Vol.1 No. 1 JOURNAL OF COMPUTATIONAL MATHEMATICS Jan., 1983

ORTHOGONAL PROJECTIONS AND THE PERTURBATION
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Abstract

In this paper we obtain a Hoffman-Wielandt type theorsm and a Bauer-Fike type theorem for
sinpular pencils of matrices. Thess resulte delineate the relations between the perturbation of the
eigenvalues of & -gingular diagonalizable pencil 4-AB and the variation of the orthogonal projection

AH
onto the column space R (BH)

1. Introduction

Let A and B be complex m X% matrices. A pencil of matrices 4-—-AB is called
singular if msn or m=n but det{4d—AB) =0, A prevalent viewpoint is that in this
oase any complex number A is an eigenvalue of A—AB (ref. [6]), consequently it is
difficult 1o investigate the perturbation of the eigenvalues of singular pencils. In this
paper we adopt a new definition for the eigenvalues of a singular pencil which ig due

to P. van Dooren®, and relate the perturbation of the eigenvalues of 4—AB and the
variation of the orthogonal projection onto the column space R (ﬁﬂ) to each other,
thus obtain.a Hoffman-Wielandt type theorem (§ 3) and a Bauer—Fike type theorem
(§ 4) for singular pencils which are generalizations of the main results for regular
pencils in [8] and [3].

Notation: Capital case is used for matrices and lower case Greek letters for
scalars. The symbol €™** denotes the set of complex m X n matrices. 4 and AT stand
for conjugate and transpose of A, respectively; A¥=A4%, I™ is the nXn identity
matrix, and O is the null matrix. The matrix | 4| has elements |ay| if A= (ay). A>
0 (>0) denotes that H is a positive definite (semi-positive definite) Hermitian
matrix. The colume space of A is denoted by % (4) and the null space by N (A4).
R (4)* is the orthogonal complement space of R (4). G4,a denotes the oomplex
projective planE. The chordal distance between the points (a, 8) and(y, &) on G 5 is

a8 — By
P((a,l B): ('}": a)) \/' imﬂ_l_lﬁ—r'(l,ylﬂ_l_‘alﬂ)
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64 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 1

SRR L L D B o B P o

The matrix pencil formed of 4 and B can be expressed more precisely as pd—AE,
(}": H‘) E Gl. .

2. Preliminaries

In this seotion we give some definitions and basic results.
2.1. Bigenvalues and eigenvectors
Definition 2.1. Let A, BEC™* and max rank(ud—AB)==Fk. A number—pair

(o ) EG1rn
(z, B) €@y 5 98 an eigenvalue of the pencil wA—AB if rank(84—aB) <k,

The set of all eigenvalues of A —AB is denoted by A(4, B).

The following consequences of Definition 2.1 can easily be verified.

i) If pwA—AB isa regular pencil (i. . m=n and det (wA—AB)#0, (A, w)
€ Gy 5)™, then Definition 2.1 is coincide with the nsnal definition™.

i) If PeC™™and Q€ C™"are non-singular, then

AMPAQ, PBQ)=MA(A, B). (1.1)

Kronecker showed that if w4 —AB is a singular pencil, then there exist non-singular
matrices P and @ such that™1%#

L., (A, ) i
'L, (A, @) '
P(uA—AB)Q= L5, (r, m) (A, w)EGLa (1.2)

LT (M, w)

- wAs—ABy _|
Where L,(A, w) EC=E+D and LT(A, w) € C7+D*" are elementary Kronecker blocks,

e. g. Lg(A, u)= (“’ -4 _E) wAy—AB, is a regular pencil.

From the Kronecker s canonical form (1.2) it follows tha,t
We say that a singular penecil wd—AB contains an r-order regular part if
pAy—ABy& €™ in the form (1.2). The symbol &7*" is used to denote the set of all
m X n gingular penoils, each of which containg an r-order regular part.
Definition 2. 2. Let ud —AB € @™ A non—zero vector o€ L is called an
eiyenvector of the simgular pencil wA —AB corresponding to the eigenvalue (&, B) if
8 Axz=aBz, (Az, Bx)+ (0, 0).
2.2. Singular diagonalizable pencils and singular normal pencils
Definition 2.3. A pencil uA —ABEC &7 ¢s called déagonalizable of there exisi r
Vinsarly independent sigenvectors @y, +-+, @, of wA—AB and @ complement space R (@,
0 ml')r Gfm(ml; "t ﬂ}‘,-) satisfy@ng
R(zy, -, o,)° A (A NA(B).
The set of all such pencils s denoted by 27",
Definition 2.4. A pencil ud—ABE SP** is called normal if there exist r ortho-
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normal eigenvectors uy, =+, % of pA—AB and
R (g, -, w)*CSA(A)NA(B).
The set of all such pencils is denoted by A"7"".
Theorem 2.1. Suppose that wA —ABE ", Then pA—ABE 27" if and only if
there exist non—singular 8 € C™™, @€ C*** and diagonal matrices A, =diag (g, ===, &),
Q1=d_iag(;91_, e ﬁr) Sﬂﬁ‘i&fyéﬂg |A1’ﬂ+ |ﬂ1| ﬂ:} 0 such that

s 0 o o B -
aes{® Yo, 5os(% o 0
2. 8.,
A=8,4:QF, B=8:80,01, (2.2)
‘ll}hﬁ"rﬂ S= (Sl: Sﬂ): Q= (Q:l: Qﬂ)

rm—r rn—r
Proof. Suppose that (2.1 ) holds. Writing X =Q %= (X4, Xg), X1~ (1, ---,
@), from (2.1) we know that
ﬁiﬁﬂii:ﬂ-;B@h (A.-Trh Bm;) =~ (O, {]), 1<<i<<r (2-3)

and M (X ) is a complement space of R (X,) satisfying R (X & A47(4) N A7 (B).
This shows that ud—ABE€ 7",

Suppose now that wd—ABE 27*". By Definition 2.3 there exist r linearly
independent eigenvectors a; satisfying (2.3). l.et

_{ Aﬂig,{ﬂﬁ{ lf {145‘50,
" Ba/B, i =0,

and let Si= (84, -+, 8), Xi=(21, -+, @), Ay =diag{ay, -+, o) and Q, =diag (B,
.- B,), then we have

_ AX =845, BX =821, | 4:1|*+ |24|2>0.
By the hypothesis there exists X € C**™™" guch that X = (X, Xg is non-singular
and AX,—BXs=0. Henoce, if we sot @ =X "= (Q,, @), then A and B have the
decompositions (2.2). Therefore

wA—AB=81(ud:—r21)QF, (A, p) €EG,». (2.4)
Observe that wd —ABE &7, wA;—AQ2; is a regular pencil and rank (@) =, so from
(2.4), rank (8;) =r. We take S,€ C™™ " guch that 5= (81, 8s) is non-singular,
then from (2.2) we obtain (2.1). - g
Similarly one gan prove

Theorem 2.2. Suppose that wA—ABE S™=", Then wA—-ABE A" 4f and only
if there exvist @ non—simgular matriz S, ¢ unviary matriz U and d/imgml _mﬁrm As=
di&g(ﬂj,, el tl’-,-), Q1=dlﬂg (Bl: e ﬁ,—) smt%fymg I.A.112+ |Q1ig>"0 such that

A, © Q. 0 |
A=S( . )UH, B=S( . )UH. (2.5)
0 © 0 0 | _

2.3. Orthogonal projections and meirics
The symbol Z! denotes the pseudo-inverse (or Moore-Penrose “generalized

inverse) of a matrix Z. It is well-known that

.Pz,,:ZZ*
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is the orthogonal projection onio R(Z), and
P.=2E79'=717 (2.6)

ig the orthogonal projection on‘o R (Z¥), Using the MaocDuffee theorem (ses [1], p- 23)
one can directly verify the identity in (2.6).

Suppose that p, g and r are natural numbers satisfying r<min{p, g}. Leb

Cr7t — { Z € €% rank (Z) =7},

Tlements of €29 are divided into equivalence olasses as follows: two elements Z and
W are said to belong to the same equivalenoce class (symbolically Z~W), if R(Z)=
R(W). We consider every equivalence olass of Cr*¢ ag a point and consequently
obtain a complex projeciive space, symbolically G7. Similarly, one can utilize R (£H) =
R(WH) to define Z~W and obtain a complex projective space @, .. We usually use
one representative of equivalenoe classes, i. 0., a P X ¢ mAtrix (or a gXp matrix)
whose rank is r, to represent a point of G7 (or G+, q) .

Theorem 2.3. Let | | be any unitary—invariant norm on c*9, Then |Pz— Pwl
is o unitary—invariant metric on G2, ¢. s.

(1) |Pz;—Pw|=0, | Py— Pw|=0iff Z~W;

(2) |Pz—Pwl=|Pw—Psl;

(3) | Pz—Pwl<|Pz—Pxl + | Px— Pw|;

(4) For any unitary matrio Q€ C**? and any non—singular mairices P, REC™Y,
| Pozp— Powrl| = | P,— Py|, Where £, W and X are any points on G7.

Proof. We only need to prove the later conolusion of (1) and (4).

1. Prove “|Py— Pw|=0ift Z ~W”. We take the full-rank factorizations of Z
ﬂ'ﬂd Wﬂ.p.ﬂﬂ]

Z-FG, W=8T, F, S€C, q, TeT™, (2.7)
Obviously, R(Z)=R{F), RW) =R(S).
If Z~W, then R(F)=%R(3), i. e., there exists a non-singular matrix K€ C* such
that §= FK . Substituting this relation into
Py=F(FRF)1F4, Pw==S(8%8)18", (2.8)
we obtain Pz= Pw. : :
Conversely, suppose that Pz = Pw. Let F (FEF) ?=U;and S(§"5) 7=V,
Taking matrices Us, Vg € €2 guch that U= (U, Ug)and V = (V4, Va)are
unitary, then from UUE=VV{ we obtain

. I O I 0
u(y o)o"- e
0 O - \0 0

thus UV =0, UEV1=0. This shows that R(U) =RV, 1. 0. REF) =R (S), and so
Z~W. '

2. Prove (4). Taking the full-rank faotorizations (2.7) for Z and W, and using
the representations (2.8), after some calounlations we have

| Pozp— Powal| = 1Q(Pz—Pw)Q | = | Pz —Pw|.

Similarly one can prove
Theorem 2.4. Let ||| be any unitary—invariant norm on caxa, Then || Pzs— Pwsl
is a unitary—invariant meiric on @, .. Here the meaning of “unitary-invariont” 8 as
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Jollows, (4) For any unitary matriec Q€ C¥Y and any non—singular mairices P, RE
C¥*? e have
| Pipraye— Paways| = | Pra— Pual, YZ, W € Gy oo
In the sections § 3 and § 4 we shall adopt the following notations:
de(Z, W) h\}? | Pze— Pwalr, da(Z, W) = | Pza— Pyals, (2.9)
where || |r and | [s denote the Frobenins norm and the speotral norm, regpectively.
2.4, Acute perturbations

Definition 2.5 >89 To1 7 W TP W is an acute perturbation of Z if
"PH—PW”5<1: ”PE’H_PWH”.E{]--

Stewart™ has proved the following theorem.
Theorem 2.5. Lot Z, WE C*»4, Then W is an acute perturbation of Z if and only

if
rank(Z) =rank (W) =rank (P,W Pz:)

3. The Hoffman-Wielandt Type Theorem

From the decompositions (2.1) and (2.5) we know that if we set Z=(4, B) S
€™ for A —ABE D" (specially, A4 ™**), then rank(Z) =r. Moreover, we notice
that PZ =(PA, PB) for a non-singular matrix P € Cmxmig corresponding to the
pencil w(PA) —A(PB) € 27" whioh hag the same eigenvalues and eigenvectors as
wA—AB. Hence we can regard Z as a point on @, g4. In § 8 and § 4 we shall use the
variation of Z on G, s to bound the perturbation of the eigenvalues of wd —AB.

Theorem 3.1. Let wA—AB, pC—ADE A" (r=1), A(4, B) = {(a, B)}ie: and
AMC, D) ={(y, 8)}ie1. If weset Z= (A, B), W= (O, D) and

. PI,J=P((0:£,, ﬁi): ('}"h aﬁ)): 1‘@'&‘, jg'r:
then there exists @ permutation ky, <+, k. of 1, «-, 1 such that

>k n <de(Z, W), (3.1)

where dp(Z, W) is defined by (2.9).
- Proof.
1. In the decompositions (2.5) of 4 and B we may assume, without loss of
generality, that | 4;|?+ |£2,|?=I", Writing

S=(S:|'_J Sﬂ), U= (Ul, Uﬂ)
3 rm-—r ] e

then from (2.5) we get the full-rank factorization of Z:
Z=Sl (A]. U].H: Ql :II.E-) .
Utilizing the MacDuffee theorem we obtain

| z*=(? g")(S{fSi)-l z
1 i

and s0

U, zl)
T AN A, U8 0, U, 3.9
E(Uigl(uu) (3.2)
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By Theorem 2.2, € and D have the decompositions

I, © 4, 0
o=T H D="T H 3.8
(0 D)V,D (0 O)V (3.3)

where T'€C C™™ ijg non—singular, ¥V € C™* is unifary, = diagCys, ==, ¥r), 4=
diag (84, ---, 8,), and we may assume, without loss of generality, that [I° |2+ 14] 2=
1. Henoe, if we write V=(V3, Va), V1& € then with the same argument ag
the above we obtain

Ve Iy )
P3= . _— FVH,ﬂVH' 3.4
w(V1ﬂ1(11 1V 1 (3.4)
2. Acoording to (2.9),
B(Z, W) = _%_ Cbr (P yge) -+ (Pa)] —tr(Pgs Pyn). (3.5)
Utilizing the expressions (3.2) and (3.4) we obtain
'tr(Pzﬂ) =131'(PWH) =1 (3 .6)
and
'li].‘(Pga PWE) =f(.R), (3 .7)
where |
. R=UEVi=(ry) €C™ (3.8)
an B 3 . 3
f(R) =tr[(4d1 BRI +Q, RA,) (Ay RT3 +0Q4 RA)™], (3.9)
Therefore from (3.5)—(3.7),
2 (Z, WYy=r—f(R). (3.10)
3. From (3.9),
FR) = ;%1 0s, i Yus, | (8.11)
where B
0, = lays+B:8s\2, yu=lry|?, 13, J=<r. (3.12)

By (3.8), the matrix R catisfies BRE <I® and RZ R<I%; combining these relations
with(8.12) we know that the mairix (y) satisfies

gif:"""O: ;;L@fu"gls g_y‘f%jﬂ 1%‘2‘5 jﬁg'r- (3‘13)
Let Ir"—“ {X= (ﬂ?”) G?C.""":m;;?ﬁ, :’Emu =‘21 ﬂ'};j=1, 1%'1’, j*éq‘},
=1 =

i. o., X, ig the set of all rxXr bistochastio matrices. It is easy to see thab for any +?
non-negative numbers {y;} satisfying the conditions expressed in(3.18), there exisis
a matrix X o= (z{) € X, such that yy< z® for 1<é, j<<r. Subsiituiing these inequal-
ities into (8.11) we obtain

FRI<S S 0420 =g(Xo),

§,4=1
where ¢(X) is a linear function of X on %,. As %, is a convex polyhedron the
vertices of which are the permutation matrices (rof. [5]) there existsa permutation

matrix P= () (where py=208x, 1<4, j< r. 8 is the Kroneoker’s symbol) such thal
F(R)y<g(P) =¢§1 0, x..
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Substituting thig inequality into (8.10) it follows that

dz(Z, W) =2, (1-0.) =250 8, — By yu,|? =2 Pl e
This is the inequality (8 1)

4. The Bauer-Fike Type Theorem

Let ud—ABE D (r=1), wD—ADE Gmx (s=1), A4, B)= {(e, B)}r; and
MO, D) ={(w, 8)};. In this sootion we search for a upper bound under some
appropriate conditions for the generalized speotral variation of uwQ — )\D with respect to

pwAd—AB
5z(W) =max min e((x, B), (v 8;)), (4.1)

iz 1<ty

where Z= (4, B), W= (C, D).
First of all we give other expressions of the decompositions (2.1). Let
S=UT, Q=VR (4.2)

be the unitary—triangular factorizations of § and @, where U and V are unitary

matrices, 7" = (fg” g::) and R = ( gﬂ g;‘:) are non-singular upper triangular

matrices, and 74y, B, € Cr>, Substituting the decompositions (4.2) into (2.1) and
sotiing

Ki=T11.A1.Rﬁ: L1=T11913§, (4.3)
then we obtain
Ky, 0 Iy 0
A= H B ", 4.4
U(OU)V’ U(O D)V (4.4)

Lemmsa 4.1. Suppose that pA —r\BE Grx (r=1) with the decompositions (4.4),
PO —ADEC S " (s==1) . Let

o 611 519) (-511 -ﬁlﬂ)
C=UR0V=| .~ . 7)) D=p=Dy - : 4.5
(091 Oﬂﬂ ﬁﬂl ﬁﬂﬂ ( )

where Oy, Dy € Cr=r. If W=(0, D) is an acute perturbation of Z=(A, B), and
W’ =(g) 28 an acute perturbation of Z’=(_‘§), then
?u(O_, .D) =}¢(§11, 511).

Proof,
1. Let .
Z=UHZ( 0 )-=(Kl 0 I, 0),
dFF D B @ o (4.6)
W=UHW( V 0 )=(€11 'Elﬂ Dy, ﬁu)
I Car Cu Dy Dy )
Thus Z=(§m)(f1, 0, L, 0), Zt=(K, 0, I, 0YEM (I, 0),

where My = (K; K¥+ I, I7)-1, and 5o
Fa= I, 057, 0), Poumi(E,, 0. Ly, 0)2M1(K}, 0, Ly, 0). (4.7)



70 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 1

L= o T — S T— e I T R ]

Ohgerve that W is an aeute perturbation of Z, U and ¥V are unitary matrices, then
by the unitary -invariableness of |Pz;— P | and |Pza—Pwe|a (see Theorem 2.3 and
Theorem 2.4)as well as Definition 2.5 we know that W is an acute perturbation of Z.
Hence from Theorem 2.5 and (4.6),

rank (P; W Pzs) =rank (W) =1ank(Z) =7
This together with (4.7) gives
rank ((Cr1, D) (K3, L) ¥ M1 (K4, Ly)) =7,
and so we must have

rank (G11, Dy) =7, (4.8)
However, rank (W) =r, therefore there exists F{ e Com-nxr guch that
(551, 59&; ﬁm, ﬁﬂﬂ) = Iy (511; 51&, -D:L:L,. -519)- (4-9)
2. Lef o

K; 0O C11 Cus

(U 0N\ _ 0 O . B, Car Cas
Z=(O U) Z'V = L. 0 ,W=(O U) WV = B Do | (4.10)

o 0 Dyy Dag

According to the hypothesis with the same argument as the above we can deduoce that
W’ is an acute perturbation of 2. Henoe from Theorem 2.5 and (4.10),

rank (Pz W’ Pys) =rank (W) =rank(Z’) =r. (4.11)
Ohserve that
K,

0
AR (I, 0), Z’f=(
Ly
0
where N, = (E¥K1+L?L1) -1, and so
Ky

0
PE’= 1(K¥; D; LJI..I: 0).: PE"=(

{r)

0 )Ni(EIF: O: Lf: 0)}

{r)

" )(I{”, 0)-
0

These together with (4.11) give

E-i " " 511 .
o (E) s 20(

thus we must have

i

1:( Cu ) (4.12
ran =7, 2
D )
However, rank (7 =r, therefore there exists Gh & Crx»= guch that

€1 Cn

555 Efﬂl

= G4, 4.13
B |7\ D [ ——

-ﬁﬂﬂ Dﬂl
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3. As a result from (4.5), (4.9) and (4.13) we obtain

I 0 I —@ Cy O I 0 I —@ Dy 0
H - H e
(—F I)U V( 0 I) ( 0 0)’ (—F O)U DV(D 7 ) ( 0 0)‘

(4.14)

Combining (4.14) with (1.1) we reach the econclusion of Lemma 4.1,
Lemma 4.2. Suppose that uA—ABE @™ (r=1). Lot Z= (A, B) and

Z,~[(ZZB)")2 Z = (4;, By), (4.15)

: 1
where we take the semi—positive definite Square root for [(ZZE) V]2, Then

(1) wdi—ABjand pwd —AB have the same eigenvalues and eigenvectors;
Fin

2) Z2,28=X ( "
(8) Pzz=Pss,
Proof. Let Z=X (E g)Y % be the singular value decomposition of Z, where

2 €C™ ig a non-singular diagonal matrix, X = (X, Xg) and ¥ = (¥, Y,) are
unifary matrices, X, & C™" and ¥ ;€ C***, Therefrom we have

o )IH, X 18 a unifory mairiz,

H 1_ - 0 o
[(Z Z )*]E—X( i O)X
and

I(r) 0
zl=z( ; O)YH=PZ, (4.16)

-1
where P= X ( 20 g)X He €™ i3 non-singular.

From (4.16) we obtain the conclusions (1) and (2) at onoe.
Moreover, from the singular value decomposition of Z, Z= X3V, thus

ZYV=Y 37t XT, Pp=Y,YY
on the other hand, from (4.16), Z,=X,Y ¥, and so
1 =Y1 X{, Pp=Y,Y1.
Therefore the conclusion (3) is also true.

Theorem 4.1. Sug::;poss that pA—ABE Q7" (r=1) with the decompositions (2.2),
and pO—ADEC SP*"(s=1). If W= (0, D) is an acute perturbation of Z= (A, B), and

(g) %8 an acuie perturbation of (ﬁ), then

" 32(W) <~/ [QFQ[s] QF Q) ada(Z, W), (4.17)
where sz (W) and dgo(Z, W) are defined as in (4.1)and (2.9), respectively.
Proof. Without loss of generality we may assume that the diagonal matrices A,

and £y in (2.2) satisfy | 4,]?+|0Q24|?=1IT. Besides, by Theorem 4.2 we may assume
that the matrix £ satisfies

T

0
ZZH=X( 5 O)XH, X ig unitary, (4.18)

Let (v, 8) be an eigenvalue of w0 —AD. It is safe to suppose that |y]2+|8[%=1
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For a suitable normalized eigenvector @ of uC —AD ocorresponding to (v, 3) (the
choice of the vector # will be explained in the following), we have

)
5Av—y Bo=8(A—ZW' O)a—y(B—ZW' D)e= (A—ZW 10, B——ZWTD)( _;)

5 3
=(Z-—-ZW*W)( ? )=Z(Z?Z—W"’W)( . ) (4.19)
From the transformation (4.5),
CI:LII. Glﬂ 511 ﬁlﬂ )
O=1{] VE D=U VH, 4.20
. ( Oat Oiﬂ} (fjﬂi Das ( )

and by Lemma 4.1, & (O, D) = A (C11, Dy). Henoe we can choose a normalized
eigenveotor » of 1011 — ADy; corresponding to (y, 8) € 2(Cu, Duy).

851115:‘}‘511%‘, - Cr_
Let m=V( g ), then @ is a normalized eigenvector of wC —AD corresponding to (y, J)
€A(0, D). Substituting this ¢ and the decompositions (4.4) into (4.19), we get

[ OK —yLy O\fw) B 3V U
(7 ) (o)mzwemre 2 ) )

| @K1 —y Lyu| < "Z”ﬂ”PzH—PWH!]ﬂ””H%tﬁs(Z, W), (4.21)

where ||| denotes the usual Euclidean vector norm.
Substituting (4.8) into the left side of (4.21), we obtain

| (BK 1~y Ly)u| =| T11(841— ;) Rii uf
> | T3 | B iz minp((a, B, (7, 9))-
Therefore, for any (v, 8) EA(U, D) we have
min p((a, 8, (7, 8)) <|Tit|s| Bii|ade(Z, W). (4.22)

1<iar

Observe that the matrix ZZ¥ has the decomposition (4.18); but from (4.4)

K. Ki+Lily O
0 0

Thus

ZZH=U( ) U U is unitary.

Henoe we must have
; K K{+ Ly I¥ =1, (4.23)
Substituting (4.3) into (4.23) we obfain
(T8 T4) 2= A RE By A1+ R By ﬁi;
| T3 o< [ Rua s, (4.24)
Moreover, from (4.2) and (2.2), @:=V1R1u. S0 we gel

p |
| Rysla=[QF Qu]32, [|R:t(s=1@QFQ0]".
Substituting these equalities and (4.24) into (4.22) and remembering that (y, 6) is

thus
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an arbitrary eigenvalue of ;0 —AD, then we obtain (4.17).
In case of a singular normal pencil u.d —AB the matrix @ in (2.1) can be chosen

as unitary (see Theorem 2.2), hence we get at once
Theorem 4.2. Let pd— ABEC NP (r=>1), pO - ADE & (s=>1). If W=

(0, D)is an acute perturbation of Z=(A, RBR), and ( g) 3 an acute pertwrbation of

() then
s; (W) <da(Z, W).

5. Final Remarks
5.1. Theorsm 4.1 shows that in the case where (4, B) and (g) are aoutely

H
perturbed we can use the variation of the orthogonal projection onto % ( ‘gﬂ )tn

bound the perturbation of the eigenvalues of a singular diagonalizable pencil pu.A4 —AB.
It is worth—while to point out that under the hypothesis of acute perturbation
Stewart™ hag obtained an estimation for the variation of the orthogonal projection.
By Theorem 4.1 in [7], if W= (C, D) is an acute perturbation of Z= (4, B), then

(2, Wys— *2F) 4 (5.1)
[1+(ep(H))*] 2
where = Z|all (Pg=WEPg)t|s
and
B=W-2)%, p(B)=|(I—Pz)EPz|s/| Z]a. (6.2)

Therefore from (4.17) and (6.1)—(5.2) wo know that, in the oase where (4, B)
and ( é) are aoutely perturbed, if we use the chordal metrio to describe the pertur-

bation of eigenvalues, then the eigenvalues of a singular diagonalizable penoil wA—
AB are insengitive to perturbations in the elements of 4 and B,

5.2. If wA—AB is a regular pencil, then we can use Definition 2.3 and Defini-
tion 2.4 {0 define the regular diagonalizable pencil and the regular normal pencil,
respectively (the corresponding matrix—pairs are called the diagonalizable pair and
the normal pair in [8] and[3]); and in fthese cases the inequalities (8.1) and (4.17)
are exactly the conclusions of the Hoffman-Wielandt theorem and the Bauer-Fike
theorem for regular pencils, respectively (see [8] and [3], There are different
expresgions for dr(Z, W) and da(Z, W), ref. [3], Theorem 1.8. In [8] we have
written the da(Z, W) as d,(Z, W)).
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