ORTHOGONAL PROJECTIONS AND THE PERTURBATION OF THE EIGENVALUES OF SINGULAR PENCILS*

SUN JI-GUANG(孙继广)

(Computing Center, Academia Sinica)

Abstract

In this paper we obtain a Hoffman-Wielandt type theorem and a Bauer-Fike type theorem for singular pencils of matrices. These results delineate the relations between the perturbation of the eigenvalues of a singular diagonalizable pencil $A-\lambda B$ and the variation of the orthogonal projection onto the column space $\Re \begin{pmatrix} A^H \\ B^H \end{pmatrix}$.

1. Introduction

Let A and B be complex $m \times n$ matrices. A pencil of matrices $A - \lambda B$ is called singular if $m \neq n$ or m = n but $\det(A - \lambda B) \equiv 0^{(4)}$. A prevalent viewpoint is that in this case any complex number λ is an eigenvalue of $A - \lambda B$ (ref. [6]), consequently it is difficult to investigate the perturbation of the eigenvalues of singular pencils. In this paper we adopt a new definition for the eigenvalues of a singular pencil which is due to P. van Dooren²⁾, and relate the perturbation of the eigenvalues of $A - \lambda B$ and the variation of the orthogonal projection onto the column space $\Re\begin{pmatrix} A^H \\ B^H \end{pmatrix}$ to each other, thus obtain a Hoffman-Wielandt type theorem (§ 3) and a Bauer-Fike type theorem (§ 4) for singular pencils which are generalizations of the main results for regular pencils in [8] and [3].

Notation: Capital case is used for matrices and lower case Greek letters for scalars. The symbol $\mathbb{C}^{m\times n}$ denotes the set of complex $m\times n$ matrices. \overline{A} and A^T stand for conjugate and transpose of A, respectively; $A^H = \overline{A}^T$. $I^{(n)}$ is the $n\times n$ identity matrix, and 0 is the null matrix. The matrix |A| has elements $|a_{ij}|$ if $A = (a_{ij})$. A > 0 ($\geqslant 0$) denotes that H is a positive definite (semi-positive definite) Hermitian matrix. The column space of A is denoted by \Re (A) and the null space by N(A). \Re (A)¹ is the orthogonal complement space of \Re (A). $G_{1,2}$ denotes the complex projective plane. The chordal distance between the points (α, β) and (γ, δ) on $G_{1,2}$ is

$$\rho((\alpha, \beta), (\gamma, \delta)) = \frac{|\alpha\delta - \beta\gamma|}{\sqrt{(|\alpha|^2 + |\beta|^2)(|\gamma|^2 + |\delta|^2)}}.$$

Received August 17, 1982.

¹⁾ This work was done while the author was visiting the University of Bielefeld (FRG) and assisted by the Alexander von Humboldt Foundation in the Federal Republic of Germany.

²⁾ P. van Dooren has advanced a new definition for the eigenvalues of a singular pencil in his lecture "A numerical method to compute reducing subspaces of a singular pencil" at "The Conference on Matrix Pencils" in March 1982, Piteå, Sweden.

The matrix pencil formed of A and B can be expressed more precisely as $\mu A - \lambda B$, $(\lambda, \mu) \in G_{1,2}$.

2. Preliminaries

In this section we give some definitions and basic results.

2.1. Eigenvalues and eigenvectors

Definition 2.1. Let A, $B \in \mathbb{C}^{m \times n}$, and $\max_{(\lambda,\mu) \in G_{1n}} \operatorname{rank}(\mu A - \lambda B) = k$. A number-pair $(\alpha, \beta) \in G_{1,2}$ is an eigenvalue of the pencil $\mu A - \lambda B$ if $\operatorname{rank}(\beta A - \alpha B) < k$.

The set of all eigenvalues of $\mu A - \lambda B$ is denoted by $\lambda(A, B)$.

The following consequences of Definition 2.1 can easily be verified.

- i) If $\mu A \lambda B$ is a regular pencil (i. e. m = n and det $(\mu A \lambda B) \not\equiv 0$, $(\lambda, \mu) \in G_{1,2}$) then Definition 2.1 is coincide with the usual definition [8].
 - ii) If $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$ are non-singular, then

$$\lambda(PAQ, PBQ) = \lambda(A, B). \tag{1.1}$$

Kronecker showed that if $\mu A - \lambda B$ is a singular pencil, then there exist non-singular matrices P and Q such that [4,10,2]

$$P(\mu A - \lambda B)Q = \begin{bmatrix} L_{s_1}(\lambda, \mu) \\ L_{s_p}(\lambda, \mu) \\ L_{\eta_1}^T(\lambda, \mu) \\ \vdots \\ L_{\eta_q}^T(\lambda, \mu) \\ \mu A_0 - \lambda B_0 \end{bmatrix}, (\lambda, \mu) \in G_{1,2}. (1.2)$$

Where $L_s(\lambda, \mu) \in \mathbb{C}^{s \times (s+1)}$ and $L_\eta^T(\lambda, \mu) \in \mathbb{C}^{(\eta+1) \times \eta}$ are elementary Kronecker blocks, e. g. $L_2(\lambda, \mu) = \begin{pmatrix} \mu & -\lambda & 0 \\ 0 & \mu & -\lambda \end{pmatrix}$; $\mu A_0 - \lambda B_0$ is a regular pencil.

From the Kronecker's canonical form (1.2) it follows that

iii)
$$\lambda(A, B) = \lambda(A_0, B_0).$$

We say that a singular pencil $\mu A - \lambda B$ contains an r-order regular part if $\mu A_0 - \lambda B_0 \in \mathbb{C}^{r \times r}$ in the form (1.2). The symbol $\mathfrak{S}_r^{m \times n}$ is used to denote the set of all $m \times n$ singular pencils, each of which contains an r-order regular part.

Definition 2. 2. Let $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$. A non-zero vector $x \in \mathbb{C}^n$ is called an eigenvector of the singular pencil $\mu A - \lambda B$ corresponding to the eigenvalue (α, β) if

$$\beta Ax = \alpha Bx$$
, $(Ax, Bx) \neq (0, 0)$.

2.2. Singular diagonalizable pencils and singular normal pencils

Definition 2.3. A pencil $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$ is called diagonalizable if there exist r linearly independent eigenvectors x_1, \dots, x_r of $\mu A - \lambda B$ and a complement space $\Re(x_1, \dots, x_r)^c$ of $\Re(x_1, \dots, x_r)$ satisfying

$$\Re(x_1, \dots, x_r)^c \subseteq \mathcal{N}(A) \cap \mathcal{N}(B)$$
.

The set of all such pencils is denoted by $\mathcal{D}_r^{m \times n}$.

Definition 2.4. A pencil $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$ is called normal if there exist r ortho-

normal eigenvectors u_1, \dots, u_r of $\mu A - \lambda B$ and

$$\Re(u_1, \dots, u_r)^{\perp} \subseteq \mathcal{N}(A) \cap \mathcal{N}(B)$$
.

The set of all such pencils is denoted by $\mathcal{N}_r^{m\times n}$.

Theorem 2.1. Suppose that $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$. Then $\mu A - \lambda B \in \mathfrak{D}_r^{m \times n}$ if and only if there exist non-singular $S \in \mathbb{C}^{m \times m}$, $Q \in \mathbb{C}^{n \times n}$ and diagonal matrices $\Lambda_1 = \operatorname{diag}(\alpha_1, \dots, \alpha_r)$, $\Omega_1 = \operatorname{diag}(\beta_1, \dots, \beta_r)$ satisfying $|\Lambda_1|^2 + |\Omega_1|^2 > 0$ such that

$$A = S \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} Q^H, \quad B = S \begin{pmatrix} \Omega_1 & 0 \\ 0 & 0 \end{pmatrix} Q^H, \tag{2.1}$$

i. e.,

$$A = S_1 A_1 Q_1^H, \quad B = S_1 \Omega_1 Q_1^H,$$
 (2.2)

where $S = (S_1, S_2), Q = (Q_1, Q_2).$ $r m - r \qquad r n - r$

Proof. Suppose that (2.1) holds. Writing $X = Q^{-R} = (X_1, X_2)$, $X_1 = (x_1, \dots, x_r)$, from (2.1) we know that

$$\beta_i Ax_i = \alpha_i Bx_i, (Ax_i, Bx_i) \neq (0, 0), 1 \leq i \leq r$$
 (2.3)

and $\Re(X_2)$ is a complement space of $\Re(X_1)$ satisfying $\Re(X_2) \sqsubseteq \mathscr{N}(A) \cap \mathscr{N}(B)$. This shows that $\mu A - \lambda B \in \mathscr{D}_r^{m \times n}$.

Suppose now that $\mu A - \lambda B \in \mathcal{D}_r^{m \times n}$. By Definition 2.3 there exist r linearly independent eigenvectors x_i satisfying (2.3). Let

$$\mathbf{s}_{i} = \begin{cases} Ax_{i}/\alpha_{i} & \text{if } \alpha_{i} \neq 0, \\ Bx_{i}/\beta_{i} & \text{if } \alpha_{i} = 0, \end{cases}$$

and let $S_1 = (s_1, \dots, s_r)$, $X_1 = (x_1, \dots, x_r)$, $A_1 = \operatorname{diag}(\alpha_1, \dots, \alpha_r)$ and $\Omega_1 = \operatorname{diag}(\beta_1, \dots, \beta_r)$, then we have

$$AX_1 = S_1\Lambda_1$$
, $BX_1 = S_1\Omega_1$, $|\Lambda_1|^2 + |\Omega_1|^2 > 0$.

By the hypothesis there exists $X_2 \in \mathbb{C}^{n \times (n-r)}$ such that $X = (X_1, X_2)$ is non-singular and $AX_2 = BX_3 = 0$. Hence, if we set $Q = X^{-H} = (Q_1, Q_2)$, then A and B have the decompositions (2.2). Therefore

$$\mu A - \lambda B = S_1(\mu A_1 - \lambda \Omega_1) Q_1^H, \quad (\lambda, \mu) \in G_{1,2}. \tag{2.4}$$

Observe that $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$, $\mu A_1 - \lambda \Omega_1$ is a regular pencil and rank $(Q_1) = r$, so from (2.4), rank $(S_1) = r$. We take $S_2 \in \mathbb{C}^{m \times (m-r)}$ such that $S = (S_1, S_2)$ is non-singular, then from (2.2) we obtain (2.1).

Similarly one can prove

Theorem 2.2. Suppose that $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$. Then $\mu A - \lambda B \in \mathcal{N}_r^{m \times n}$ if and only if there exist a non-singular matrix S, a unitary matrix U and diagonal matrices $\Lambda_1 = \operatorname{diag}(\alpha_1, \dots, \alpha_r)$, $\Omega_1 = \operatorname{diag}(\beta_1, \dots, \beta_r)$ satisfying $|\Lambda_1|^2 + |\Omega_1|^2 > 0$ such that

$$A = S \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} U^H, B = S \begin{pmatrix} \Omega_1 & 0 \\ 0 & 0 \end{pmatrix} U^H.$$
 (2.5)

2.3. Orthogonal projections and metrics

The symbol Z^{\dagger} denotes the pseudo-inverse (or Moore-Penrose generalized inverse) of a matrix Z. It is well-known that

$$P_z = ZZ^{\dagger}$$

is the orthogonal projection onto $\Re\left(Z\right)$, and

$$P_{Z^{\mu}} = Z^{\mu} Z^{\underline{\mu}\dagger} \equiv Z^{\dagger} Z \tag{2.6}$$

is the orthogonal projection onto $\Re(Z^H)$. Using the MacDuffee theorem (see [1], p. 23) one can directly verify the identity in (2.6).

Suppose that p, q and r are natural numbers satisfying $r \leq \min\{p, q\}$. Let

$$\mathbb{C}_r^{\mathfrak{p}\times q} = \{Z \in \mathbb{C}^{\mathfrak{p}\times q} \colon \operatorname{rank} \ (Z) = r\}.$$

Elements of $\mathbb{C}_r^{p imes q}$ are divided into equivalence classes as follows: two elements Z and W are said to belong to the same equivalence class (symbolically $Z \sim W$), if $\Re (Z) =$ $\Re(W)$. We consider every equivalence class of $\mathbb{C}_r^{p\times q}$ as a point and consequently obtain a complex projective space, symbolically G_r^p . Similarly, one can utilize $\Re(Z^H) =$ $\Re(W^H)$ to define $Z\sim W$ and obtain a complex projective space $G_{r,q}$. We usually use one representative of equivalence classes, i. e., a $p \times q$ matrix (or a $q \times p$ matrix) whose rank is r, to represent a point of G_r^p (or $G_{r,q}$).

Theorem 2.3. Let $\| \|$ be any unitary-invariant norm on $\mathbb{C}^{p \times p}$. Then $\| P_z - P_w \|$ is a unitary-invariant metric on Gr, i. s.

- (1) $||P_z-P_w|| \ge 0$, $||P_z-P_w|| = 0$ iff $Z \sim W$;
- (2) $||P_z-P_w|| = ||P_w-P_z||$;
- (3) $||P_z P_w|| \le ||P_z P_x|| + ||P_x P_w||$;
- (4) For any unitary matrix $Q \in \mathbb{C}^{p \times p}$ and any non-singular matrices P, $R \in \mathbb{C}^{q \times q}$, $\|P_{QZP}-P_{QWR}\|=\|P_Z-P_W\|$, Where Z, W and X are any points on G_r^p .

Proof. We only need to prove the later conclusion of (1) and (4).

1. Prove " $||P_z-P_w||=0$ iff $Z\sim W$ ". We take the full-rank factorizations of Zand $W^{[1, p.22]}$

$$Z = FG, W = ST, F, S \in \mathbb{C}^{p \times r}, G, T \in \mathbb{C}^{r \times q}.$$

$$(2.7)$$

Obviously,

$$\Re(Z) = \Re(F), \Re(W) = \Re(S).$$

If $Z \sim W$, then $\Re(F) = \Re(S)$, i. e., there exists a non-singular matrix $K \in \mathbb{C}^{r \times r}$ such that S = FK. Substituting this relation into

$$P_z = F(F^H F)^{-1} F^H, P_W = S(S^H S)^{-1} S^H,$$
 (2.8)

we obtain $P_z = P_w$.

Conversely, suppose that $P_Z = P_W$. Let $F(F^H F)^{-\frac{1}{2}} = U_1$ and $S(S^H S)^{-\frac{1}{2}} = V_1$. Taking matrices U_2 , $V_2 \in \mathbb{C}^{p \times (p-r)}$ such that $U = (U_1, U_2)$ and $V = (V_1, V_2)$ are unitary, then from $U_1U_1^H = V_1V_1^H$ we obtain

$$U\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} U^H = V\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} V^H,$$

thus $U_1^HV_2=0$, $U_2^HV_1=0$. This shows that $\Re(U_1)=\Re(V_1)$, i. e. $\Re(F)=\Re(S)$, and so

 $Z \sim W$. 2. Prove (4). Taking the full-rank factorizations (2.7) for Z and W, and using the representations (2.8), after some calculations we have

$$||P_{QZP}-P_{QWR}|| = ||Q(P_z-P_w)Q^H|| = ||P_z-P_w||.$$

Similarly one can prove

Theorem 2.4. Let $\parallel \parallel be$ any unitary-invariant norm on $\mathbb{C}^{q \times q}$. Then $\parallel P_{Z^{\Xi}} - P_{W^{\Xi}} \parallel$ is a unitary-invariant metric on Gr, q. Here the meaning of "unitary-invariant" is as follows: (4) For any unitary matrix $Q \in \mathbb{C}^{q \times q}$ and any non-singular matrices P, $R \in \mathbb{C}^{p \times p}$, we have

$$\|P_{(PZQ)^B} - P_{(RWQ)^B}\| = \|P_{Z^B} - P_{W^B}\|, \ \forall Z, \ W \in G_{r, q}.$$

In the sections § 3 and § 4 we shall adopt the following notations:

$$d_{F}(Z, W) = \frac{1}{\sqrt{2}} \|P_{Z^{B}} - P_{W^{B}}\|_{F}, d_{2}(Z, W) = \|P_{Z^{B}} - P_{W^{B}}\|_{2}, \tag{2.9}$$

where $\| \|_F$ and $\| \|_2$ denote the Frobenius norm and the spectral norm, respectively. 2.4. Acute perturbations

Definition 2.5^[7,p.641,9]. Let Z, $W \in \mathbb{C}^{p \times q}$. W is an acute perturbation of Z if $\|P_Z - P_W\|_2 < 1$. $\|P_{Z^H} - P_{W^H}\|_2 < 1$.

Stewart^[7] has proved the following theorem.

Theorem 2.5. Let Z, $W \in \mathbb{C}^{\mathfrak{p} \times q}$. Then W is an acute perturbation of Z if and only if

$$\operatorname{rank}(Z) = \operatorname{rank}(W) = \operatorname{rank}(P_z W P_{zz})$$

3. The Hoffman-Wielandt Type Theorem

From the decompositions (2.1) and (2.5) we know that if we set $Z = (A, B) \in \mathbb{C}^{m \times 2n}$ for $\mu A - \lambda B \in \mathcal{D}_r^{m \times n}$ (specially, $\mathcal{N}_r^{m \times n}$), then $\operatorname{rank}(Z) = r$. Moreover, we notice that PZ = (PA, PB) for a non-singular matrix $P \in \mathbb{C}^{m \times m}$ is corresponding to the pencil $\mu(PA) - \lambda(PB) \in \mathcal{D}_r^{m \times n}$ which has the same eigenvalues and eigenvectors as $\mu A - \lambda B$. Hence we can regard Z as a point on $G_{r,2n}$. In § 3 and § 4 we shall use the variation of Z on $G_{r,2n}$ to bound the perturbation of the eigenvalues of $\mu A - \lambda B$.

Theorem 3.1. Let $\mu A - \lambda B$, $\mu C - \lambda D \in \mathcal{N}_r^{m \times n}(r \ge 1)$, $\lambda(A, B) = \{(\alpha_i, \beta_i)\}_{i=1}^r$ and $\lambda(C, D) = \{(\gamma_i, \delta_i)\}_{i=1}^r$. If we set Z = (A, B), W = (C, D) and

$$\rho_{i,j} = \rho((\alpha_i, \beta_i), (\gamma_j, \delta_j)), 1 \leq i, j \leq r,$$

then there exists a permutation k_1, \dots, k_r of $1, \dots, r$ such that

$$\sqrt{\sum_{i=1}^{r} \rho_{i,k_i}^2} \leqslant d_F(Z, W), \tag{3.1}$$

where $d_F(Z, W)$ is defined by (2.9).

Proof.

1. In the decompositions (2.5) of A and B we may assume, without loss of generality, that $|A_1|^2 + |\Omega_1|^2 = I^{(r)}$. Writing

$$S = (S_1, S_2), U = (U_1, U_2)$$

 $r m - r$ $r n - r$

then from (2.5) we get the full-rank factorization of Z:

$$Z = S_1(\Lambda_1 U_1^H, \Omega_1 U_1^H).$$

Utilizing the MacDuffee theorem we obtain

$$Z^{\dagger} = \begin{pmatrix} U_{\mathbf{1}} & \overline{A}_{\mathbf{1}} \\ U_{\mathbf{1}} & \overline{\Omega}_{\mathbf{1}} \end{pmatrix} (S_{\mathbf{1}}^H S_{\mathbf{1}})^{-1} S_{\mathbf{1}}^H,$$

and so

$$P_{Z^*} = \begin{pmatrix} U_1 & \overline{\Lambda}_1 \\ U_1 & \overline{\Omega}_1 \end{pmatrix} (\Lambda_1 U_1^H, \Omega_1 U_1^H). \tag{3.2}$$

By Theorem 2.2, C and D have the decompositions

$$C = T \begin{pmatrix} \Gamma_1 & 0 \\ 0 & 0 \end{pmatrix} V^H, \quad D = T \begin{pmatrix} \Delta_1 & 0 \\ 0 & 0 \end{pmatrix} V^H$$
 (3.3)

where $T \in \mathbb{C}^{m \times m}$ is non-singular, $V \in \mathbb{C}^{n \times n}$ is unitary, $\Gamma_1 = \operatorname{diag}(\gamma_1, \dots, \gamma_r)$, $\Delta_1 = \operatorname{diag}(\delta_1, \dots, \delta_r)$, and we may assume, without loss of generality, that $|\Gamma_1|^2 + |\Delta_1|^2 = I^{(r)}$. Hence, if we write $V = (V_1, V_2), V_1 \in \mathbb{C}^{n \times r}$, then with the same argument as the above we obtain

$$P_{W^{B}} = \begin{pmatrix} V_{1} & \overline{\Gamma}_{1} \\ V_{1} & \overline{\Delta}_{1} \end{pmatrix} (\Gamma_{1}V_{1}^{H}, \Delta_{1}V_{1}^{H}). \tag{3.4}$$

2. According to (2.9),

$$d_F^2(Z, W) = \frac{1}{2} \left[tr(P_{Z^R}) + tr(P_{W^R}) \right] - tr(P_{Z^R} P_{W^R}). \tag{3.5}$$

Utilizing the expressions (3.2) and (3.4) we obtain

$$tr(P_{Z^R}) = tr(P_{W^R}) = r$$
 (3.6)

and

$$\operatorname{tr}(P_{Z^{R}}P_{W^{R}}) = f(R),$$
 (3.7)

where

$$R = U_1^H V_1 = (r_{ij}) \in \mathbb{C}^{r \times r} \tag{3.8}$$

and

$$f(R) = \operatorname{tr}\left[\left(\Lambda_{1} R \overline{\Gamma}_{1} + \Omega_{1} R \overline{\Delta}_{1}\right) \left(\Lambda_{1} R \overline{\Gamma}_{1} + \Omega_{1} R \overline{\Delta}_{1}\right)^{H}\right]. \tag{3.9}$$

Therefore from (3.5)—(3.7),

$$d_F^2(Z, W) = r - f(R)$$
. (3.10)

3. From (3.9),

$$f(R) = \sum_{i,j=1}^{r} \theta_{i,j} y_{ij}, \qquad (3.11)$$

where

$$\theta_{i,j} = |\alpha_i \overline{\gamma}_j + \beta_i \overline{\delta}_j|^2, \ y_{ij} = |r_{ij}|^2, \ 1 \leq i, \ j \leq r.$$

$$(3.12)$$

By (3.8), the matrix R satisfies $RR^H \leq I^{(r)}$ and $R^H R \leq I^{(r)}$; combining these relations with (3.12) we know that the matrix (y_{ij}) satisfies

$$y_{ij} \ge 0$$
, $\sum_{i=1}^{r} y_{ij} \le 1$, $\sum_{i=1}^{r} y_{ij} \le 1$, $1 \le i$, $j \le r$. (3.13)

Let $\mathfrak{X}_r = \{X = (x_{ij}) \in \mathbb{C}^{r \times r} : x_{ij} \ge 0, \sum_{j=1}^r x_{ij} = \sum_{i=1}^r x_{ij} = 1, 1 \le i, j \le r\},$

i. e., \mathfrak{X}_r is the set of all $r \times r$ bistochastic matrices. It is easy to see that for any r^2 non-negative numbers $\{y_{ij}\}$ satisfying the conditions expressed in (3.13), there exists a matrix $X_0 = (x_{ij}^{(0)}) \in \mathfrak{X}_r$ such that $y_{ij} \leqslant x_{ij}^{(0)}$ for $1 \leqslant i$, $j \leqslant r$. Substituting these inequalities into (3.11) we obtain

$$f(R) \leqslant \sum_{i,i=1}^{r} \theta_{ij} x_{ii}^{(0)} = g(X_0),$$

where g(X) is a linear function of X on \mathfrak{X}_r . As \mathfrak{X}_r is a convex polyhedron the vertices of which are the permutation matrices (ref. [5]) there exists a permutation matrix $P = (p_{ij})$ (where $p_{ij} = \delta_{jk_i}$, $1 \le i$, $j \le r$. δ_{ij} is the Kronecker's symbol) such that

$$f(R) \leqslant g(P) = \sum_{i=1}^r \theta_{i, k_i}.$$

Substituting this inequality into (3.10) it follows that

$$d_F^2(Z, W) \geqslant \sum_{i=1}^r (1 - \theta_{i, k_i}) = \sum_{i=1}^r |\alpha_i \, \delta_{k_i} - \beta_i \, \gamma_{k_i}|^2 = \sum_{i=1}^r \rho_{i, k_i}^2.$$

This is the inequality (3.1).

4. The Bauer-Fike Type Theorem

Let $\mu A - \lambda B \in \mathcal{D}_r^{m \times n}(r \ge 1)$, $\mu D - \lambda D \in \mathfrak{S}_s^{m \times n}(s \ge 1)$, $\lambda(A, B) = \{(\alpha_i, \beta_i)\}_{i=1}^r$ and $\lambda(C, D) = \{(\gamma_i, \delta_i)\}_{i=1}^s$. In this section we search for a upper bound under some appropriate conditions for the generalized spectral variation of $\mu C - \lambda D$ with respect to $\mu A - \lambda B$

$$s_Z(W) = \max_{1 \leq i \leq s} \min_{1 \leq i \leq r} \rho((\alpha_i, \beta_i), (\gamma_i, \delta_i)), \qquad (4.1)$$

where Z = (A, B), W = (C, D).

First of all we give other expressions of the decompositions (2.1). Let

$$S=UT, Q=VR \tag{4.2}$$

be the unitary-triangular factorizations of S and Q, where U and V are unitary matrices, $T = \begin{pmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{pmatrix}$ and $R = \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix}$ are non-singular upper triangular matrices, and T_{11} , $R_{11} \in \mathbb{C}^{r \times r}$. Substituting the decompositions (4.2) into (2.1) and setting

$$K_1 = T_{11} \Lambda_1 R_{11}^H, L_1 = T_{11} \Omega_1 R_{11}^H,$$
 (4.3)

then we obtain

$$A = U \begin{pmatrix} K_1 & 0 \\ 0 & 0 \end{pmatrix} V^H, \quad B = U \begin{pmatrix} L_1 & 0 \\ 0 & 0 \end{pmatrix} V^H.$$
 (4.4)

Lemma 4.1. Suppose that $\mu A - \lambda B \in \mathcal{D}_r^{m \times n}(r \ge 1)$ with the decompositions (4.4), $\mu C - \lambda D \in \mathfrak{S}_s^{m \times n}(s \ge 1)$. Let

$$\widetilde{C} = U^{H} C V = \begin{pmatrix} \widetilde{C}_{11} & \widetilde{C}_{12} \\ \widetilde{C}_{21} & \widetilde{C}_{22} \end{pmatrix}, \quad \widetilde{D} = U^{H} D V = \begin{pmatrix} \widetilde{D}_{11} & \widetilde{D}_{12} \\ \widetilde{D}_{21} & \widetilde{D}_{22} \end{pmatrix}, \tag{4.5}$$

where \widetilde{C}_{11} , $\widetilde{D}_{11} \in \mathbb{C}^{r \times r}$. If W = (O, D) is an acute perturbation of Z = (A, B), and $W' = \begin{pmatrix} C \\ D \end{pmatrix}$ is an acute perturbation of $Z' = \begin{pmatrix} A \\ B \end{pmatrix}$, then

$$\lambda(C, D) = \lambda(\widetilde{C}_{11}, \widetilde{D}_{11}).$$

Proof.

1. Let

$$\begin{cases}
\widetilde{Z} = U^{H} Z \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix} = \begin{pmatrix} K_{1} & 0 & L_{1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \\
\widetilde{W} = U^{H} W \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix} = \begin{pmatrix} \widetilde{C}_{11} & \widetilde{C}_{19} & \widetilde{D}_{11} & \widetilde{D}_{19} \\ \widetilde{C}_{21} & \widetilde{C}_{29} & \widetilde{D}_{21} & \widetilde{D}_{22} \end{pmatrix}.
\end{cases} (4.6)$$

Thus

$$\widetilde{Z} = \begin{pmatrix} I^{(r)} \\ 0 \end{pmatrix} (K_1, 0, L_1, 0), \widetilde{Z}^{\dagger} = (K_1, 0, L_1, 0)^H M_1(I^{(r)}, 0),$$

where $M_1 = (K_1 K_1^H + L_1 L_1^H)^{-1}$, and so

$$P_{\tilde{z}} = (I^{(r)}, 0)^H(I^{(r)}, 0), P_{\tilde{z}^H} = (K_1, 0, L_1, 0)^H M_1(K_1, 0, L_1, 0).$$
 (4.7)

Observe that W is an acute perturbation of Z, U and V are unitary matrices, then by the unitary-invariableness of $||P_Z-P_W||_2$ and $||P_{Z^R}-P_{W^E}||_2$ (see Theorem 2.3 and Theorem 2.4) as well as Definition 2.5 we know that \widetilde{W} is an acute perturbation of \widetilde{Z} . Hence from Theorem 2.5 and (4.6),

$$\operatorname{rank}(P_{\widetilde{Z}}\widetilde{W}P_{\widetilde{Z}^{H}}) = \operatorname{rank}(\widetilde{W}) = \operatorname{rank}(\widetilde{Z}) = r.$$

This together with (4.7) gives

$$\operatorname{rank}((\widetilde{C}_{11}, \widetilde{D}_{11})(K_1, L_1)^H M_1(K_1, L_1)) = r,$$

and so we must have

$$rank(\tilde{C}_{11}, \tilde{D}_{11}) = r.$$
 (4.8)

However, rank $(\widetilde{W}) = r$, therefore there exists $F_1 \in \mathbb{C}^{(m-r) \times r}$ such that

$$(\widetilde{C}_{21}, \ \widetilde{C}_{22}, \ \widetilde{D}_{21}, \ \widetilde{D}_{22}) = F_1(\widetilde{C}_{11}, \ \widetilde{C}_{12}, \ \widetilde{D}_{11}, \ \widetilde{D}_{12}).$$
 (4.9)

2. Let

$$\widetilde{Z}' = \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix}^{H} Z'V = \begin{pmatrix} K_{1} & 0 \\ 0 & 0 \\ L_{1} & 0 \\ 0 & 0 \end{pmatrix}, \ \widetilde{W}' = \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix}^{H} W'V = \begin{pmatrix} \widetilde{C}_{11} & \widetilde{C}_{12} \\ \widetilde{C}_{21} & \widetilde{C}_{22} \\ \widetilde{D}_{11} & \widetilde{D}_{12} \\ \widetilde{D}_{21} & \widetilde{D}_{22} \end{pmatrix}. \tag{4.10}$$

According to the hypothesis with the same argument as the above we can deduce that \widehat{W}' is an acute perturbation of \widehat{Z}' . Hence from Theorem 2.5 and (4.10),

$$\operatorname{rank}(P_{\widetilde{Z}'}\widetilde{W}'P_{\widetilde{Z}''}) = \operatorname{rank}(\widetilde{W}') = \operatorname{rank}(\widetilde{Z}') = r. \tag{4.11}$$

Observe that

$$\widetilde{Z}' = \begin{pmatrix} K_1 \\ 0 \\ L_1 \\ 0 \end{pmatrix} (I^{(r)}, 0), \ \widetilde{Z}'^{\dagger} = \begin{pmatrix} I^{(r)} \\ 0 \end{pmatrix} N_1(K_1^H, 0, L_1^H, 0),$$

where $N_1 = (K_1^H K_1 + L_1^H L_1)^{-1}$; and so

$$P_{\tilde{z}'} = \begin{pmatrix} K_1 \\ 0 \\ L_1 \\ 0 \end{pmatrix} N_1(K_1^H, 0, L_1^H, 0), P_{\tilde{z}''} = \begin{pmatrix} I^{(r)} \\ 0 \end{pmatrix} (I^{(r)}, 0).$$

These together with (4.11) give

$$\operatorname{rank}\left[\binom{K_1}{L_1}N_1(K_1^H, L_1^H)\binom{\widetilde{C}_{11}}{\widetilde{D}_{11}}\right] = r,$$

thus we must have

$$\operatorname{rank}\begin{pmatrix} \widetilde{C}_{11} \\ \widetilde{D}_{11} \end{pmatrix} = r. \tag{4.12}$$

However, rank(\widetilde{W}') = r, therefore there exists $G_1 \in \mathbb{C}^{r \times (n-r)}$ such that

$$\begin{pmatrix}
\widetilde{C}_{19} \\
\widetilde{C}_{29} \\
\widetilde{D}_{19} \\
\widetilde{D}_{29}
\end{pmatrix} = \begin{pmatrix}
\widetilde{C}_{11} \\
\widetilde{C}_{21} \\
\widetilde{D}_{11} \\
\widetilde{D}_{21}
\end{pmatrix} G_{1}.$$
(4.13)

3. As a result from (4.5), (4.9) and (4.13) we obtain

$$\begin{pmatrix} I & 0 \\ -F & I \end{pmatrix} U^{H}CV \begin{pmatrix} I & -G \\ 0 & I \end{pmatrix} = \begin{pmatrix} \widetilde{C}_{11} & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} I & 0 \\ -F & 0 \end{pmatrix} U^{H}DV \begin{pmatrix} I & -G \\ 0 & I \end{pmatrix} = \begin{pmatrix} \widetilde{D}_{11} & 0 \\ 0 & 0 \end{pmatrix}. \tag{4.14}$$

Combining (4.14) with (1.1) we reach the conclusion of Lemma 4.1.

Lemma 4.2. Suppose that $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}(r \ge 1)$. Let Z = (A, B) and

$$Z_1 = [(ZZ^H)^{\dagger}]^{\frac{1}{2}}Z = (A_1, B_1),$$
 (4.15)

where we take the semi-positive definite Square root for $[(ZZ^H)^{\dagger}]^{\frac{1}{2}}$. Then

(1) $\mu A_1 - \lambda B_1$ and $\mu A - \lambda B$ have the same eigenvalues and eigenvectors;

(2)
$$Z_1Z_1^H = X\begin{pmatrix} I^{(r)} & 0 \\ 0 & 0 \end{pmatrix} X^H$$
, X is a unitary matrix;

(3) $P_{z_{i}} = P_{z_{i}}$

Proof. Let $Z = X \begin{pmatrix} \sum 0 \\ 0 \end{pmatrix} Y^H$ be the singular value decomposition of Z, where $\sum \in \mathbb{C}^{r \times r}$ is a non-singular diagonal matrix, $X = (X_1, X_2)$ and $Y = (Y_1, Y_2)$ are unitary matrices, $X_1 \in \mathbb{C}^{m \times r}$ and $Y_1 \in \mathbb{C}^{2n \times r}$. Therefrom we have

 $\left[\left(ZZ^{H}\right)^{\dagger}\right]^{\frac{1}{2}} = X \begin{pmatrix} \Sigma^{-1} & 0 \\ 0 & 0 \end{pmatrix} X^{H}$

and

$$Z_{1} = X \begin{pmatrix} I^{(r)} & 0 \\ 0 & 0 \end{pmatrix} Y^{H} = PZ, \tag{4.16}$$

where $P = X \begin{pmatrix} \sum_{1}^{-1} & 0 \\ 0 & I \end{pmatrix} X^H \in \mathbb{C}^{m \times m}$ is non-singular.

From (4.16) we obtain the conclusions (1) and (2) at once.

Moreover, from the singular value decomposition of Z, $Z = X_1 \sum Y_1^H$, thus

$$Z^{\dagger} = Y_{1} \sum^{-1} X_{1}^{H}, P_{Z^{H}} = Y_{1} Y_{1}^{H};$$

on the other hand, from (4.16), $Z_1 = X_1 Y_1^H$, and so

$$Z_1^{\dagger} = Y_1 X_1^H, P_{Z_1^H} = Y_1 Y_1^H.$$

Therefore the conclusion (3) is also true.

Theorem 4.1. Suppose that $\mu A - \lambda B \in \mathcal{D}_r^{m \times n}(r \geqslant 1)$ with the decompositions (2.2), and $\mu C - \lambda D \in \mathfrak{S}_s^{m \times n}(s \geqslant 1)$. If W = (C, D) is an acute perturbation of Z = (A, B), and $\binom{C}{D}$ is an acute perturbation of $\binom{A}{B}$, then

$$s_Z(W) \leq \sqrt{\|Q_1^H Q_1\|_{\mathbf{S}} \|(Q_1^H Q_1)^{-1}\|_{\mathbf{S}}} d_{\mathbf{S}}(Z, W),$$
 (4.17)

where $s_z(W)$ and $d_2(Z, W)$ are defined as in (4.1) and (2.9), respectively.

Proof. Without loss of generality we may assume that the diagonal matrices Λ_1 and Ω_1 in (2.2) satisfy $|\Lambda_1|^2 + |\Omega_1|^2 = I^{(r)}$. Besides, by Theorem 4.2 we may assume that the matrix Z satisfies

$$ZZ^{H} = X \begin{pmatrix} I^{(r)} & 0 \\ 0 & 0 \end{pmatrix} X^{H}$$
, X is unitary. (4.18)

Let (γ, δ) be an eigenvalue of $\mu C - \lambda D$. It is safe to suppose that $|\gamma|^2 + |\delta|^2 = 1$

For a suitable normalized eigenvector x of $\mu C - \lambda D$ corresponding to (γ, δ) (the choice of the vector x will be explained in the following), we have

The first vector
$$x$$
 will be explained in the sector y , $y = (A - ZW^{\dagger}D)x = (A - ZW^{\dagger}D) \begin{pmatrix} \delta x \\ -\gamma x \end{pmatrix}$

$$= (Z - ZW^{\dagger}W) \begin{pmatrix} \delta x \\ -\gamma x \end{pmatrix} = Z(Z^{\dagger}Z - W^{\dagger}W) \begin{pmatrix} \delta x \\ -\gamma x \end{pmatrix}. \tag{4.19}$$

From the transformation (4.5),

$$C = U \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} V^{H}, \quad D = U \begin{pmatrix} \widetilde{D}_{11} & \widetilde{D}_{12} \\ \widetilde{D}_{21} & \widetilde{D}_{22} \end{pmatrix} V^{H}; \tag{4.20}$$

and by Lemma 4.1, λ $(C, D) = \lambda$ $(\widetilde{C}_{11}, \widetilde{D}_{11})$. Hence we can choose a normalized eigenvector u of $\mu \widetilde{C}_{11} - \lambda \widetilde{D}_{11}$ corresponding to $(\gamma, \delta) \in \lambda(\widetilde{C}_{11}, \widetilde{D}_{11})$:

$$\delta \widetilde{C}_{11} u = \gamma \widetilde{D}_{11} u, u \in \mathbb{C}^r.$$

Let $x=V\left(\begin{matrix} u\\0 \end{matrix}\right)$, then x is a normalized eigenvector of $\mu C-\lambda D$ corresponding to (γ,δ) $\in \lambda(C,D)$. Substituting this x and the decompositions (4.4) into (4.19), we get

$$U\begin{pmatrix} \delta K_1 - \gamma L_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ 0 \end{pmatrix} = Z(P_{Z^H} - P_{W^H}) \begin{pmatrix} \delta V \\ -\gamma V \end{pmatrix} \begin{pmatrix} u \\ 0 \end{pmatrix}.$$

Thus

$$\|(\delta K_1 - \gamma L_1)u\| \leq \|Z\|_2 \|P_{Z^H} - P_{W^H}\|_2 \|u\| \leq d_2(Z, W), \tag{4.21}$$

where | | denotes the usual Euclidean vector norm.

Substituting (4.3) into the left side of (4.21), we obtain

$$\begin{split} \| (\delta K_1 - \gamma L_1) u \| &= \| T_{11} (\delta A_1 - \gamma \Omega_1) R_{11}^H u \| \\ & \geqslant \| T_{11}^{-1} \|_2^{-1} \| R_{11}^{-1} \|_2^{-1} \min_{1 < i < r} \rho((\alpha_i, \beta_i), (\gamma, \delta)). \end{split}$$

Therefore, for any $(\gamma, \delta) \in \lambda(C, D)$ we have

$$\min_{1 \leq i \leq r} \rho((\alpha_i, \beta_i), (\gamma, \delta)) \leq ||T_{11}^{-1}||_{\mathfrak{S}} ||R_{11}^{-1}||_{\mathfrak{S}} d_{\mathfrak{S}}(Z, W). \tag{4.22}$$

Observe that the matrix ZZ^H has the decomposition (4.18); but from (4.4)

$$ZZ^{H} = U \begin{pmatrix} K_{1}K_{1}^{H} + L_{1}L_{1}^{H} & 0 \\ 0 & 0 \end{pmatrix} U^{H}$$
, U is unitary.

Hence we must have

$$K_1 K_1^H + L_1 L_1^H = I^{(r)}$$
 (4.23)

Substituting (4.3) into (4.23) we obtain

$$(T_{11}^{H}T_{11})^{-1} = \Lambda_{1}R_{11}^{H}R_{11}\overline{\Lambda}_{1} + \Omega_{1}R_{11}^{H}R_{11}\Omega_{1},$$

$$\|T_{11}^{-1}\|_{2} \leq \|R_{11}\|_{2}.$$

$$(4.24)$$

thus

Moreover, from (4.2) and (2.2), $Q_1 = V_1 R_{11}$. So we get

$$||R_{11}||_{2} = ||Q_{1}^{H} Q_{1}||_{2}^{1/2}, ||R_{11}^{-1}||_{2} = ||(Q_{1}^{H} Q_{1})^{-1}||_{2}^{\frac{1}{2}}.$$

Substituting these equalities and (4.24) into (4.22) and remembering that (γ, δ) is

an arbitrary eigenvalue of $\mu C - \lambda D$, then we obtain (4.17).

In case of a singular normal pencil $\mu A - \lambda B$ the matrix Q in (2.1) can be chosen as unitary (see Theorem 2.2), hence we get at once

Theorem 4.2. Let $\mu A - \lambda B \in \mathfrak{R}_r^{m \times n}(r \ge 1)$, $\mu C - \lambda D \in \mathfrak{S}_s^{m \times n}(s \ge 1)$. If W = (C, D) is an acute perturbation of Z = (A, B), and $\binom{C}{D}$ is an acute perturbation of $\binom{A}{B}$, then

$$s_z(W) \leq d_2(Z, W)$$
.

5. Final Remarks

5.1. Theorem 4.1 shows that in the case where (A, B) and $\binom{A}{B}$ are acutely perturbed we can use the variation of the orthogonal projection onto $\mathscr{R}\left(\frac{A^H}{B^H}\right)$ to bound the perturbation of the eigenvalues of a singular diagonalizable pencil $\mu A - \lambda B$. It is worth-while to point out that under the hypothesis of acute perturbation Stewart⁽⁷⁾ has obtained an estimation for the variation of the orthogonal projection. By Theorem 4.1 in [7], if W = (C, D) is an acute perturbation of Z = (A, B), then

$$d_{2}(Z, W) \leq \frac{\bar{\varkappa}p(E)}{[1+(\bar{\varkappa}p(E))^{2}]^{\frac{1}{2}}} < 1,$$
 (5.1)

where

$$\tilde{\varkappa} = \|Z\|_2 \| \left(P_{Z^H} W^H P_Z \right)^{\dagger} \|_2$$

and

$$E = (W - Z)^{H}, \ p(E) = \| (I - P_{Z^{R}}) E P_{Z} \|_{2} / \| Z \|_{2}. \tag{5.2}$$

Therefore from (4.17) and (5.1)—(5.2) we know that, in the case where (A, B) and $\binom{A}{B}$ are acutely perturbed, if we use the chordal metric to describe the perturbation of eigenvalues, then the eigenvalues of a singular diagonalizable pencil μA — λB are insensitive to perturbations in the elements of A and B.

5.2. If $\mu A - \lambda B$ is a regular pencil, then we can use Definition 2.3 and Definition 2.4 to define the regular diagonalizable pencil and the regular normal pencil, respectively (the corresponding matrix-pairs are called the diagonalizable pair and the normal pair in [8] and [3]); and in these cases the inequalities (3.1) and (4.17) are exactly the conclusions of the Hoffman-Wielandt theorem and the Bauer-Fike theorem for regular pencils, respectively (see [8] and [3]. There are different expressions for $d_F(Z, W)$ and $d_2(Z, W)$, ref. [3], Theorem 1.3. In [8] we have written the $d_2(Z, W)$ as $d_3(Z, W)$.

References

- [1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, John Wiley, New York, 1974.
- [2] P. van Dooren, The computation of Kronecker's canonical form of a singular pencil, Linear Algebra and Appl., 27, 1979, 103—140.
- [3] L. Elsner and J. G. Sun, Perturbation theorems for the generalized eigenvalues problem, Linear Algebra and Appl. (to appear)
- [4] F. B. Gantmaher, Theory of Matrices, Vol. II. Chelsea, New York, 1959.

- [5] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn & Bacon, Boston, 1964.
- [6] G. W. Stewart, On the sensitivity of the eigenvalue problem $Ax = \lambda Bx$, SIAM J. Numer. Anal., 9, 1972, 669—686.
- [7] G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev., 19, 1977, 634—662.
- [8] J. G. Sun, The perturbation bounds of generalized eigenvalues of a class of matrix-pairs, Math. Numer. Sinica, 4, 1982, 23—29.
- [9] P. -A. Wedin, Perturbation theory for pseudo-inverses, BIT, 13, 1973, 217-232.
- [10] J. H. Wilkinson, Kronecker's canonical form and the QZ algorithm, Linear Algebra and Appl., 28, 1979, 285-503.