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Abstraect

An upwind difference scheme was given by the author in [5] for the numeriecal polution of
steady—state problems. The present work studies this upwind scheme and its corresponding boundary
scheme for the namerical solution of unsteady problems. For interior points the difference equations
are approximations of the characteristic relations; for boundary points the difference equatons are
approximations of the characteristic relations corresponding to the cutgoing characteristics and the
“non-reflecting” boundary conditions. Calenlation of a Riemann problem in a finite computational
region yields promising numerical results. -

1. Introduction

Upwind difference schemes have always played important roles in the field of
numerical solution of hyperbolic partial differential equations. We have, amongst
the widely-used ones, the Courant, Isaacson, and Rees scheme [1}, and the Godunov
scheme, which is equivilent 0 an upwind scheme in a certain gsense, see [2]. We
also have[10], [3], [4],and many others. The author presented an upwind scheme in
[6] for the numerical solution of steady-state probloms. Its special feature is that the
viscosity term concerned hag effect in the unsteady process it speeds up convergenoce;
1t hag effect in the steady-state only in the shock region——it yields numerical shocks
with at most one point of transition, but it does not influence the solution in the
smooth region. Actually, the influence of vis-cosity on the smooth part of the
solution depends directly on the boundary conditions. With suitable boundary
conditions, the method under description consists of embedding a steady-state first
order difference problem into an unsteady, second order (in space)difference problem.
In [6] the author discussed the boundary scheme corresponding to the given upwind
scheme and extended the boundary schems to two-dimensional steady-state problems.
This boundary scheme approximates the ‘desired characteristio relations, it is in
conservational form in the steady-state, and its implementation is especially
convenient with implioit schemes.

The present work is an attempt to apply these schemes to the numerical solution
of unsieady problems. A discussion of the upwind scheme and the corresponding
boundary scheme is given in § 2. We shall see that for interior points, the difference
. equations are approximations of the characteristic relations. For boundary points,
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the difference equations are approximations of the oharaocteristic relations
corresponding to the outgoing characteristics, 1. e. the desired characterigtio
relations, and the “non-reflecting” boundary conditions. When the region of solation
ig infinite , it 19 necessary to reducs it to a finite region for numerical solution. Then
the “non-reflecting” boundary conditions have important significance. In §3 the
numerical solution of 2 Riemann problem in a finite computational region with tne
schemes discussed in § 2 is given. We shall see that the shock width is not large and
that even when the rarefaction wave and the shock wave go out of the computational
rogion, there are no apparent reflestions from the boundaries.

2. An Upwind Scheme and Its Boundary Scheme
Consider the hyperbolic system

oU , oF _

¢ Wi i )
where I/ and F are p-dimensional vectors, F'=F(U), Let

 OF
A=5tr

then (1) ean also be written as

aU Z

F il T

Suppose Ay, As, **v, Ay are the eigenvalues of 4, and 71, 73, ***, Ty the ocorresponding
richt eigenvectors, then
[\

5
A=RAR™?, A= ! :

\ Ay /
where R is the matrix (ry, 7s, ==+, 7p). Let L'=R™*, then

4

s

- 4,

here I; is the left eigenvector corresponding to A, The charaoteristic normal form of

(1) is

2)

these are also called the characteristio relations.
The explicit form of the upwind socheme given in [8] ig

UN—U5 | Fion—Fia o 1 rgion 45,1 (F1.— F)) ~sign 41 1 (F}- Fi.)1,  (3)
di 2 da 3 iz SR L B A e
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with signd defined as follows

/ sign (Ay)
sign 4= Resign A+R-1, sign A— sign (ha) (4)
\ gign (Ay) /
The above difference scheme can be approximated by
Uﬂ-!—l__Uﬂ- ‘ 1 . i & U‘n_Uﬂ_ | 1 . " i Un __"Urt
4 T L] 5 (I—I'Slgﬂ Aj_%)ﬁj_% ] dﬂ.}j L -z—'(Ihﬂlgl‘l .A.j.;._.l?_) .A.H_%_ j+£§9; ! =0,

When the mesh is sufficiently small, we have RL_% zR}'_%_ ~R, LL% ELf_% ~I for
some R and L, Then

Ui —0% .. 1 : n n — U5
L jAtU 1—2—(I+51g1111;-%)11;-%LU? zlmgjl
1 : ” " 1 —U3

+5 (I~sign A}, ) A5, L¥B=Ul_g

Notice -é—( I +sign A;}%) A}}% i8 diagonal, so for }u:_%}(}; ?LL%_}DJ the corresponding

component equation is

Uyt 0%, s Ui—Uja_
{ -_.dt [ ?«.;_%3 e -—O_, (5&)
where the component subseript has been dropped. For l}‘_%{ 0, h}:_;lﬁ-ciﬂ, we have
Urr.+1_ n o Uﬂ _,_UH_ G
Jo2Jd yr 14 l.f+%- e Hzm 1=0, (5b)

For eigenvalues varying about zero, we consider each possible case separately. For

}‘:‘11: = ?u?.,.%_ =0, we get

n+1 n
;'Uﬁ,ﬂ; 1—0. (5¢)

For ?\.}'_%{U_, AL%)-OJ we also get (60), For l:_?i,} 0, 3.?4,%{ 0, we oblain

um-u; n U} —-U% n Ui —Uj
el 2 =l A1) [ ‘J L — (Mg | Doletd 1=,
OoT
% l / : ? O (dz) =0 5¢’
; Vi 7 A ( ) ’ ( G)

All other cases result in either (5¢) or (5¢’) in the same manner. In short, for
eigenvalmes™>0, <0, ors~0, the upwind scheme (3) is an approximation of the
characteristio relations (2). We see also from (5) that for positive eigenvalues we
have backward differences; and for negative eigenvalues, forward differences; and
for zero eigenvalues we have at most an additional viseosity term of order O(dz).
Hence the scheme is npwind and also the scheme is stable for |A| A8/ A=< 1.,

Here we point out, that for (1) strietly hyperbolic, the eigenvalues of 4 are
distinot real numbers, 80 A-A 7 is of rank p-1, For oomputation, we can use the



78 JOURNAL OF COMPUTATIONAL: MATHEMATICS el 4

L S L = o .

cofactor subroutine to obtain R and B, and then obtfain signA. Sometimes the
elements of signd have simple analytic expressions, then they ocan be evaluated
direotly.

On the boundary, say the left boundary, let F;— F,_;=0, tho difference soheme
becomes

Un+1 Uﬂ > ,f+1"“ Fj =
e (1 gign 4) i 0, (6)

where [J}*! denotes the prelimma.ry boundary values obtained from this equation, 4
denotes AL% or Aj. As above, with left multiplication by L, we arrive at

5, Ut=Us

%(I—-signzi)ALU’“"Uf —0

At Az ,
i.6.

3 ;:+1__ rjl» f
L =0 for A>0, (Ta)

ﬁiﬂ_ I_U? UI+1 U,_

f. - Al = 0 for A<O, (7b)
n41

.U ;t Uico r 3=0 (70)

For A<(0, the characteristic is ouigoing; I-U3*!, with U?*! obtained from (6),
approximates {+U/ which would result from the corresponding characteristic relation.
For A=0, the situation is similar. But for A>0, the characteristio is incoming, ingtead
of the corresponding characteristic relation, a boundary condition should be given
and used in computation. From I+U7** and the boundary conditions, we can calculate
U7*! on the boundary.

Now, (7a) holds for steady-state problems. 8o for this type of problems, we ecan
get preliminary values Jj** from (6), and then modify these values with the given
boundary conditions in an appropriate manner. The author also extended this

boundary scheme to the two-dimensional case, see [6]. For the partial differential
equation

oU , oF , o0& _,
ot oz @ &y d
the implicit scheme on the left boundary «=0, say, is
U3i~U% . 1., .. (F;*ﬂh Fpt | Gy -Gy )_
F Ty dsged) P 20y 0

L

here A= gg . Then for A< 0, the characteristic relation oorresponds to that charaoc-

teristic plane, whose normal projected on the @y plane is perpendicular to the bound-
ary. For A=0, the corresponding characteristic plane is the plane tangent to the
boundary and parallel to the ¢ axis. The boundary scheme was applied to the ealcu-
lation of steady—state axigymmetrio transonic flow in nozzles in [6] s the mumerical
method converged and the resulting steady-state solution was found to be quite
reagonable. We note that the steady-state boundary difference scheme is in con-
servational form, which may be desirable for certain problems. Also, the implemen-
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tation of this boundary scheme is very convenient, especially for implioit schemaes:
gince for U, we can just set those parts of the coefficients and left-hand sides which
have to do with the outside half of the equation to zero. Only after U is obtained,
need we concern ourselves with the special forms of the boundary conditions, see [6].

Many problems involve infinite regions, for numerical solution of $hese
problems, it is necessary 1o reduce the infinite regions to finite regions. The
boundary conditions given on the boundary of such a finite region is of utmost
importance. For one-dimensional nonlinear hyperbolic systems with “no waves
entering (the ocomputational region) at =0, Hedstrom in [7] gave the

“non-reflecting”boundary condition

where ¢ is the left eigenvector corresponding to A>0. We see that (7Ta) is an
approximation of just this “non-reflecting” boundary condition. Since boundary
scheme (6) contains an approximation of (8), so with (6) wo can obtain the
approximations of all the iU, i. e. corresponding to all A. Hence with (6), we can
obtain direotly U;*! on the boundary.

In the following we apply upwind scheme (8) and boundary scheme (6) to the
numerical solution of a Riemann problem in a finite computational region.

3. Numerical Example: Riemann Problem, “Non-

Reflecting” Boundary Condition

The one-dimensional Euler equation is
o, oF _

I aa
where
P pu
U=s|pu), F=| ou'+p |,
B (H4p)u

p=(r—1)( E-8L),

E is the energy per unit volume, the other letters have the usual meanings. It is well
known that |

0 1 0
-3
iqNs_YEy  Bll=y) 5 wE

end its eigenvalues are u+¢, u—e, and % (¢ is the sonic velocity). For u+e>0, u—o
<0, ©>>0, it can be shown that



80 JOURNAL OF COMPUTATIONAT: MATHEMATICS Vol. 1

B 8l SR % .
( C 2 e + 1) ¢d ¢l \
sign 4 Ut TR B (v 2)?4'(?’ 1) o p: (v—1) Py
2 i g o e = - 3 o 2
\u_l_'-yzu v—1 ut  ue (v 3)u3+'}' 1u+ ¢ (1'—1)”—7 1*u)

2 5 ¢ 4 c2 -1 2 ¢ 2 g  y-1 c 2 c?

For supersonic flow where also u—e>>0, sign 4 is simply Z.
Lot us consider the shock tube problem as shown in Fig. 1, 1. e. & Riemann
problem, with initial values taken from Sod [8],

'H:L=0, HR=0_,
?L=1: P-R::O'lj
PL:l; PR=0'125-

Consider also the finite computational region ag shown in Fig. 1; on the boundaries
we give the “non-reflecting” boundary condition (8). Now using the upwind
difference scheme (3), the left boundary scheme (6), and the ocorresponding right
boundary scheme, we get directly the numerical solution of this problem. For the
above initial values, the numerical results with do=0.01, g=%=0.44231 (which
satisfies the CFL condition and at the same fime allows the printed results to be
compared with those of Sod) are shown in Fig. 2—5 by “.” We gee that: (1) With
the upwind scheme (8), there are about three points of transition for the unsteady
shock (Fig. 2a, ba), which is not bad for a first order scheme. (2) When the
rarefaction wave and the shock wave go out of the computational region, there are no
apparent reflections from the boundaries and no obvious deviations of any sort near
the boundaries (Fig. 2b—5b). This result is better than that obtained by Hedstrom in
his numerical example.

But as with other schemes, the width of the contact discontinuity spreads with
increasing n. Hence for >0, “artificial compression” (AC) as proposed by Harten
r9] was added at each time level. The numerical resulis are indicated in the figures
by “?, where there is apparent difference from that without AC. The value for ¢
in AC was also taken $o be 0.44231, though it can go up to 1. We see that: (3) By
adding artificial compression at each time level, there iz about one point of
iransition for the shock: the width of the contact discontinuity does not increase
with n; and there are no apparent reflections from the boundaries, the numerical

\ 11 0.14154
-'I‘ i
\ G{.Lgi‘- \ _contact
4 L
\\ .ga-"""i' discontinuit ok
0.07077
~
AN
.,
L\ X
T —=0.105 0 0.1 0.195
left  boundary right boundary

Fig. 1. Shock tube problem
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g 1=0.07077

a 1=0,07077

b. 1=0.14145

— #xact solution
- upwind Ehtﬂ'l:
X with 4 ¢

=
S s g
Fig. 2. Velocity u Fig. 8. Pressure p
3 ' g
& r=)07077
o
& 1=0.07077
X
E -x- 3 &8
b. t=0.14145
i Ie
b. t=0.14145
"X
# iiﬁi |
e

Fig. 5. Internal energy s
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solution remains very cleancut near the boundaries.
MThe Tesults of this numerical example are promising. Further attempis to apply

this upwind scheme and the corresponding boundary scheme to other problems will
be made.
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