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TWO ALGORITHMS FOR SOLVING A KIND
OF HEAT CONDUCTION EQUATIONS™

Tong OrrNe—PU (& A ) CpeN Xu—MING (B 4% BR)

1. Introduction

In this paper, a strategy 18 suggested for numerical solution of a kind of parabolio
partial differential equations with nonlinear boundary conditions and discontinuons
coetficients, which arise from practical engineering problems. First, a difference equa-
tion at the discontinuous point ig astablished in which both the stability and the
truncation error are consistent with the total difference equations. Then, on account
of the fact that the coefficient malrix of the difference equations 18 tridiagonal and
nonlinearity appears only in the firgt and the last equations, two algorithms are sug-
gested: a mixed method combining the modified (Gaussian elimination method with the
cucoessive recursion method, and a variant of the modified Gaussian elimination
method. These algorithms are shown 10 be effective.

2  The Difference Equations of the Problem

Consider the parabolio partial differential equation
ou o O J
ot~ C o @)
where u, the Tequired solution, gatisfies the initial condition

u(z, 0) =p{@), (2)

and the boundary conditions

[@ “‘;\-1114_ =M, (3)

or Ja=g

[ o +?|-21£H =g, (4)

@ﬂ} Jz=b

and the discontinuous condition is
) o o
by —— — ko — | .
. O% | £,—0 : o L;Hl"
where Mm=M(, u), Aa=Ra(t, ),

'111:-111(#, u’): ‘Ug:‘vg(t, u’):

and | (j:{

u’[ﬁ-ﬂ‘:uI#ﬁ 0, (5)

C1 m%m{ml,
Ca fﬂl'ﬁiiﬂ%b‘,

where ¢, €2, k1 and ki are constants.
For the region [e<<a<d, 0<<i<<T], there are iwo intervals in the a—direchion.
Mhe intervals [e, =] and [as, 6] are covered by the space increments hy=(wi—a)/
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( N+ “:ZLT) and hg=(b—24) / ( No+ —é—-) respectively, and time ¢ is covered by v=T/m,
A rectangular net is thus formed as follows.
T
' | : - | ]
7
l_l 'D '1 *2 — e & -Nl- &= l:_'_’L H—'N["I'NE'!'I
p &) Ny=—1 Ni+1 ks N+N,
o |
5

By nse of the Crank-Nicolson formula to approximate equation (1) we oblain
the difference equations
- Yallg—1,i+17F (142y1) U, j41— Yilirr1, 541
= Y1Ug-1,; 1 (1 —2y1)u, 1+ V1%+1,5 (6)
(k=0,1, 2, -+, N1—1;j=1, 2, -, m),
= Yallg1,5+17t (1+2’}’2>uk.f+1 — Va1, 4+1
= Yaly_1, ;5 (1 — 22, 5+ Vallis1, 5 (7)
(5=Ni+1, N;+2, «--, N1+ Ny j=1, 2, -+, m),
where vi=ec17/2h%, Ya= cat/2h;,
Let A=max {h1, he}. Obviously equation (1) is approximated by (6) and (7) with
the truncation error O(A*+7?). To obtain the truncation error O(#?)on the boundary

conditions(8) and (4), we replace% with the central difference operator, and u with

the average of the two adjacent points:

{@. } _ Up, 41— U—1,441 {3” } . Unt1,ie1 T U1

ox lali+1 Fy > Loz v} fa i
Wo,i+1 T U_1,541 Uni1,4+1 T UN,i+1

{ulﬁ}f+1“ 29 2 s54+ : {ulb}f-l-i: + :.f+2 i+ s

Applying these formnlas to (3) and (4) respectively, we have

1
i o Bl g, i41

Uot,j+1= 1 Uo,1+1 hfwi’jﬂ ’ (8)
1 Fi h1l1:3+1 1+—= hl}"l:f+1
2 2
. 1
1—— hgh
2 2B, 141,
UN+1,541 ™ il Uy, 541 h{%’jﬂ 2 (9)
1+§' h3l211+1 1+§ hg}tﬂ}j.l.j_
where N= Nl Nﬂ,

Mg, 541 =M1 (Ej41, (U_1,5+1 +o,141)/2),
V1,541 = V1 (Fa1, (U-1,5411 Yo, 141)/2),
haysr1=Aa (i1, (Uw,seat Um+1,941)/2),
Va,i+1= Vg (£31, (uw, 541 uN-]-i:;f-’l—l) / 2) ]
Substituting (8) into (6) and (9) into (7), we obtain, for k= 0 and % =N respeo-
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tively,
1
[ L § h’i}\‘lﬂ-l-l
1.+2’]f1—71' 1 (o, 141 Y1ll1,541
l fie- E hi?t‘111+l 4
V1,
==Y U_1,51 (1 — 21 ) o, Y1%, ;5 Tifi s ’ (10)
Lot '2"' }"1;“1:.!'+1
1
. 1 o _2"" hﬂlﬂ,".[.]_
— YaUy_1,j+41 T 14-2v3—Ya 1 Uy,i+1
1 2 hﬂ?“ﬂ;}'+1
=y tiy_1,4-+ (1 —2ya)Un,;+ Ve Unss, s+ Yaltas, 41 ; (11)

1+-]2"-_' hﬂhﬂ:!+1

The difference equation at the discontinuous point with the truncation error O (A’
+42) can be obtained from the viewpoint of the dummy point™.

In fact, we can approximate the discontinuous condition (b) with the following
equation

LA iz

P (u}1+1.1+1 = “Nl-lrﬁl) 3 E (’H-Nl+1;5+1 = u;n—l j+1) (12)

where u}, 41 41 is the value of u at the dummy point (#:+5y, ( i+1)7), and Uy, _y,541 18

the value of ¥ at the dummy point (@s—ha, (j+1)7),
To avoid the value at the dummy points in(12), we must establish supplementary

equations at the points (2:—0, (j+1)7) and(#:+0, (j+1)v)by means of the Crank-
Nicolson equations and the following conditions

UN,—0,541= UN 40, §+1 = YN, 541,

UN,—0,§ = UN, 40,7 = UN,, 5.
Then, %, .1 441 and u¥,_1 4, are obtained explicitly from the supplementary equations:

1
'u’;"t+1.j+1= —UN, -155+1 | (7 +2)uﬂuf+1
1
1 *
— UN 1,1 ( 2 Unysd— Un 41,45 (13)
Y1
+ i3 1 1 | 2
CUNi-1,441= T UN 2,541 e Uy i+
2
" 1 |
~UN,—1,3 ('}' z)uﬂl,_f—uﬂ,.;..j_,j_ : (14)
2

Substituting (18) and (14) into (12), we have

-~ UN,—1,44+1 . I:( ;-1 +2) | fealiy ("‘1— o 2)] Unirie1 ﬁ:;:: UN 315441

2 kiha \ ya
1 (1 g\ e 1 o
5 { 'ul'ﬁ-id+ [( v1 2) : klhg ( Ya 2)] Upy 41 klh.‘] UN+1,1
4 u;?:+1:.f + :zj;i: u?i’:-l..f }: (15)
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where 4%, ., , and ¢%,_,,, can be obtained from (13) and (14), and when §=0, we take
their initial values a8 gy,.: and @y,-1 respectively. The nonlinear equations of the
problem are thus constructed in matrix form

e

A(UHI)UHlﬂF (.U.f-[-l): (16)
where
(;-1 1| 2 ﬂi,jq.l) _1
1
1 ('7_1 +2) |
1
=5 (-;1-+2) il |
1 Falty
AU ;1) = -1 S Th ‘:
-1 (=+2) -1
Y2 ]
-1 (—-1— i3 =1
Ya
+ (&erea)
1 kaha { 1
=(—42)4+2 -2
Ai ( Y1 5 kj_hg( Y2 )”II
U?+1=(u'0:.i+1.r U, 441, """ UNiel, UNsisiadl, °7°% 'MN;H:L);
and
F(U;1)=BUHU;+QUjs1),
where
1 ,
(‘}’1 ' t‘::"':].Jrf) 1 \
1
1 — -2 1
( Y1
1 1 1 koh
B(U;) = 9 E‘dﬂ 9 fﬂjﬁ: ’
) 1
1 (%——2) 1
1. }
\ 1 ( Ya 2 ﬂ’;nm)
and

QW) = [~ BustBuirs), 0, =, 0, 5 thuss.

phala s ), 0, 0, (BastBase) ],
k1fig .
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where

4= (5 2)+ (5 —2)

1 ' 1
1—§h111Jj+1 1_-§ hﬂlﬂ;;f-i-l
Q1,541 il ) 02,541~ 1 ’
§ 2 hl?hjdjq,j_ 1+E hﬂhﬂ:j+1
V1.5 A
| B11J+1 o hj]: e 3 39:§+1 2 bf e -
1 +*2-- h1}.1,j+1 1+§ hﬂhﬂ;5+1

3. Solution of the Nonlinear Difference Equations

Beoause the boundary conditions are nonlinear, the difference equations obtained
are also nonlinear. And to solve this kind of nonlinear equations an iterative method
will be applied as a rule in the following steps:

(D Given an initial vector of the solution u, calculate the coefficient terms and
the right-side terms of the equations, which are nonlinear functions of u.

@ Solve the equations by means of the modified Gaussian elimination method.

@ Oheck if the required error of the two successive solutions ig satisfied. If not, go
to step (1) to repeat the above process. If the process is convergent and the error can

be satisfied, then the solution is obtained. |
Wo can see that such an algorithm costs much computing time because the linear

equations are solved always during the iterative process. In order to reduce the com-
puting effort, we give two algorithms according to the sole appearance of the nonlinear
terms in the firgt and the last of the difference equations,.

For simplicity we rewrite equation (16) as

AN+1XN+1 . FN+1, (17-)
where
bo Co o fo
a4 by C1 7] g
Aygaa=| -, , Xwyup=[ ! || Fra=
GN-1 by-1 Cy-1 Py-1 Fr-1
. ay by g f N

Here Ayy1, Xxs18nd Fy,q are oqual to A(Uyy1), Usyr and F(U,;;1) in equation
(18), respectively. By equation(16), be and by in Ay, are related to X y.1; 80 are fy
and fx, |
8.1. The mixed algorithm

For the convenience of investigation assume that the last equabion in equation
(17) is nonlinear. Qur algorithm ig described as follows. -

Let
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where Ay is an N x N matrix obtained by deleting the last row and column {rom
-A-H +1; and

fuN=(UI 0; ser, (}’ {IN),

uy=—=(0, 0, ---, 0, Cy_1)",

Xy= (%o, ¥1, *, Tn_1)",

Fy={fo, f1, ==, fv-1)".
By [3], we have

~1 4 A7 ey vr- A5 ¥y
Oy Ly
_1 .
.A.N+1_ _ "HN'-AE':L —1_" i
| iy Ky
where - ay=by—oyAz'uy,
Then we have
Xy Xy f aipygr e X Zx
_ A-1 - . N Uy* Ay
Xvs1=Axirkyea ( L ) ( 0 ) by— Vndin ( it )’ (18)
whore
;=A§1FN, (19)
Zy=A3 uy, - ' (20)
Snbstituting vy =(0, 0, -+, 0, ay) into (18), we oblain
_ Xy f N—aNZy Ly
o ()i (M) =

where z* and zy are respectively the Nth components of X% and Zx,
Now weo may replace by and fy in (21) with by(@y, @wi1) and fy(ay, Tye). AN
iterative method can be constructed as follows,;

.X-E.??""U e (XN) _fH (:-'IEEF}, m.l:?fm-l?l =3 ﬂﬂm} J ( ZN ) (22)
o 0 by (@5, TY1) — @y .

where m=0, 1, 2, -+,

In the iterative process, the componenis «¥*7 and o3y’ can be solved from(22).
If the iteration is convergent gud the required error is satisfied, the rest of X w41, @4,
@y, *°+, Ty_1, 0an be oblained by (22). That is, the total solution X x.; is obtained.

The executive steps of our algorithm which only fakes the boundary condition
(4) as nonlinear may be summarized as follows. |

@ Calculate Xy and Zy in (19) and (20) by use of the modified Gaussian
slimination method.

@) Caleulate by and fy which contain the nonlinear ferms.

@ Evaluate «{"*? and «F4Y by (22).

@ Check if the required error of the two successive iterative solutions is satisfied.
If not, go to step (@; otherwise use (22) again to geb gD gntD .. 2D and thus
obtain the required solution X y.1.

We see that only two nonlinear equations have to be solved in the above iferative
process. Hence a great amount of computing time 1 saved.
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When the boundary conditions (3) and (4) are both nonlinear, the first and the
last equations in (17) are nonlinear. Cutting off the first and the last rows and
columns from Ay,;, we get an (N —1) X (N —1) matrix Ay.;. Similarly for X%_, and
Zy-1. Xy and Zy can be obtained recurrently by means of the following formulas

oy, )42, 2

N
X;'r._]_ bﬂ —Cp%y

€1 )
L bn — Cod1 ( Z N1 ) . (24)
where @7 and 2; are the first components of Xy_; and Zy_; respectively.
Finally, using (21) we obtain Xy, 4.
(23) and (24) can be obtained similarly to (21). The algorithm in this case is
similar to the above description; we will not repeat it.
3.2. The new modifled Gaussian elimination method

We rewrite (17)as

s 20 1 o (25)
bu E-'ﬂ

Ty = Ai;kmD+Bl:Rmk+1 +-D1.:i‘h k — 11 2: b N = 1.1- (26)

2 ona (27)

Ty = E’mﬂ-i'l‘ B

Let A1,0’=1, Bi,n=D1,u=0. Then we have

A @A, 51
1:% b?ﬁ—!_ﬂkBl;k-l z
By = < k=12, «:, N1, (28)

bpt+ayBi,y1

D __fk—ﬂkﬂi,,k-i
e by +ayBi,x-1 °

The set of N —2 equations in (17) can be denoted by
%=Aﬂ;kw1+32:kmk+1+1)ﬂ‘:k; k=2: 3: Y Nﬂ'l. (29)

Iﬂt .A.gj1=1, BQJ1=.DQJ1ﬁ0. Then

Aﬂ " Gk‘AﬂJk—i
: by +apBa,y.1

By, = e , k=28, ., N~1 30
Ejk bi’ﬁ ﬂk‘Bﬂ'Jkﬂ'i : ( )

Dy ;.= - @ g,5--1
’ by+axBayy-1 ’

Now we combine the last equations of (26) and (29) with (25) and (27):

[ o= — 22 o, 4 Jo
0 | bu 1 bﬂ A
mN-_-IﬁAIJN‘“l% = Bl;ﬂ—lmﬂ' i ot DIJN"JJ (31)

y

Ty_q1= -Aﬂ: N—1&1 T BB,N-:L‘-'FN ""Dﬂ; N-~1,

It “x X -+ X
e N-1
by by’

L
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where As,p, Biy, Dy, Asy, Bay and Dy (B=1, 2, -, N-1) may also be
deduced from (28) and (80). Next we geob @, 1, #y_1 and zy. Substituting them inio
(26) and (29), we obtain the solution X y,,. Because the calculation of the nonlinear
terms fo, fv, @ and by are restricted in (81), the computing process ig greatly sim-
plified and the computing time is saved. In application of this method to solving (17)

A, and B, (4=1, 2) are only calculated once in the process because they are inde-
pendent of the time inorement.

4. The Stability of the Algorithm

We now disouss the stability of (26), (28), (29) and (30).
From (17) we have

ray=—1 (k=1, 2, «--, N),
=l (k=0, 1, v, N, bV,
R
Ny k]_hﬂ 2
.:1%——5_2 (k=11 2: " Nl_l)’
1
b, =
1 ’ %‘I"g (}F=N1+1x T N—l), (32)
2
bﬂm( il -2 a1,5+1 )J
b;ﬁ“‘“%’ﬁh
1
LbH=(—§;+2_ﬂ2’j+1)

Substituting (32) into (28) we have

Alﬂﬁ—l
Azy= (%+2)—Bi,;;_1 ;
B 1 _{71_. k=1, 2, -+, N;—1,
v (%4—2)—31;&—1 7T va, b=Ny+1, -, N—1

‘ e le'—Di;k—l _

Dy, (%_1_2)_31,1:_1 ’

kol
Bi,y, = i i }ggfi_lhﬂ . .
4 [( Y1 +2) " b ('}"'2 { 2)]_'8111‘71-1

Since Bi,0=0, v1>>0, v2>>0, we have, by induction,
O{Bi_,;;{l, k=1, 2, el N—“l_
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A1+ 84,,5-1

I-ﬂt A-l‘,k—!- E.d.”k o 1 --
(*- +2) — By p-1
Y
Then | 8.4,,%] = 7 e < | eapu-1],
(—+2) _Blji"ﬁ-—'l
0 4
Similarly,
1 1
Isﬂulﬁl e 1 1 -
—+2) — (By,5-1+88,1-1) —+2)—B1,51
Y Y
ERysu—-1
= . < l €B, k-1
1 1 1» »
[(;"“2) """ (Bl.ﬂﬁ—-l 1 SB;:E—I) ] [(;4—2) -_Bilk-l]
€D,y k—
8D,k 1 e < I EDy k-1,
( 5 2) —Biu-1

Hence (28) ig stable, and so is (30).

‘The above results are due to restrictions on Ay, A; or 71, 7 at the discontinuous
point,

Now we can prove that (26) and (29) are stable,

In fact, since Ay,6=1, By,0=0 we have

Further, we have

A1J1+B1J1_ _?_7 {:1: 7:)0.

Then induction leads to

A By Aypatl ; A <1
(;-4—2) — By,x-1 (-17 +2) —B1,x-1
Similarly, )
Ag,-+Ba,p<<1,

Hence (26) and (29) are stable.

The algorithms presented have been applied to actual caloulation with satisfao-
tory result. The second algorithm may be applied also to the case that the difference
equations contfain several nonlinear equations at the top and botiom.
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