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FINITE DIFFERENCE METHOD OF THE
BOUNDARY PROBLEMS FOR THE SYSTEMS
OF GENERALIZED SCHRODINGER TYPE”
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§ 1
The nonlinear Schridinger equation
u,_.—:i.u,,m+,8[u]”u=0 | (1)
and the nonlinear Schridinger system

thy — tlzg+ufaul®+Blv|?) =0, 2)

¥y~ Ve +v(aju|?+Blv|%) =0
of complex valued functions u and v often appear in the study of problems of physics.
These equaticng and systems may be regarded as the special cases of the system

ay = Atz + f (w) (3)

of real valued functions, where u(z, ) = (wa(e, t), *-, ya(x, t)) is8 & m—dimensional
vector valued unknown function, A is a m X m non-negatively definite and non—
singular constant matrix and f{u)= (fi(w), +-, fm(w)) I8 a m—dimensional vector
valued function of vector variable . The system (8) may be called the system of
generalized Schrodinger type. In [1, 2] the periodic boundary problem and the initial
value problem for the system of gemeralized Schriédinger type of higher order are
studied by the method of straight line and the method of Galérkin respectively. In:
[8] the first boundary value problem for the system (3) is discussed by use of the
fixed-point technigue and the method of integral estimations. There are many works
contribute to the finite difference method for solving the problems of Schrodinger
equations.

The purpose of this paper is to solve the boundary problems in rectangular
domain Qr= {0<<o <1, 0<{<<T} for the system (8) of generalized Schriodinger typse
by means of finite difference method. Assume that the boundary problems (#)take one
of the following boundary conditions, the first boundary condition

, u(0, t) =u(l, t) =0 (4)
the second boundary conditon
% (0, ¢) =u(l, £} =0 (5)
and the mixed boundary conditions
| u(0, ) =u:(l, 1) =0 (6)
or
ue (0, £y =u(l, £) =0, (7}
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The initial value condition is

u(z, 0) =), (8)
where ¢ (z) is a m~dimensional vector valued initial function, satisfying the appro—
priate boundary condition (#). We denote any given nne of boundary conditions (4),
(56), (8) or (7) by the symbol (*).

Let us divide the rectangular domain @Qp into small grids by the parallel lines
g=w; (j=0, 1, =, J) and i=t, (n=0, 1, -, N), where @;=jh, t,=nk, Jh=1l, Nk=
T(§=0, 1, >+, J;n=0, 1, ---, N). Denote the veotor valued discrete function on the
grid point (#;, ts) by 2;(j=0, 1, <=+, Jy =0, 1, -, N). Let us congtruoct the finite
difference system

n+1
Vg

fﬂ— 4 %' A 4_ v+, (3)»

where A,9,=2;,1—;, 4_v;=v;— ;-3 and f7*'=F(v}*"). The finite difference boundary
conditions are ag follows,

v =17=0; (4)
% — 0% =% — v]_1 =04 (B)a
vi=t— % 1 =0; (6)a
pt —f=23=0, (M)
where n=1, 2, «--, N. The initial condition ig as
vi=g; §=0,1, -, J, (8)a

where ;=@ (@) (=0, 1, -+, J) and @;=¢(0) (or ps-1=@()) in the case of boundary
condition 7 —%=0 (or 2% —2%_,=0). Hence the discrete function @;(j=0,1, », J)
also satisfies the boundary condition (*).

New we make the following assumptions for the system (38) of generalized
Sohrédinger type and the initial vector valued function p(x).

(I) A is a mXm non—negatively definite and non-singular consiant matrix.

(II) The m-dimensional vector valued function f(u) of the vector variable %
satisfies the condition of monotonicity

(u—w, ) ~f(@))<blu—o[? (9)
where b i a constant.

(III) The components of the m~dimensional vector valued initial function ¢ ()
are twice continuously differentiable in [0, 7]. Denote (&) € O®([0, 7]). And ¢(z)
satisfies the appropriate boundary condition (*). |

The scalar product of two vectors « and v is denoted by (u, v) and [u|?= (¥, w).

; of
For the discrete functions {u;} and {v;}, we have the symbols (», w)h=-§u yh and

|u)i= (u, %)a-
§ 2

The finite difference system (3), and the finite difference boundary conditions
(#), can be considered as the nonlinear system of unknown vectors ¥;7(4§=0, 1, ---,
J), where v1(§=0, 1, «-», J) are the known veclors. Now we are going %o prove the .
existence of the solutions v2*1(j=0, 1, ---, J)for the nonlinear system (3), and (*);.
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The following lemma is easily verified by direct calculation.
Lemma 1. Fﬂ?‘ and) {'H-j} C&‘nd {‘Uj} (j=0, 1, e J), ﬁh&‘r@ areé ﬁhﬂ rﬂlmtim

J—1 J . :

E ‘de.,.‘llj == *"'3_21 ’l?fﬁ_‘tﬁj — UaVo ‘g, (10)
J-1 il “
j=21 u;d.,.ﬁl_'v, == e E (d+u§) (Ayv;) — Uy ("Uj_ = "vo) +'H-J ("UJ = "UJ..:L) i (11)

Temma 2. Suppoese that the matriz A ond the vector valued Function F(w) satisfy
the conditions (I) and (1) respectively. When 1—2bk>0, the finite difference sysiem
(8)s and (*)a has a untque solution v5(§=0, 1, »-, Jin=1, 2, «, N). |

Proof. For any m~dimensional vector 2, (=0, 1, «-, J), let us construct m—
dimensional vectors ¥;(§=0, 1, «--, J) as follows

V;=W?+M”§'ﬂ_ﬂ+d—zﬁ+lkf(zﬁ): j=1, 2, «, J =1 (12)

and ¥, and ¥, are determined by the houndary consitions (*), where 0<<A<<1l. This
defines a mapping ¥V =T,z of m(J +1) _dimensional Euclidean space into itself, where
V={V, z=1{z}-

In order fo establish the existence of the solution for the monlinear sysiem (3)x
and (»);, it is suflicient o prove the uniform boundedness for all the possible fixed
point of the mapping with regpect to the parameler O<<A<1.

Making the scalar product of the veotor ¥, with the vector equation

V=i A4 o 4,4V 0k (7)) _ (13)
and summing up the resulting relations for j=1, 2, ---, J —1, We got
J—1 J—1 J =1 J—1
S wile- i, 7o -h g B Vo 444T D1 Z T STD. 9

From the formnlar (11) of Lemma 1, it can be verified that
J—1 J-1
> (Vs AA A V)= — E} (4+V 4, A4V )

=1
— Vo, AWV 1—Vo))+ s AW 3=V -1,
Since V', satisfies the boundary condition (#);, then we have

J—1 -]
E (Vs AN, 4 V)= — ; (A+Vf: Ad.V ) <0,

Using the assumption (II), the later part of the right-hand side of (14)

F 1

S @, ;TN <6+d B+ O P,

j=1
where 8>0. Hence it can be derived irom (14) that

-G +0R) B Vi< F 071 +2b L2 .

Suppose thab ¥ satisfies the inequality 1—2bk>0. We can take 8>0 so small thab
Jd—1 '
* 1—2(b+8)%>>0. Henoe 2 |V ,;|* is uniformly bounded with respect to the parameter
=1

0<A<1. Thus the solntion of the nonlinear system (8), and (), exisis.
Agsnme that {V,} and {V,} are two solutions of the monlinear system (3)» and
(#)». Then we have -
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k
}bﬂ

Vi—v;j=A4 A4V +ef TV (=1, 2, =+, J—1)

and

Vymvjm At 4,4 T +hf (7)) (=1, 2, -, 1),

Substract one from the other of the above two equations, there is
- o sy e ) ;
V-V = Aty 4.7, ~T)+kGW) —FTD) (=1, 2, -, J-D).
Taking the ssalar product of the vector V;— 7 with the above vector equation and

summing up the regulting relations for j=1, 2, +, J—1, we obtain
J—1 J—1

S|V, -Vl =1 2 V=P, A4 (V= T))

ol

+BS V=T ) —FTD).

Sinoe {V;} and {¥,} both satisfy the boundary condition (*},and f(%) satisfies the
condition of monotonicity (9), the above equality can be replaced by the inequality

(1-b%) 3} [V~ P, <0,

| J-1 =
Therefore under the condition 1—2565>0, > [F,;—F;|?=0. The lemma is proved.
=1

§ 3

Now we turn to get a series of a priori estimates for the solutions of the finite
difference system

a1

K 1

L = A o A, A 0+ f (07 . (3
with the appropriate boundary condition (*), and the initial condition (8) .
Making the scalar product of the vector v}*'kh with the finite difference system

(8), and summing up the resulting relations for j=1, 2, -, J —1, we have

J—1 J=1 J=1
S (@3, o= b= £S5 (03, Adid o) +ER S (05, FOT)
Juml o | J=]

or
(,yn+1, ‘Un+1)n= (,vn+1’ ,vn)h_l__g_ (J,!,’:,r.a+1:Ir Ad+d_mn+1)n+k (’?J"+1, f“+1)h- (15)

On account of the assumption (I) and the boundary condition (x),, using the formula
(11) of Lemma 1, we get

(5 A e (A AP0,
From the assumption (11}, it follows
(@, 45 (b+8) [+ HF ) 12,
where 8>>0. Then (15) can be simplified as
(@, < (0%, o)k (b+O) k|5 1 F () |



Vol. 1

174

PN e

JOURNAL OF COMPUTATIONAL MATHEMATICS

et o=y

kil
jo° )3 + 45 | F (O 1
i<
1-2(b+0)k
he estimate

i< a-20+0R {10+ 5T (16)

Lemma 3. Suppose that the assumptions (1) and (II) are fulfilied and p(x) €
C(10, I1). When nk<T ond 1—4bk>>0, |v*|s 28 uniformly bounded with respect to

and k, i. €., there is the estemate
< K e {max |9 (@) | + 17 @) 1}, (16)°

1) 8

From thig iterative relation, we can eagily obtain 1

where K 1 48 @ constant independent of the stepsize h and k.

Now we are going o estimate A;:’ “h_ Taking the scalar product of the vector

A A o %— and the finite difference sysgiem
.., J —1, there ig the eqnality

J—1
) =y 3 (dad07, AT

(3); and then summing up the resulting

relations for j=1, 2, -

1 'S ndl n+l
"'}'; Z (A'l'd—qj.f y V3

f=1

J-1
"l‘% E (ﬂ-i'ﬂ-—m?-'-i; f’;+1): 'H-=OJ 1: g N-l, (17)
For the left hand side of the above equality,
J=1 1 =
LS @ty o =)=~ A CRANC )
— %-(Awﬁ“, patt—ap) + %—(d..*ﬂﬁ“, Wyt - v7),
-0, 1, -, N—-1, ' (18)

Since {v}*'} and {vj} both satisfy the finite difference boundary conditions (#), the

last two terms of right—hand side of (18) vanish. So we have for (18)
J=1
2 (ﬁ+ﬂ_w’;+1, 'IJ'}'I'I—-'IJ"D —_ (m““, ot — n) - (19)
=1

1
h

A*;’L( §j=0, 1, <=, J —1). The first term of the right-hand side of (17)

Whﬂl‘ﬂ (=
of (17) can he written in the

is non—negative. The second term of the right—~hand side

form
70 J—1 % J—=1 N "
B g a0y, f)=— 2 (@f A7)
h =1 h =0

B (g, fi) 4 (A, £ (20)

Using tho assumpilion (113,
1 L=3 n+1 +1 b & n+l1|2 M., w+1]2
'};E& (ﬁﬂ«"{ ’ 4. 15 )é-h_gi'l |A+’”j l =bllw “n.

y
(5) and the correspending finite

For the case of the second bcundary condition
1. A_g7t1 =0, Hence (20) becomes

difference boundary condition (B) 5, We have 4,46
J=-1

SLS g, po<bleti (21)
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T,

For the case of the first boundary condition (4), the mixzed boundary condition (6)
or (7) and the corresponding finite difference boundary conditions, if the system (3)
is homogeneous, i. e., f(0) is a zero vector, then (21) is also valid. Finally, we have

(m"+1, mn-l-i s o &.’l") < bk L] mn+1”£

and

ol (1—200) F| A2 | (22)

Lemma 4. Under the conditions (I), (II) and o(w) EON([0, 11), for the finite
dvfference system (3)a, (B)s and (8),, corresponding to the second boundary problem (B)
for the system (3) of generalized Schridinger type, the approvimate solution {v}} (4=0,
1, <, J5 n=0, 1, ---N) has the estimate

- ] .d;:;n L <K, (n=0, 1, -, N)
where K 5 is independent of the stepsizes h and k.

Lemma 5. Suppose that the conditions of Lemma 4 are satisfied and suppose that
the system (3)is homogeneous, 4. e., £(0) =0 The solutions of the finite difference systems
(B, s, B)as (B)a, B)s, (8)r and (8)s, (1), (8}, corresponding to the first boundary
problem (4) and the mized boundary problems (8) and (7) for the generalized Schridinger
system (3), have the uniform estimate (22)' with respect to the stepsizes h and k.

41
Then we turn to estimate |2"**],, where 23+1=_" 7 %L (=0, 1, e, J; m=0,

1, ---, N). At the grid points (#,, £,41) and (;, £,), we have

22)"

¥ 4

(5 R,

Ui -—,f? A AW f (01D,
n__ .n—1

bl =A%A+d_q;}‘+f(fv}‘)_

Then the system for #3*! takes the form

2t — 2%
BB A 8,45 1 (F () — £ ()

(j=1, 2, -, J=1; n=1, 2, +-:, N-1) (23)
Lot v;'(j=1, 2, +-., J—1) be defined by the following equality

s o _
= d 5 M4 g +F(a) (=1, 2, -, T1). (24)

Thus the system (28) is valid for the case n—0. Obviously, {#j} (n=1, 2, ..., N)
satisfies the boundary condition (#)5. Taking the scalar product of the veoctor 23 1 kh
and the vector equation (238), we have

, <t +1 +1 n _ n+1 n41 1 +1 fn-f-l__ﬁ
2 @, g -Mh= 5 (G, A, Ay enk S (5, 20,
J—1 1__
where hz(z}‘“, 11 z ﬂ—)%b”z"”“ﬁ.

J=1

Hence there is
(%%, 2 ), < [ 12
or

[ s (1 —28%) %[ 2], | (25)



176 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 1

Similarly, it leads to the following lemma. .

Lemma 8. Suppose that the conditions (I), (II) and (ILI) are fulfilled. For the
solutions v (j=0, 1, +, Jyn=0, 1, -, N) of the finite difference system (3}, (*)s and
(8),, holds the estimate

,Un-f-:l. — "

k

. <K, (26)"

where K 5 is independent of b and k.

Lemma 7. Under the condiitons of Lemma 6, the estemaie
| A.4_a"
] h* i
holds for n=0, 1, ---, N, where K, is independent of h and K.

The estimate (26) follows immediately from the system (3),, since A is a non-—
gingular constant matrix, thus the inverse matrix A~t exists.

< K4 (26)

y 4

In this section we continue to give some maximum norm estimates for the
solutions of the finite difference sysiem.

Lemma 8. Under the assumptions (I), (II) and (III), the soluitons vj (=0,
1, «o», J; n=0, 1, ---, N) of the finite difference sysiem (8)a, (*)» and (8)» have the
following estimation relation

lglaxJiw}‘jQEE} n=0, 1, ---, N; (27)
im{),1, -,
max (4.0} <K, n=0,1, -, N, (28)
§=0,1, «, f=1
3
max |d4,4_v}|<Kh* n=0,1,-,N; (29)
§=1,2, pd—1
a
max |l —ot | < Kghkt, j§=0,1, -+, J; (80)
n=0,1,-, N-1
1
max |d0 — A0 | <Kokih, j§=0,1, .-, J—1, (31)

ll:url: ey M =1

where K’s are independent of h and kb,
Proof. For any discrete function u,;(§=0, 1, ---, J), we have

m—1 .
== (ueatu) S <2 fula | S
2 4 2 ﬂ+'u' : = S Aﬂ@ ? : S
where |u|i=2Xujh, o P » > ) k. If |u;| =ae>=0 for all j=0, 1, ---,J, then
=0 A =0

J
|ul|3= uih= (J +1)ha*=la?,
1=0

where JA=1. So there is a certain ,, such thai

s | @”j%’i. (82)
Taking this ¢, we obtain
o "u- E .d+'1-5 n
!.r}m a +2”u"h h hl
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Hence there is the relation
1

+ul) (33)

r

170 4.4
i A
max o SANHIE

where O is a conslant. (27) is an immediate consequence of (33).
Replacing {u;} by { ‘d}f’f } (j=0,1, «--, J—1)in the general relation (33), we got

1

+, (84)

1
4.4 -'f{ Ad.d_uw i | "dm
W s 5 h la h® | A
where O ig a constant. The right-hand side is uniformly bounded with respect o k.

from the Lemma 4, b and 7. So (28) is valid.
The estimate (29) follows directly from

3

-—-———-Azuj l < C4

__ﬂ_'_ﬂj d_;_"uj_l | =h. A+d_ﬂj .d,,,.d_u-"
2 T 73 I

Suppose that the discrete function (=0, 1, ---, J) satisfies the boundary
condition (#);. For u,; the relation (11) takes the simple form

‘Qh%

|.r_'1

g—1
M wd A v = — an (dup)?

j=

Then we have

] <l | Z574, (55)
Substituting this inequality into the relation (33), we obtain
34 A4 1

mex |y <Oaluli( | L5 +lubs) (36)

j-_—ﬂ, 1, -"‘J

where (U, is a constant.

Qince the disorete function {o}j™*—o7j} (j=0, 1, -, J) satisfies the b'ounda.r}r
condition (#);, we have from (86) the corresponding relation ior {v§+t — o},

L

+ uwnﬂ_,ﬂnﬁh}z

'ﬂ.

I d+‘d_ (ivﬂ’!"l . "Uﬁ)
A3

3
max |vt—a}| <Ogfv" —2" L 7};{

§=0,1, gl ‘h

ot
Q}"+1 P |‘]E{
k R

4.4 2"
hﬁ

\ﬂ_l_.-ﬁ]_’ﬂ“-l-i "
h

2
3’
<Ok =

ot ol

A

1
i

This gives the estimate (30).
Now we turn to the lagt estimate (81) of the lemma. Substituting (85) into the

right-hand part of the inequality (84), there ig

3

4. - '}( d+d_u‘ o )T
j=ﬂ%ﬁ—1 h 1{%03\!%“& h? ‘]h_}_“ﬂ*[‘“ .

Rocsuse the discrete funetion {v}**—of} (j=0, 1, -, J) satisfles the boundary
condition (»),, the similar inequalify for {v3*1—27} is
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3
4 A-—- "+1—"U" | " LS
+ (q;bﬂ ) ﬁh_l__[l,u +1_"?J ”h}

+1 i
§=0,1,Jd—1 ] h

1
<Oslo—or[]

1
4{
iE!
3,
&

I Cas e

‘IJ"+1 — "

k

4.4_»"
hﬂ‘

‘,_f[+ d_ttj“"'l

1
< O % =

A

+

This implies the estimate (31).
Hence the lemma is proved.

§ 5

Tet us put om (e, t) =07 for (o, ) €Qj={jh<a<<(f+1h nk<i<(n+1)k}
(j=0, 1, «-., J—1; »n=0, 1, «««, N—1). Then v,(x, {) is a m—dimensional vector
valued piecewise constant function in the rectangular domain Qr={0<<z<, 0<<i<<
T}. By the similar way, we can extend the m—dimensional vector valued discrete
A+wf}+1 "U?'I_l . q:,}l- d+d_,‘)1;+1

h ° E 7 h?
dimensional vector valned piecewise constant funclions v (2, ?), vu (e, 1), ulz, )
in the rectangular domain Qp respectively. It follows directly from the Lemmas 83—T
for the estimations of the disorete function 23(j=0, 1, ---, J; n=0, 1, ---, N), that
thus constructed m—dimensional vector valued piecewise constant functions vy (z, i),
v, £), tae, £) and B (2, £) have the following estimate

sup [wa(s, ) |mo.n+ sup |2a (>, £) |10, + sUDP | o (5 8) | zacont>
Ot T QT Dt

i3 Uilg-qPT O, £ ‘ £a0, 5 S K 10, (87)

functions

at grid point (x;, £,.1) to the corresponding m—

where K 4, is independent of 4 and 4.

We can select a sequence {A, %}, such that as ¢—>o0, VAI+ ki =0 and v (z, 1),
(@, ), (2, 1) and Ty, §) converge weakly to w(w, t), u(w, £), u{z, £) and
%(z, t) in L,((0, T); Ly(0, 1)) respectively, where 1<{p< co. Since the norm of the
weak limiting function of the sequence not exceeds the lower limit of norms of the
functions, the norms of funclions w(w, 1), w(e, ), #(x, t) and u(z, £) in the
functional space L, ({0, T); Lx(0, 1))are uniformly bounded with respect to 1<p<Coo.
Hence they are bounded in the functional space 1..((0, T'); L4(0, ¢)), i. e,

sup |4 (s, £) | zo,n+ sup [u (e, ) |no.n+ sup (e, £ | a0,
| ek el z DefsT L= el

+ sup |u(s, 1) | zy0.0 =K 10. (38)

Qi T

Now we want to prove that wu=1, %=1 and =, and that «(z, ) satisties the
boundary condition (*) and the intial condition (8).
Let @(a, t) be a smooth funciion with finite support in domain {0<z<l; 0<i<
T'}. It is easy to write the relation
Eﬁ(@? Vit —f e @?“—@?,) IS LS Il il L 9

i
= j=0 k ! k n=>0 =0 k

o
= — 3 Dk,

=0
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We define the piccowise constant functions @, (2, f) and &y, (@, t) corresponding to

4+l
the discrete functions &}, . Z i respectively. Then we get the integral relation
e £ —
J'J (@ﬁk@h}": + 5;,;;'1?1,;;) da df} o ,LI @Mﬁ (ﬂ}, }ﬁ) Bn (:.'E) dﬂf{,

Or
where p,(2) is a m—dimensional vector valued piecowise constant function and ()
=g; in (jh, (44+1)A] (=0, 1, «--, J—1). Since Py (z, ) converges uniformly o
&O(x, t), Dy (x, k) converges uniformly to @(z, 0) and & (2, t)converges uniformly
{0 @,(w, t) a8 A?+k*—0, then passing the limit process as A+ 4ki—0 and regarding
that vy (@, t) and o (@, £) converge weakly to u(w, ¢{) and u(z, ¢) respectively, we
obtain the integral equality

ﬂ (D7 + D) das = — j: Din, Oyptade. (39)

where as =0, @,(@) converges uniformly to p(z) in [0, I]. If @(z, #) is of finite
support in open rectangular domain {0<<s<l; 0<<¢t<<T'}, the relation (39) shows that,
the m—dimensional vector valued fonction «(w, £) has the generalized derivative
w (2, 1) =ulw, 1).

By the same approach, we can prove that u,(z, ¥) =u(z, ) and w4, (a: 1) =a(x, t).

Now we again construct a m-dimensional vector valued function 3.(z, ?)
corresponding to the discrete function 2} as follows. in every small rectangular grid
Q= {jh<a<(j+1Dh, nk<i<®m+1)E}, (j=0, 1, <, J—1; n=0, 1, ---, N—1),
o, (@, t)is obtained by the linear expansion in hoth directions # and ¢ from the values
of the discrete function o7} at four corners of Q7. From the estimates (27), (28) and
(80), we see that tho set of m—dimensional vector valued functions {vy.(#, )} is not
only uniformly bounded but also equicontinuous. Then as 2+ #%/—0, the sequence
{vp (2, 1)} converges uniformly to a m—dimensional vector valued function w’ («, ¢)
in @p. From the construction of the funections 25, (#, #) and v, (2, ), we have

3
|05k, ) —vm(e, ) | <Ku(h+k*), (40)

This means that u*(w, ) =u(e, ¢) and {vs. (2, {)} converges also uniformly to u(=, #)
in Q.

Similarly, we can see that {v,., (2, £)} converges uniformly to u,(z, ) in {r.

The uniform convergence shows that the limiting fcnotion w(w, ¢) satisfies the
boundary condition (*) and the iniiial condition (8).

Then we turn to prove that u(wx, ¢) is the generalized global solution of the
boundary probilem (), (8) of the system (3) of the Sﬂhr:':idjnger type. We take

—1 -1 +1 ‘Wj —I N-—1 % ‘d A 1}“+1 -1 ¥=—1 i
ZE@ “EFFA 72 Egﬁf'

Let Fuy(w, t)=Ftt=f (w}‘“"l) in Q7. So Fy (o, ¢) is a m—dimensional vector valued
piecewise constant function in the rectangular domain @r. Then we have

{| P dwdi ” B Ay d ” By Py da di.
' & Or
Since as AZ+k2—0, @ (w, t) converges uniformly to @(z, ) in Qr, vm(e, £) and
5. (2, 1) converge weakly 1o u,(z, t) and v,.(®, ) respectively and Fy(«, ) converges
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uniformly fo f(u(x, ¢t)) in Qr, then passing to limit as Af-+47—0, we get the integral
relation

|| @0 — At —f )10t =0, (41)
Cr
This means that w(2, ¥) satisfies the system (8) in generalized sense. Therefore w(x, ¢)
is the generalized global solutfion of the boundary problem (%), (8) of the system (3)
of Sehrédinger type. This completes the proof of the existence of the solution of the

above mentioned problem.
Suppose that there are two solutions u(x, ¢) and v (x, ¢) of the boundary problem

(38), (») and (8). Then for w(z, ¢) =u(x, ) —v(x, ¥), we have
” B [w0; — Awas— £ () +F(v)]dadt =0,

Oz

where 0 <<z <<7T. Taking the test funcition to be a m—dimengional vecltor valued
function w(x, 1), we get

|| G, w0 Aot 7 ) +7 (@) =0,

O
So jw(=, 7) | Zi0n<<b j:[;w(': £) | 2100 &2,

where w (&, 0) =0. Then w(ez, 1) =0 or u(z, {)=v(w, ?).

Since the generalized solution u(z, ¢) of the boundary problem (+), (8) for the
system (3) of Schriodinger type is unique, the above mentioned convergence takes
place as A*+ k*—0.

Theorem 1. Under the conditions (I), (1) and (III), the solution 2} (j = O,
1--«, Jym=0, 1, ---  N) of the jinite difference system (8);, (B); and (8); converges to o
unique generalized global solution w(z, t) CZ=L.((0, TV, W& (0, t)) N W ({0, T;
Ly (0, 1)) of the second boundary problem (B), (8) for the system (3) of Schridinger
type, when A*+Fk? tends to zero, ¢. ¢., there evists a unique solution u(x, t) of the second
boundary problem (B), (8) of the system (8). The m—dimensional vector valued discrete
function v} is the approxrimate soluiion of the second boundary problem (8), (B), (8) and

{¥5} and {%} converge uniformly to w(zx, t) and u,(x, t) respectively as h*+ *—0.

Theorem 2. Suppose that the conditions (I), (II) end (III) are satisfied and
suppose that the system (3) ts homogeneous, 4. e., f(0)=0. The m—dimensional wvector
valued discrete solutions v of the finite difference system (8)s, (D)5, () (B) s, (8)4, (8)4
or (8)s, (M1, (8)s converge to @ unique generalized global solution w(x, t) €Z of the first
boundary problem (4), (8) and the mized boundary problem (6), (8) or (7), (8) for the
homogeneous system (3) of Schridinger type, when P+ k-0, 4. e., these boundary
problems have a unique generalized global solution w(a, t) €EZ and v} and -‘-A-};—WHL CONVErge.
untformaly to u(e, t) and uz(w, t) respectively as h?+ k*—0.

Yy 6

In orxder to obtain the existence and uniquness of the generalized global solution
u(z, t) of the houndary problem (=), (8) for the system (3) of Schrodinger type, the
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condition (III) can be weakened.
(IIT") The m—dimensional vector valued initial function @(z) C W (0, I)satisfies

the appropriate boundary condition ().

Lot {@.(x)} be & sequence of m~dimensional vector valued twice continuously
differentiable funotions, convergent t0 ¢ (#) in the functional space W (0, ). And
@«(@) for every s satisfies the appropriate boundary condition ().

Denote the unique generalized global solution of the system (8) of Schridinger
type with the boundary condition (#) and the intial condition

u(e, 0)=gp,(z), (8)

by us(z, ) € Z.

Passing to the limit as A?-+-%°—>0, the estimations (16)’, (22)’, (26)’ and (26) in
8 8 become the following estimation for the solutions w.(z, t) of the boundary problem
(8), (») and (8),,

"%”z“:\:K:Lﬂ{"‘PI

where K ;; ig independent of s.

Considering the limiting procedure of s—>oo, we get the following theorems.

Theorem 8. Under the conditions (1), (II) and (IIT"), the second boundary
problem (B), (8) of the system (8) of Schridinger type has a m—dimensional wector
vabued unique generalized global solution u(e, t) € Z.

Theorem 4. Suppose that the conditions (), (II) and (III) are Julfilled and
suppose that the system (3) 4s homogeneous, ©. e., F(0)=0. Then the first boundary
problem (4), (8) and the mized boundary problems (8), (8) or (1), (8) for the
homogeneous system (3) of the Schridinger type have o unique m~dimensional vecior
valued generalized global solution u(w, t) € Z.

w00+ [ (@) | nw.n}, (42)
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