. [(@—Bw) (@R +GE) + B (GEH2 4+ QY2 U = (1— Bw) Sh+BaS%,
where B, is such a number that it is zero on the left boundary,-and one on the right
boundary, and the variation of B, is smooth, and . - . actegie e
S B (@R @RDURG ~ LR O 2+1)
' TS T X(Gﬁ;"m+9"";.1{’)(ﬂ"+¥3 ___-,Ub.p”ﬂ) !.’.Hl:.&'_ Ii_ﬁ’i';.’ e :
" ?ﬂﬂ_—_. . 1 o 2L ﬂ ""' " :‘#”3 g_f.;ﬁ.ﬁ?_?._. i
o B @EL @O = (R R )20 1)
T X (@@ @R
If |o|>1 we ake:the implioit scheme: .-, . .. -7 oo o
. At the auxiliary level the formulais, - = .. .» - Lo

e - a3
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(1+ (omsrtom) /2) (G‘i‘n+Gﬁ,+1)Ufn*;‘{2+ (1- (cr’rn+1+0‘fu) /2) (G" + G )U”"""”2

= (G5 +Gyy) (Ut + UL, ‘

At the regular lovel the formuls is | |
(1+ (g% 24 {Tﬁ{"”z) /2) (Gk+1f2 @ +i{2) Bl
i | i (1 ( {2_1_0_1;4-1;2) /2) (G[l:+1f2 Gﬁ:+1f2)Un:+1
— (G QYD) (T4 Uliy) — (0524 0 5)
X (@524 G (Tarn— T

The above schemese is one-gided on bormdarles Thls lays a foundation for freating the
values on the boundaries correctly. T

3) Eliminate the unknown quantmes at the inner poinfs in . the subregions by
using the double sweep method. Then the unknown guantities on the boundaries can
be obtained by using the dJSﬂontmmty mndlhnns and solving the equations with only
the quantities on the boundaries. ;

4) Compute the unknown quﬂ.nhtms ‘2% the inner pomtﬂ b}r using the difference
equations and the quantities 2t the boundary points. -

5) When the discontinuity lines interact with each other, use the subroutines for
solving different sorts of Riemann problems to determine the velocities and the
properties of the new discontinuity lines, and the initial values of the physical
‘quantities in gach new subregion. Then the coordinate transformation turns the new
subregions into a strip on the {—¢ plane and the numerical computation will continue.
The main subroutines are one for the Riemann solution in the non-reacting case and
one for the Riemann solution with detonation and deflagration waves, |

IV. Numerical Results

The ignition problem (including Example 1 (the same medium): yo=7;=1.4,
Q=20, @=2, K =0.1; and Example 2 (different media): vy,=1.4, v,=1.85, @=20,
Q=2 K =0.105) and the accelerated flame problem (Example 8: yo=7;=1.26, Q=
27, 3=2.6, K =0.03367, 4K =0.08667) .
are computed. For the comparison the 2}
same data ag in [2] are vsed in Examples - 4\
1 and 3 (only the data in Example 2 are 16
* different from [2]). = 1

The distribution of the dmoontmmty 12
lines in the case of Ex. 1 is given in Fig. 10
4. At ¢=10.17 the reflected shock wave
interacts with ~the deflagration &t the
point z=18.67 and a O-J detonation
appears. At {=11.D7 another right-
facing shook wave meets the 0-J detona-
tion:at the point #=29.01 and & strong

detonation forms. The distribution of - m dls R mm wm,a'

='ﬁhm>rmrm at: thma different times in . 1 Sk -.-_*_:-_’____;‘ Jofiag ,mon’ o
thﬂimﬁﬂf iEI A3 jﬂ"‘gl?ﬂfﬂ in Flg 5 I 2 SO det(mahun 'T'ﬂ-'ﬁl-l 4 (EI 13. TS

B 4 oo Q0
T - ¥

o k2




252 JOURNAL OF COMPUTATIONAL MATHEMATICS - Vol 2

e b S ————

where the difference of the pressures is seen o be the largest just at the time the
deflagration becomes the O—J detonation. The digtribution of the pressures in the
case of Ex. 2 is given in Fig. 6. The results are similar o those in Ex. 1. Tho
distribution of the discontinuity lines in the ease of Ex. 8 is given in Fig. 7. At i=
64.93 one coniact discontinuity interacis with the'deflagration at the point z=61.22
and the latter becomes a C-J detonation. Then -at ¢=66.44 another ocontaoch
discontinuity meets the O—~J defonation and the latter becomes a strong detonation.
The distribution of the pressures in the case of Ex. 3 is given in Fig. 8.

5= i J—-- e ol L 1 i i
%0 ) 0 100 7

k- §

‘Fig. 8
T P D
il it By

; : .. ..:".,l. ] ;F-'\.
. (Ex. 3)
S I!r .- . 3 o
. T nh R

E: t==64.93, g~61.22; - B T
& ”“‘F=t-ﬂﬁt44’jrjﬂ‘%(mz' 3)" ; .-: -.’ ) U end mhanlg gl - _
To test the coﬁmpm,' accuracy end ecenomio -effeclivensss of 8. 8. M., the
following work has been done: T o FEET I AR i |

1) In 8, 8. M. fwo différent soris of meshes, that s, "4:meéh points and 7 mesh

R et bbby A L

points in each subregion, are mnsed. In the place hear the conibustion wave ihe
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solutions have more than two significant digits. In other places the fractional error
is about 1%—2% in a general way. (Some discontinuities with small strength are not
2) The distributions of the pressures at {=38 and ¢=18 in the case of Ex. 1 and
ab £ =40 and £="70 in the case of Ex. 8, obtained from 8. 8. M. and from R. C. M.,
have been compared. The results are shown in Figs. 9—12. From the figures it is
soen that B. C. M. is a method whose adaptability is very strong. For much more
complicated problems basically correct physical figures without oscillation can be
obtained by using R. C. M, Tis resulis is basioally in agreement with those from
S. 8. M. in respect of the structure of the figures. And for mildly complicated problems,
when the space step 4z decreases from 1 to 0.5, the results of R. 0. M. can be clearly
soen to tend to those of 8. 8, M. (For instance, the resulis at {=28 in the case of Ex. 1
(Fig. 9) and those at £=40 in the case of Ex. 3 (Fig. 11) show this tendency.) Bub

A{}‘s -
4 = ‘:‘\
i &
) }
it L.t
0 e — o T T W ~ a 29 @ 55—
. 4 "
Pig. 8§ Fig. 10
8. B. M., B.B. M,
— R. .M., Az==1, group 1, . E. 0. M., dxz=1, group 1,
————— R. 0. M., Az~=0.5, group 1. —s—e— R, 0. M, Az=0.5, group 1
Ex. 1, t=8. Ex. 1, t=18.
X
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Fig. 1 Fig. 12 oo
- ~ 8.8.M,, 8.8. M., iy
- — R.:0. M., dg=1, group, 1, R.C. M., 4g==1, gronp 1, = .
& s k=R, 0. M., dz=0.5, group 1. —e—e— B. 0. M,, &=0.5, groap L...
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l - | | - the difference between the two resulis
o ' “ig-gtill large from the point of view of
quantitative analysis. For R. U."M. the
results differ when different steps are
used. To further investigate R. 0. M.,
different random numbers are used.
Figs. 18--17 show the. resunlts. From
-the figures it is seen that the choice of
" random: numbers would infiuence

L e ey e S 20 @ ‘remarkably the numerical results, and
W R0 - Fig. 13 tha:l:_l “the. " difference between the
- ;% el Ty group 2, - results. obtained by different random

—e—« group3. Ex.1R.0.M., dz=1¢=8. pumhbrs and the difference between
the result of R. 0. M. and that of S. 8. M. are of the same order of magnitude. From
the above analysis we think that the difference belween the results is due fo the
errors of R. 0. M.

0 3 @ & b g
_ Fig. 14 o L [ A £

- group 1, : group 2, group 1, group Z.

—w— . group 8. Bz IE .M, A:rwl {=18. Ex. 3 R. 0. M., &x=1, t=40.

F!g }‘15 o Lm 5,7

St gmp 1 i *T* i GTORP 3\ ' T . grbupl - -gronp 8.
Er. 3 R.'ﬂ-"'ﬂ,jﬁdﬁilﬁ 5, =40, - Ex 3R O.M. ,fh:-1, t=70.
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3) We have ﬁompare& the OPU time needed by the two methods. Table 1 shows

the UPU time on IBM 4341 needed by the two methods for different. computational

grids. From the table it is known that R. Q. M. needs much more fime than 8. 8.-M.
because the Riemann problem must be solved at every mesh point in R. C. M.

-_Tablo 1 Comparison of CPU times

| Maximal number
Ex. Method | points or space of mesh points in OPU time
. step - mdirection ,, B e
- ' 2 minutes and 31 seconds
T {group 1%)
I 2 3 minnotes and 1 seconds
R, O, M. dpm] £8 ( p2)
2 minates and 44 seconda
Ex. 1 { (gromp 3)
fm=0~230 i4 m—i-:mtes and 33 seconds
Az,
\ T ® 4is | {(group 1) |
* ap:blgag]fnmch 44 | 32.5 seconds
B.5.M
| 7 %ﬁm 77 61 soconds
= P
. - 11 minutes and 20 seconds
[ e T
R.C. M
i ; 60 minutes and 50 seconds
EI; 2 ‘df 0-5 | . 370 (gmup 1)
0 TO — T
| A Eb’*:;i’fnm | 92 58.5 seconds
5.8. M i _
7 Eﬁ%’:ﬂm | 161 Vi naeonis

—_——_'*-___———_________—_____

* Group 1 means the first group of random numbers.

The floating-shock—fitting method was used in [1] for the computation of a similar
problem. Because the coordinate transformation in the # direction is used in 8. 8. M.,
the computational mesh is neater than that in [1]. Therefore, the adoption of this
type of grid makes it easy to compute acourately very complicated physical problems
such as the interactions of different discontinuities, and to show the physical figures at
a certain time. Because only a little result is given in [1] we cannot give the
comparison between our method and the method in [1] on accuracy, the OPU time
and so on., | |

When 8. 8. M. is used in this problem, the number of the subregions is arbiirary.
It depends on the siructure of flow fields. The time step 4t can be shifted. At the
time two djﬂcontinuity__]inéﬂ. will soon interact, we changeﬁt end make the interaction
of the two lines just at the next time step. In the computation we have used the
techniques of dividing the intervals into several groups of intervals and the itoration
method for solving the physical quantities on the boundaries. The details of these

techniques can be found in [4].
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