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Abstract

In this paper we discuss the estimation for solutions of the ili~posed Cauchy problems of the
following differential equation |
S~ A@Wu® +N Bu, Vie 0, 1),
where A(t) is a p. 4. o. (pseudo—differential operator (s))of order 1 or 2, N (t)is a uniformly bounded
H—H linear operator. It is proved that if the symbol of the principal part of A4 (1) satisfies certain
algebraic conditions, two estimates for the solution %(#) hold. One is similar to the estimate for apaly-

tic functions in the Three—cirele Theorem of Hadamard. Another is the egtimate of the growth rate of
lu(t) [when 4(1)u(1) € H.

Introduction

In this paper we will discuss the estimation for solutions of the Cauchy problems
of the differential equation

%Q=A(t)u(t)+ﬂf(t)u(ﬁ), Vi€ (0, 1), (1)

with the prescribed «(0) =u,, where u(¥) =u(Z, )is a n~dimensional vector function,
z€ R™, A(¢) is'a p. d. 0. dependent on the parameter ¢, N () is a uniformly (respec-
tively 1o ) bounded linear operator H—>H _ 'Thig Cauchy problem in general is not
well-posed. |

The simplest examples are the Cauchy problem of the Uanchy-Riemann equa-
tions and that of the backward heat equation. The estimate of solutions of the Cauchy
problem of the Laplace equation was obtained by M. M. Lavrentiev!, The sama
estimate for the Cauchy—-Riemann equations, the backward heat equation and that of
(1), in which 4 ig a differential operator with constant coefficients salisfying certain
conditions were obtained in [2, 3, 4], This estimate can be represented in the form

|C8) | e[ (0) [*Flu (D) [, (2)

where ¢ is a constant independent of « (¢) _
The estimate (2) is significant in the investigation of approximate methods for
solving the ill-posed Cauchy problems, In [4] the author discussed the difference

* Beceived SBeptember 30, 1982,
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schemes for solving (1), in which the differential operator 4 has constant coofficients.
Considering the estimate (2), we gave an appropriate definition of stability, and
proved the theorem of equivalence between convergence and stability for the consistent
and commutative (with 4) difference schemes. In [10] the finite element method for
solving the Cauchy problems of the Laplace equation was discussed. So in order to
investigate the approximate methods for (1) in the general case, it ig important to
establish the estimate of the solutions, similar io (2).

When m=1 and 4 ig a first order differential operaior whose coefficient matrix is
variable and of simple structure, similar estimate was obtained by the author in terms

of the Three-line Theorem™ Tt is very like the Three—circle Theorem of Hadamard.
This estimate can be written in the form

[u(®) | <C max {Ju(©@ [0 jug e}, 3)
where §;(#)are increasing functions of ¢, satisfying 6;(0) =0 and 8, (1) =1, If (u(1),

%(1))’ m—a(%(u(t), % (%)) |¢=1 exists, then the growth rate of |2c(#) | can be estimated
by

() | <e*u(0) hexwa, ' @

where K (u(1)) =c"(u(1), u(l))’/ (u(1), 2(1)). ¢, ¢* and ¢™ are all constant,
independent of «(¢),

In [5], the-author discussed the second order ordinary differential inequalities
and obtained two estimates for the solutions. One of them is an exbension of the
Inequality for cenvex funoctions. These two inequalities play an important role in the
estimation of the solutions of ill-posed Cauchy problems. We shall reformnlate the
lemma about these two inequalities (in section 2) and use them to prove the main
theorems of this paper. Uging the same Inequalities, 8. Agmon and L. Nirenberg™
obtain the estimation for solutions of abstract differential equations in a Hilbert
space. In [7] estimation of this type was also discussed. Many results about estimation
for solutions of ill-posed problems in P. D. E. are outlined in [8],

The aim of this paper is to estimate the solutions of (1), in which A(#)is a first
order or second order p. d. 0., We shall prove that estimates similar o (8) and (4)
are also valid for the solutions of (1), when the symbol of the principal part of A(z)
satisfies cerfain easily verified algebraic conditions. As mentioned above, the estimate
(3) is meaningful to approximate methods, this paper can be considered as a prepara-
tion for the discussion of approximate methods of ill-posed problem (1) |

This paper is divided into two parts. Part 1 is devoted to the case of first order
p. d. 0., First, we review briefly some theorems about p. d. o., Then we formulate
some lemmas, which are used in the proof of the main theorems of thig paper. - (ne
of them is on the second order ordinary diff erential inequalities. The others describe
truncators and quasi~inverses. Finally we derive the estimates for solutions of (1).
In part II we discuss the case, in which A (1) is of second order.

§ 1. Pseudo-Differential Operators

In this section we first recall the definition of p. d. 0. on vector-valued functions
u(w) and seme theorems about them, according to [9]... - - .
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. Let «(#) be a n—dimensional vector function, defined on B™. Its Fourier tra.nsform
is denoted by

(& = @m) F [ e tu(a)da,

The norm]-|,

()= [+ 1€1%)0 a7 2.

H,, as usual, is the Hilbert space with the norm |«|,.
| Lot p={u(x) ulx) € H,, Vs},

and % be the set of all linear operators L. g—>g,

Definition 1. If LE€.¥, and for each s there erists a constant ¢, such that

| [:M”#gﬂsnuﬂﬂn VHE@,
then L ts called an operator of order r.

Since @ is dense everywhere in H,, for every r—th order operator L there exists a
unique extension, which is a linear operator H,, ,—~H, For convenience we denote
‘this extension by the same notation I, Hence in this paper a r-th order operator L
i8 considered also as a linear operator H, ,—>H,,

Now we consider operators L(¢) dependent on parameter ¢,

Definition 2. Let L(#). [0, 1)—=>.%, if for each s there exists a constant ¢,

- endependent of t, such that |

j "L(t)u”sﬁasﬂunwn VME@ and t€ [0, 1): (11)
then L(t)is called a uniformly bounded (on [0, 1)) operator of order .

| We denote the set of all uniformly bounded operaiors of order r and the set of
all uniformly bounded (on[0, 1)) linear operators H,.,—»H, respectively by #" and

F(H,,,—~»H,) Obviowly F'c¥(H, —~H,).

Let a,(t, =, £) be an infinitely differentiable (with respect to and £) (nxn)
matrix, defined on ([0, 1) X B™ x (R™\(|£|=0))), and possessing the following
- properties, |
| (1) a(t, =, £) is positive homogeneous of degree zero in &, i. e.

a(t, z, v6) =a(3, ©, ), Vy>0,
(2) There exists the 1111:11{; Hm (¢, o, £) =a;,(¢, oo, £).

x| —o

(8) For any non—negatwe integer r and index a= (a1, -+, &), 8=(B1, -, Bl
A+ 2| D8 (a2, =, &) —a(t, o, £))—0 as |z]—>o0, - 1.2)
aniformly on {f& {0, 1), |&]| =1}, where |

DG=DTI'-'D§IH; aﬂza’fh"agﬂl} g = .q,.," ai 3f=.—3—.

o&;
¥
Now we consider the power series of |£| with such (¢, =, §) as coeflicients
a(t;, o, ) =D al, =, £ €], (1.8)

whore N is any non-negative integer number,
We denote the set of all such a(¢, z, £)by {8}, and {§% ={a(t, , £); N=0in
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expression (1.3) of a}, {Si}={a(t, =, &) :méaﬁ—m{t, x, £) €E{85}},
(D8} ={aG, o, §) €{S}:all a,(t, =, §) ave diagonal}, {DS:} = {8} N{DS},
Lot £(|£€]) be a ¢ non-negative function satisfying (((€]) =0 for (€| %%— ﬂl‘.‘.l-&_:

{(i£])=11for |{|>1,
. Wae define p. d. 0. according to [9],

Definition 3. For every a(t, », &) €E{S}, the . d. 0. A@)={(|D))a(t, z, D)
i8 de ﬁmd as _fouows , S

ADu© = @07 (e (€)at, o, Hu@dn, (1.4)

Y el i LB I | ~
ADu© =L(ED e, o0, T+ E |7, £-n, TN,  1.0)

where a’(t, n, &) is the Fourier transform of @' (t, o, £)=a(t, ©, ) —a(t, oo, §) with
respect to z, a(t, z, £)1is called symbol of A(2)

In [9] p. d. o. are defined for more generel a(Z, z, £), Buib in our paper we
consider only the case, in which a(Z, #, §) has only finite number of terms in the

expression (1.3},
Definition 4. For every a(2, =z, §) & {8}, the operator A™(t) is defined by

ASTuE) =LUED" ¢, o0, HTE) + @) [ &, n—&, ML tmdn, (1.5)

where a* (I, oo, &) and o™ (¢, x, £) are the conjugate iransposss of a(f, oo, &) and

a'{t, », &) respecitvsly,
The operator 4™ (¢) is the formal adjoint of A(2), i. e

(AMu, v) = (u, Av), Yu, vE€p, (1.6)
Using (1.4"), (1.5) we can easily verify that

@Fu(g), 5E)) = @), 4v (£), Vu, vCp,

from which (1.6) is obfained directly.
Obviously, if A is an operator of order r, A" is also an operator of order 7. |
When a(¢, z, &) € {81}, due to the uniform convergence property (1.2), there

exists the Iimit

fim At +dt)u() ~ A(ﬂ”@) _hm(ggr)_'f[ -imfg(!él)

At-+0 i 1 At-0

_g a;{t+ 45, =, ?ﬁ-—a;(t, x, &) £ u(z) do

~ @) F [ (END L al, o, £ €1 u@)de
= (7(1D)2-ats, 2, D) Juc®.

Thig¢ means that the operator A’ (%) =1i1:?]I At A?t —A(t)
Ji—=

exisls, and is a p.d. 0. with
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the symbol % a(t, o, £),

Theorem 1.1. The p. d. o. A() with the symbol a (2, z, &) € {8} having expression
(1.8) is @ uniformly bounded (on[0, 1)) operator of order r, ¢. 6. A(t) € F", where r
is the power index of first term in ewpression (1.8) of a(t, z, £).

We denote the set of all such p. d. o. uniformly bounded (on[0, 1)), having
gymbols a(f, =, £) € {S}by .¥;. And analogously denote corresponding sels of p. d. o.
by ZL, Ph Lo Ly -~ Ohviomnly Y3, CHFICHICFT, L] and
ADeZX I TABD XL,

Theorem 1.2. Let A(t) Eﬁf"” have the symbol a(3, z, £) and ALY () be a p. d. o.
with the symbol

a2, = 3 2 pora, 5, 0,

then A™(t) — AP (¢) € Fr—e1,

- It is clear that AP ($) € F:. Sinoce a(t, , £)is a power series of |£|, substituting
the corresponding power series for ¢*(¢, #, £) into the sum for &{” (¢, #, £) and then
differentiating, we obtain for .’ (i, #, &) the finite power semes uf ]§| having the

same form of (1.8) whose first term is of |£]",

Theorem 1.8. Let A(}) € ¥7® B(}) € FT® have symbols a(t, «, §) and 6(t, , £)
respectively, Py (t) and @ () be the p. d. o. with the symbols

nt, 3, &)= 3 = Draqs, o, OB, o, £),

at, 7, ©= 3 LD DG, 5, HF, o, 6)

respectively, then the apemﬁm's A(t)B(@) — 2 P.(), B@A(t) — g: Q.(t) and

=1

(A@) B(y—B®HAG)) - 2 (Pu(t) —Qx(?)) all belong to L P 7e,

1% is clear that Py ($) G.‘Z? rrr®—% and @, (F) € L [@Frib=k

The proofs of Theorems 1.1, 1.2, 1.3 are omitted.

In [9], the p. d. 0. for scalar functions a(z, £) are discussed. Here we discuss
the p. d. o. for matrix functions a(f, z, £) dependent on the parameter £, The proofs
of Theorem 1, Theorem 2(ii) and Lemma 5.1 of [9] can be transcribed over to the
corresponding Theorems 1.1, 1.2, 1.3 without any difficulties.

§ 2. Lemmas

.

In this section we present some lemmas, The first two lemmas are often used in
estimating the solutions of ill-posed problem (1), The lasi two lemmas are related

to truncators and quasi—inverses,
Lemma 2.1. Let ¢(t) be o twice differentiable function on[0, 1], f(¢)and A(Z) De
measurable funcitons in this interval, satisfying

ees sup| f(?) | <const M, esssup h(®) | <M,
0,1)

g {0,1)
If g(t) salisfies g' (O =f(@)g &) +h(D) a. 6. wn (0, 1),
then g(t)ﬁgiiag{(lﬁﬁi(ﬁ))y@)+31(t)9(1)+Mﬂ}, Vie (0, 1), (2.1)
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and 9O <g©@+g @) | ¥ dny iy, vie o, 1, 2.2)

whore My = G oxp 2M, My= M oxp 2M, 8,(t) =1/ (1+7(8)), v2(8) = (¢ —e¥%) /(1 -
&), ya(t) = (e M —eX) /(1)

When M—0, we have that M;~>0 and 8,()—>t. Inequality (2.1) is reduced to
the inequality for convex functions.

The proof can be found in [5], A similar proof can be found also in [6].

Lot % (&) be a linear operator dependent on ¢, defined on D(#) with values in
a Hilbert space 5¢, D(%)is dense in

We denote by {¥'} the set of all y(2) possessing following properties.

(L) y® €0([0, 11; ) NO([0, 1) ; #)and H(H)y() €C([0, 1); ).

@ 2Re (y(8), ZE — B()y (1)) o= () |y (®) |2, (2.8)

where M,(t) is a bounded measurable function, ess sup | M,(t) | <const M,
(0, 1)

For convenience in lemma 2.2 (only) |+ | 5 and(-, ») s a0 abbreviated to |- || and
{oare
Lemma 2.2. If y(¢) €{¥}, the derivative % Re (y (%), Z@)y(t)) exists and

salisfies |
-57 Re(y(t), ZWy(t)) 2\ BH)y () |*— Msy @) || BBy (@) | — Melu®) |2, (2.4)
then l7(®) | <Mz max {Jy (0) >~y (1) [}, (2.5)

where 3;(t) are the Ffumctions defined in lemma 2.1,
Moreover, ¢f there exisis Z(1)y(1) € 5, then

|7 | <Ms]y(0) |exp{Ms[]| 2 L)y (D) | /1y @) |12} (2.6)

The constants M,, Mgy, My and M in the expression of 8;(1) depend only on the constants
M{.‘, Jlfﬁ and Mﬂ_

Proof. St b @®=Injy(5) |?
(= 2R, ZDYD) _ 2B Dy
— [ A (10 B L el

with initial value g(0) =4s(0), here cos = Iﬁ%{‘?ﬁﬁ” '%“g;(;;% t()iﬂ) . Then from (2.7)
and (2.4), we obtain

7' = @/lyD1 {-% Row (), BHy(®) |y(®) |

~Ro((®), ZDY(®) 4, v

=1/ y@ [ {4 BOy@® P |y@ 24| By @) |2|y(E) [ cos?8
—2Ms\ By (@) [y (@) [P—2My|y (@) |t~ M () g’ () |y () |4
=4|B(H)y(t) [*ein®8/ |y (@) |2 —2M,[| B (&) y (&) |sin28/ |y (8) |

+3 9 Doos 8] — (g (1) —2M,
>~ (Mscost+ Mo(8)) g’ (8) ~ (M o+ (M5/2)?sin?6),
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Hence from lemma 2.1 we have inequalities (2.1) and (2.2) with

M=max{M,+Ms, 2Ms+ (Ms/2)*

Using (2.7) and (2.8) we obtain [ ()
and (2.2) we have

V(2 <max {(1-8,(8) )¢ (0) + &, ()¢ (1)} + M, +2M,

—g(&) [<M, Consequently from (2.1)

i=1p 2

and Y@ <P(0) + [ (D) +My)e¥+ M.t

from which the desired estimates (2.8), (2.8) result with the eonstalits
Mi=oxp[M,(M,, M, Mq)+2M,],
M= exp{ Mg (M,, Ms, Me) +2M e¥],

Mg=-%-exp MM, M;, M),

In [5] the author used this method o prove the egtimates (2.5), (2.8) for the
case In which Z(¢) is a first order differential operator with variable coefficient in
one—dimensional «

Now we describe two lemmas about truncators and quasi-inverses.

Definition 5. 7'%e operators I'(K) and R(K) ars defined as follows

PR u(€) =t (|£))(E), R(E)u(€) = A—tx(|€] ) (), (2.8)

where K >0 43 g parameter, ig (|£]) is a non—negative C (B) function satisfying
(e (|£]) =1 for €| <K and te(|£])=0for [€|>K +1 T'(K)is called iruncator.

Obviously T(K) + R(K ) =I—the identity operator.

Lemma 2.8. Lot L) € %", then

(1) for any real p and 8, hold

ILOT(K)u| <O, | T(E)ul,-,, Yucop, (2.9)

and
"T(E)L(t)u”#‘got.r.p"u'”a-p; VHE??, (2.10}
where Oy, ,, , =UClripy, Copr,p= CsmorOirip), Clripy=max 1, [1+(K+1)7] _?E} , Os(and
Co..oer) 15 the consiant in (kL) |

(2) for any real p=8+1r, holds

IZ@®)R(E)ul,<C,(1+ KD T2 |R(K)u|,, Vuco. (2.11)

R 4l
Proof. Since |T(K)u(¢) | =0 for |£| =K +1, it follows that

ILOT (B)u <CNT (K ) uflor= O, | [+ [€]2) 72 [A+[€]%) T T (KTue)]

M

= ,
< an(f%p)” (1 + I‘ffﬂ) . T(E)”('f) | =Oa.r,pHT(K)””s—p-
Now set L(t)u=wv, then from the above extimate we obtain
| T(EYL()u|, = |T(K) 0] s SCran | T (K ) 0| 4mpor <Cpy | 0]
<Oes00s-prltif-p=0,., , }ul._,.

§—p=r

For (2) we have that |R(K Ju(€) | =0 for |¢!<K Hence for p==s-1r it follows
that |
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Ao,

ILORE) ul < O BE ulare = €] A+ [€]D ~ 2 [ FIEIDEREB ]|

B4 r— Br—p

p o
<CA+EH T |A+[¢1DEREu@) | 0,1+ KD T |RE )l
Lemma 2.4, Let A(2) € %) have the symbol a(t, x, &) satisfying |det a(¢, o, &) |
=const y>0 V all (¢, o, £), then for sufficiently large K there ewist the operators
AR € L0, Dy () € L(H—H) and L3 (8) € L1 such that
Dy () AP (@) A u=wu+ D g, (¢) L.y T (K)u, Yu€ H, (2.12)

Before the proof we note first that if the support of #(¢){|¢|>K +1}, then
the relation (2.12) is rednced 0 w= [D, () AP ()] A w. So the operator AEY (1)
=Dy (2) A" (2) is called the quasi-inverse of A(¢) in H

Proof. Under the condition of lemma, it is obvious that there exists & (2, T, &) w=
¢ (¢, z, £) € {8°}. So the p. d. 0. AV (¢) with the symbol b(¢, =, &) exists and
belongs 1o ¥ 2.,

Applying Theorem 1.8 (in this case Q,(¢)is the identity operator I) we have

L) =A@ AQR) —I= (AP AQR) - Q) €L,

From lemma 2.8 it results that
1 1
| L1, () BR(K v SOo(Lig-1y) 1+ K2 2| B(K)u| <O (1 + K I|u|, Yuco.

1
Since Cp(1 + K*) Z<1—s<1 for sufficiently large K, there exists in & (H—>H)the
operator

Do (8) = (I + Ly () R(K)) = S (= )} (L () B(K) )Y,

whose norm satisfies| Dz, (P) | ecpom <1/,
Now we have
Dy () AP (DA u= Dy 1) [+ Ly, () Ju
=Dy (#) {I+ Ly (@) [R(K) +T(K) T}u
= L+ Dz () L, ) T (K)Ju, Yuc H,

The lemma is proved,

§ 3. Estimation of Solutionsfor the Case of 1-st Order p. d. o.
This section deals with the estimation for solutions of the differential equation
o 2D 4Gy + N @ul), VEE (O, 1) (3.1)

with first order p. d. 0. A(¢) €%}, where N(t) €L (H—H), u(@®)=u(t, 2) is a
n~dimensional vector funection_

We denote by {F1} the set of all solutions of (8.1), which belong to C([0, 1];
H) nc (o, 1); ) NC([0, 1); Hy),

Now we make the following hypothesis.

Hypothesis 1, - ~.

(1) The symbol ao(t, =, &) |£]|of A(t) belongs to {S§}.

(2) The (nxn) mairix ao(, #, &) which is positive homogeneous of degree zero
in ¢, is uniformly diagonalizable. This means that there exists a (m X n) matrix
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p(t, #, ) €{S7}, which is positive homogeneous of degree zero in ¢, uniformly
nonsingular and consisting of the left eigenvectors of a0 (¢, =, £), i. e.

|det p(t, =, £) |=const v>0, V all (¢, =, £),
and ‘ (¢, @, ao(t, z, £) =J (¢, =, &)p(t, @, &),
where J (2, #, £) € {DS7} is a diagonal matrix consisting of the eigenvalues A, (i, z, £)

of ao(Z, =, £). |
(3) Indices (§=1, 2, +-«, 1) can be divided into two groups {I;) and {I;} such

that
Re M,(%, 2, £)=0, Vi€ {I,}
and |Re A (2, =z, fj | =comst v, >0, V€ {I,} and all (¢, », &),

(4) In the interval (0,1), N’ (t) =lim Y I+ =N ity and belongs to

4¢-»0 At

Y(H—H), - o |

We make some remarks about this hypothesis. Condition (1) does not resbrict the
generality. If A(¢) has symbol a(t, =, &) € {S.}, we can take the principal part of
A(2) with the symbol ao(¢, =, &) |£] € {S?} as the new A (%), and the rest of A(t) can
be included in the new N (¢}, Condition (2) means that there exist n simple charac-
teristic combinations »(¢) = P(f)u(¢), where P (%) is a p. d. 0. of order zero with the
symbol p(4, , £). In the appendix of Part IT we shall indicate that if the eigenvalues
of ao(¢, @, &) are distinet and J (¢, @, £) € {DS{}, then such p(t, o, £) € {87} exists,
Oondition (8) means that for the equation (3.1)there exists no characberistic combina-
tion having mixed type character. Some of these characteristic combinations,
corresponding o {I:}, have hyperbolic character, the others, corresponding to {I,},

have nondegoenerate elliptic character.
Theorem 3.1. Suppose that hypothesis I holds, then

[e(t) | <M max {Ju(0) "< [u(l) |*©}, Vu(s) € {V1}. (3.2)

Moreover, if u(1) € H,, then | |
() | < M5° | (0) [exp{ M [ (L) 1/ (1) |12} - (3.3)
Here 8,(t) are the functions defined in lemma 2.1, the constants ML, M 57, ML and M

in the expression of d,(¢)are independent of u(t),
Proof. We first diagonalize equation (3.1) and then put it in the case discnssed

in lemma 2.2,

Since the condifion I (2) is satisfied, there exists p*(3, 2z, £) € {8}  Let Py,
PR(), E(), Hx(t) and H;(t) be the p. d. o. with the symbols p(¢, z, £),
P, 2, £), J(¢, 2, )], ReJ (s, o, £)|€| and /=1 Im J (4, 2, £)|€| respec-
tively. Then P(?) and PP (z) belong to £, H(t), Ex(t) and E; (£) belong to ¥l
Their derivatives P’(¢) and H (¢), Ey(t) with the symbols -g—t-p (¢, #, £) and
Re—%—J(t, 5 &1&l, =1 Im.g_ J(t, =, £)|&] belong to Z% and L3 respec-

tively. According o lemma 2.4, there exist for sufficiently large K the operators
D(E) (f) e ..g?(H'—}H) and Lf_..l) (t) eng:?—-l such that

Dz (t) P2 () P ($)u=u+ Dx () Ly ) T(K)u, YVuEH , (3.4)
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where Dg, () P (%) is the quasi-inverse of P(¥) in H,
" Now let ©u(?) € {V'1} and set

P(u(s) =o(0), T(K)u@) =w(d). (3.5)
Then
D) o () A(Byu(t) + [P N (@) + P/ ($)]u(®)
=E@)PDu@)+{[PE)AE) —E@)P({)]
+ PN (@) + P ()1} [Dy (3) POV () P () u(t)
— Dy () Ly T (K)u(t)],
o) _ 1 (5 2D (&) L4y +N (9]
* [Dix, (3) P D) PE)u(t) — Dy (8) Ly YT (KD u(t)],
Therefors
WD) e (B (1) + Be))0() + V13 (D0 () + Naa(®w(2), (3.8)
IO ANOTIOES PRGLION (3.7)
where Ny (&) ={[POAG® —-E@OP@®]+[PON)

+P' ()1} Doy () P2 (),

Nio(@)=— {1 Digy () L1, (1),
Ny 1) =T(E)[A® +N ()] Duw (1) P72 (),
Nas(t)=-T(K)[A{) + N ()1 Dy () L1y (B). |
It follows frﬂm lemma 2.3 that Ny ,(t) € ¥(H—H), Taking p=1 and applying
theorem 1.3 we obtain that E(®)P(#) — RGP € ¥ %and P() A(t) -R(3) € ¥° where
R(t) is a p. d. 0. with the symbol J (¢, », &) |&|p(t, 2, £) =p(, o, Ha(t, », £) [€].
Hence P(D AW —~E(@)PG) € ¥°c ¥ (H—H), Since P(t), PV (2), P'(¢) and N (¢)
all belong to Z°, L_,(#) € F -1, Du(t) €E¥X (H—> H), ib ig eagily veritied that
N1,(2) E-‘f’(ﬂ—*ﬂ)

The gystem (3.8), (3.7) is diagonalized. Now we put it in the case of lemma
2.2,

Set v () ( Er(t) Onxn )
£) = , HB(t)= :
y( ) ( W(t) ) ( ) gnxn ann
In this case y(¢) =y (%, #)is a 2n—dimengional vector,
H=HxH, D(H)=x#—=H,xH,,
We have to verify the conditions (2.8) and (2.4). Let ¢, =, £) be a (nXn)
diagonal matrix with the elements on the diagonal
| for j€{I
ﬂg'ﬂ (ﬁ} 2, g) - { 0, 10T J E{ 1}: .
1/Re &4(t, @, &), for jE€{1s}.
Obviously, ¢,(¢, z, £) € {DS} is positive homogeneous of degree z'ero in &£, Set

alt, o, ©)=2G 28 S\ (—1)Do(Re T (¢, 5, &) [€]) €{DSL,

€] =1
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0t 5, =280 S (VDD ReIG, 0, &) [€)) A, 0, £1)

~D*(Im J (3, =, Y€ (Re S, 2, ) 1E]D] € {D§},

vt 0, =220 R D (7, 4, 8)1¢]) € (DS,

It is easily verified that ert, o, €) is positive homcrgenenus of degree (—1) in &
6c (¢, ©, £) and ep (¢, 2, €) are positive homogeneous of degree zero in £ Therefore
B (t) € L5, Bo(t) € s, and Ep(t) € L., whers Hr(t), Eo(tyand By (t) are the

p- d. 0. with the symbols ey, (¢, z, &), et z, £) and 6p(t, ©, £) regpectively,
Lot

N (t) =B (1) + B, (t), (3.9)

- Np(2) =By () —~Hp(t) Br(t), | (3.10)

No(®) =ER () Br(5) + B (£) By (8) — Eo () Bx(t), (3.11)
Ny () =B () — (Br(t) + Br(8) Bn(t)). (3.12)

Taking p=1 and 2pplying theorem 1.2 for &, (t) we obtain
B () —ER@) € #r1-t g1

Taking p=1 and applying theorem 1.8 for Hr(t) and Er'(t), we obtain that the
difference between %, (¢) Ez(¢) and the P. d. 0. with the symbol 2 (—1) D% (Re
i =1

J(¢t, z, &) & | ) belongs to & Al #-1 And B3 () — Ep(t) just has the symbol
2 (=)D (Re J (1, a, &) 1€]). Finally we have Neny(@) =(EPE -ER )]

les| =1

+{[BR @ —Er(t)] - E, (O E()} € ¥ Analogously, applying theorems 1.2 and
1.3 we can verify that N,(t), Np(t)and No(z)belong to L'C ¥ (H—->H).
Now we estimaie

2Re(y(®), ML~ F)y(0))g=2 Ro{(6(2), 15, (t)0(t)
T, Fa@v® +Fa Hw©) + @), Mo 1(0)o(t) + Nas(yw(e))
=2 Re{(v (#)r%' Nr(#®)v(@) + (v (), Ny, 1 () v (t) + N1, 2B w(z))

+ (w(?), N1 v (2) +Na,a()w(t))} =M, O ly@® |3,

Bince N, (1) € & (H—> H) and A, () €& (H—>H), we have the estimate
| M4 (2) | <const M4, where the constant M4 depends only on A(t)and N (1),
In addition, from (3.10), (8.12) and (3.11) we have

= Ro(y (), By (1)) em 2 Ro(@(®, Ba(®)o(s))

ﬂRe{(@(t), Er () () ( d’;f), Eﬂ(t)w(t))+ v(8), Br(t) dfif))}

=Re{(v(t), (Bo(t) Br(®) TNp()v(8)) + ((Be(t) + 1, (£) +N1,1(8) v (£)
+ Ny, 2(Dw(?), Er(H)v(8)) + (BP B)e (@), (Be(t)
FE @)+ N1, ()v(®) + Ny 2 (D) w(t))) |
= Re{ [ (#pv, Hrpv) + (v, ¥ p?¥)] + [(Fro, Hrv) + (&, Hrv)
+ (N3, 10+ N1, g0, Eew)] + ((ER—I—ELER—I-N{_D)W, (Ey B+ Ny, ) v+ Ny, w)}
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R —T

=Reo{2(Exv, Ezv) + (B E;+ E{¥Ep)v, v)
+2(Ny 1w+ Ny w, Egv) + (Elgy, (Ep+Ep)v)
4 (Bpw, Erv) 4+ (BpEgv, Ny 19+ N1, 20)
+ (N, (Be+Bi+Ny)v+Nyw)+ (v, Npv)}
=Re{2(Frv, Hpv)+ ((EcEr+Ng)v, v)
+2(Ny v+ Ny 2w, Egv) + (Ery, B (Ep+Ep)v)
+ (B, Eav)+ (B +E) N gy, 9) |
+ (Neeyv, Np 190+ N3 ow) + (BrHpy, Ny 19+ Ny, 0w) + (v, Npv)}
=Ro{2(Erv, Erv)+ (Egv, (Be+EP (BEr+Er) +Ep)v+2(Ny, 10+ Ny aw))
+ [(Nog+ (BP+EDN o+ Ny v, v)
+ ((Nepy+E En)w, N1 19+ N4 w)]}
=2 Bao|*+ M5 (2) | Brv|| (| 0]+ [] Y2+ Mo (t) (|2]*+ Jao})
=2 B @Dy (&) |+ M) | BBy |y (@) [t Mo (E) () | 2.
Since Fr and F,{(also E%’ and E{M belong to £, Hq, Ep(also H; and Ej), Ne and
N belong to #°, N;(t) E¥X (H—>H), E, (also EY’) and Ny, belong to &, we
have that B’ (Eg+ H;), Ei+EY (Be+Hy) +Ep, (B’ +Ey”)Ny and H Ep belong

to FR (H—}H)_ Oumequenﬂy Nﬂ + (E}?} 4= .EE-*J) N{_l}_l_Nﬂ and ELER‘I‘N(_;L)
belong to ¥ *.¥ (H-—>H), Finally we have the estimates

| M5(2) | <M, |Me(t) | <M,

where My and M, are constants dependent only on A(¢) and N (¢), Thus we proved
that (2.8)and (2.4)hold. Then from lemma 2.2 it follows that

5@ L= (o) [+ |00 |9 F< M max {[y(0) [ |y (D) [§

= Mymax {[(|9(0) |2+ Ja(0) 2 2114

(v |2 + fw (D) %) F12} (3.13)

and
| () | o= ([ (&) |2+ [ () [ T My (0) | grexp {Mot| By (1) o/ Iy (D) | o}

— M, (o (0} + [ w(0) ) Fexp (Mot Ex (LoD |/ (o (D) |2+ fw (1) |9 7).
(3.14)

Mcresver, from (3.4) and (3.8) we have
|u(®) | <) Dy ) P2 (@) 2 (@) | 4 | Desy (8 Ly () w (8) | S M 10|20 () |+ Ja0(8) | )

1
= My (JP@u@) |+ 1T (R)u) | T <My u@ ). (8.15)
And |Er(D)v (1) || = Be(D P Dul) | < My]ul) .. (3.16)
Frem (3.18), (3.14), (38.15) and (3.168) we obtain the desired estimates (3.2) and
(3.3) with the constants M’ = M M M,y, MP =M M M, and MV =M MM,
These constants and constant M in the expression of 8,(¢) depend only on A4 (%)

(consequently its symbol ao(¢, #, £)) and N (), but not on u(?),
The theorem is thns proved,
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