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1. Introduction

When a strong plane explosion wave impinges normally upon a rigid wall, a
plane reflected wave forms. It propagates into the region disturbed by the explosion.
This paper is a sequel to [2] and [4]. We use exact quasilinear equations of
gasdynamics with Enler’s coordinate and time and exact gagdynamic shock conditions.
The problem was treated by many existing excellent methods. But we realized that
without special treatment it is hardly possible to compute the propagation of the
reflected wave until it reaches the explosion center, and it is even more difficult to
caloulate further propagation of the reflected shock. The difficulty is due to the fact
that in the model of the so—called “point explosion”, the gas temperature and the speed
of propagation of the shook wave tend to infinity as the explosion center is approached.
On the basis of analysis of the singular behavior of the solution and further
developmient of the “‘singularity-separating method” we successfully overcome the
above mentioned difficulty. In this paper the resulis of the flow behind the reflected
ghock are presented, describing how the reflected wave reaches and pasges the
explosion center. Further results of the flow field are obtained for all time until the
reflected wave propagates to a distance about three times the distance from the wall
to the explosion center. After the reflected wave interacts with the explosion cenfer,
one should treat carefully a curved trajectory with vanishing density as well as a new
shock wave propagating towards the rigid wall. The new shock forms from the
intersection of the characteristic lines of the same second family. Numerical results are
satisfactory, which means that our singularity-separating method is efficient for
solving this kind of problems with rather complex singularity.

2. Formulation of the Problem

Huang has presented the formulation of our problem of unsteady plane motion of
a perfect gas in [2]. In that formulation the following system of equations of
gasdynamics ig nsed:
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Suppose that at time = —11(4:>0), & “strong”’ explosion at the plane &= R, appears.
“Strong” explosion means that the initial energy and the pressure of the staiic gas In
front of the explosion wave can be neglected when compared with the energy released
per unit.area E. The explosion wave A0 (Fig. 1) moves towards the rigid wall #=0.
At ¢=0 it meets the wall =0, and ODB denotes the reflected wave. Thus there are
three regions as shown in Fig. 1 on the #-¢ plane: region I (the region behind the
strong plane explosion wave where there is a selfsimilar solution), region II ( the
unsteady gas flow behind the reflected wave which is neither isentropic nor selfsimilar)

and region 111 (po%0, p=u=¢=0),
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Fig. 2

The selfsimilar solution for region I is given in [2] and [8]: If there is no wall,
the wave AQ will propagate towards the left as shown by curve AOE in Fig. 2.
According to [2], the distance r; between ACE and @ =R, is given by

ra= (L) e,

1/8
then Rg= (—f—) t2/% and
0

. dre _vr _ 2 T3
dit 4 3 t+ity’
V being the speed of the explosion wave. Sot R,=0.1m, F=2734905.6 J/m?, f;==
0.21718193 % 10~*s, po=1.29 kg/m?® and the specific-heat ratio v=1.4, The pressure
hehind the reflected shock at the origin of z—t diagram is just 800 atm. Since p=u=

e

e=0 in region IIT, immediately behind the incident wave AQFK the pas densily p=

~ 6po, the particle velocity »=V /1.2 and the pressure p= 11 5 ooV 2. Dencte (Bo—2) /73

by R(z, t). It relates fo a parameter ¥V by the relation™
R=(1.87)-93(12.67 —6)%/2(3—3.6V )7, (2)
then «, p, p in the region I can be expressed by
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w=—p»1.8RF), (8
p=p(12.6V —6)5/°(6—9F)~10/3(3 3 6V )#/, (4)
p=p(1.8V)%3(8—-97)-"/3(83—3. 6?)5’3 ” . v ()

Wu has obtained in{4] satisfactory mumerical solutions in regwn II using the
gingularity-separating method for this problem. Results were obtained when the
distance of the reflected shock wave from the wall is less than or equal to 0.096 m,
Further caloulation, that is, fo exftend further the refiected shock towards the
explosion center B, is difficult because of the singularity along = Ry, for i<{,. In this
paper the singularity-separating method is developed to account for the singularity
along @ =H, and we have obtained the solution until the reflected shock reaches and
then passes B(@=R,). The method consists of two parts as explained in the next
section,

3. Numerical Methods

I. A method which enables us to continue the compuiaiton uniil the reflected shock
reaches the explosion center.

We developed the singularity—separating method for the computation of the flow
field in the oase where the reflected wave from the wall reaches the explosion point.
In [1] a method wag devised to treat the interaction of discontinuities of shock or
contact discontinuity type. In this method discontinuity lines are treated ag unknown
internal boundaries, so that there is no discontinuity of flow variables in each
subregion; when one meets a centered rarefaction fan the multivalue point can be
ireated by transforming the independent variables. In this pari we overcome the
difficulty caused by singularity along #= B, by transforming the physical gquantities,
thereby we can easily obtain the numerical solution when the reflected wave OD
reaches B{z=R,). We should mention that the results of this paper can be further
improved.

Denote by r=|0.1—2| the distance between a point in z—¢ plane from the line
z=R,., Weo use subscript 1 to denote the guaniities in front of curve OB, and
subscript 2 to denote quantities behind it. Then shock relations along OB are

Pa=p1(1+2) =P1[1+%(Mﬂ“"1)];
pa=p1(2y+ (y+1)2)/ 2y + (y—1)2),
.2 |
Us:-ui+fc1/(7v’1+_(7+1)z((2?)).—-141 B (M o7 )31.
Here, z={(ps—p1)/p1 expresses the strength of the shock wave, M", the shock Mach |

(6)

number, and ¢;=~/ yp1/ps, the local sound speed.

From the definition of B and r we see that for small r, r~ R, and further from
(2) and (4) py~ (12.67 —6)5%~ R332~ r5/* when r tends to zero. When shock wave
moves towards the explosion point, the shock Mach number M" tends to 1 and the
gtrength of the shock z fends to 0, thus

pswpiwrﬁf’ g : : : (7)
Ca~ C1~ N yp1/ py ~ 1%, | T - (8)
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From (8) we know that u, tends to zero, and

1/3 | ;
V:—:u:.']"( ‘};‘;’1-3) eCyAvCy~rT/t (9)

In his lecture given in Beijing University, Huang Dun presented estimates of
flow variables in region II for small r based on Whitham’s “characteristic rule”:

Pz + pacedus =0, (10)
Differentiation of the first and third of (6) while neglecting dp;, which is small, gives
7

dPﬂ'“Pi 3 M'CIM*

d”’='y—?-1 (‘w JI} )(f%)%dpi’ f’:;t (1' ﬂ;:* )dM*']"d‘“'

From (7) one has

Bubstituting the above relations into (10), a relation between M* and r is obtained:

6+ (M2—1) | 1_} . MU_1_ _dr 3
{ 6 T(M=E—1) "2 (1 M*ﬂ) e+ i e e

Here, duy is much smaller than other terms and so can be omitted. Let the quantities
in the external brackets on the left side be 2F(M*), then we have

lim #(M") =1,
M*—1
vy (M —1) 5 dr
3
MM* 1 NTD.GEEn (11)
Substituting (11) into shock relations we obtain the following estimates
- g M= ~ 9088, . —0.685 '
Us u:.-t-._Hl( 7 )ﬂl P e P (11)

On the basis of (7), (8), (9), (11), in region II we introduce the following new
variables:

~0.635 o, N e
u=r v, p=rTw, p=p,
w2
c=r-19¢ - T—i.aﬁff_

Then the system of equations (1) is transformed to
r O 4 p=0.635 ,, o 4 g 1.875 1 op = —0.625r 10353

5t P w ox
Jl g;u _ p-0.055, %;_ 0885y, %=1.875 ")

laP 4 g—0.635, 315' 4 = 0-835,,0, _27:‘; = —(0.626r " 1%35yny,

Adopting this system of eqqatwns makes the caloulation possible for the case r=0
(Thus we say that we have further developed the singularity separating method in this
paper). To transform the above system of equations into characteristic form, we
muliiply the matrix
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-0.635 7

§= 0 s TP, —w

from the left side, and obtain

a2 716 2 -F, (12)
where A= r—0-035y - p—1.367 R = p-0635y 3. =065, _ ,-1.855 |
K3 [ A, O, 0 wen =089y "
U=|w| A= 0, X, 0 | Fm=—0.625r"  —4dwyp
= 0, 0, Ag_ — a6y + 170y

We can transform the subregion whose boundaries are £ =0 and «,(¢) into a strip
0<é{<1 in the £-¢ plane by using the transformation ¢=¢, {=a/2.(t). Here the
unknown funetion «,(¢) describes the curve OB in Fig. 1. Then the system of

equations (12) is transformed into

all - . el g -
Gﬂ Ot 'MGH 3§ fﬂ: n 1.: 2: 3: (13)
whore ;
- o
U, t)=U(z, 1)~ w |,
_ P

G, is the n—th row of

S we , 0, (0.1—my(3)¢) 008
G=| 0 , ¥yp, - 4

L —wd, 0, (0.1—ay(£)E)00.

while f, is the n—th eomponent of

" wer+ (0.1—a,(2)€) "0 Fyp T

F=-0.625(0.1—g,(t)&) 103y —4dwyp
— 2060+ (0.1 — 21 () €) "0 Fyp _

e e IO

For simplicity we omit the subsoript n of A,, G, and f, in the difference equationa.

Denote o =2Adt/4f, ub,=u(én, ), and use similar nofations for other gquantities.
[1] gives an explicit-implicit-mixed scheme, which ig uncondilionally siable., We
compute quantities in region II using this scheme,

If |o|<1 we take the following two-step explicit scheme. At the auxiliary level

the approximation is
QU3 = (1F 0h/2)GEU% % (0%/2) QiU k1 + dife/2,

where we take the upper sign if ¢>>0 and the lower sign if ¢<{0. At the regular level
the formula is

5 (1= Ba)(@*F +G43)+Bu(@SF +G5]))US" = (1— Bn)Sh+BaSt.,
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Here
St = (@ ""‘*f +G"""2)U 11/2— (o ’”‘f +ﬂ"‘+?)/2+1) (G "’*E +G"""£)

X (U M2 —URE) /24 5 fo03 +f242 ) /2, |
8% =(Q% 7 +G*3)U% /2~ ((o M5 +o*5/2-1) (G ¥ 1@
X (U3 —U 25) /244 fF+E 4 f2+5) /2,

*m/Ml : | D*@m{ﬂcfl,
0 A>0
By= M M
=y }\.{0} ek
(m—Msy)/(M—Ms) Me<m<M;
- - A>>0on £=0,

[0, £,] is the maximum interval among the intervals on which A is nonpositive and
whose left end is the point £ =0,

» ={max{M—E(1_£’ ) 1} A0 o0n £=1,

YT
M A<<0 on §=1,

[£s, 1]is the maximum interval among the intervals on which A is nonnegative and
whose right end is the point ¢ =1; M is the number of mesh points; and K(a) is the

integral part of .
If |o|>1, we take the following implicit aﬂheme At the auxiliary level the

formula is

(1+(oms1ton) /2) (Ghsa +G‘§=)U"+f e (ﬂfn+1+0* )/ 2) (G +G‘$)U'“‘?-‘

= (G +G%) (U +U )+At(f,,,+1+f 5.
At the regular level the formula is ='

(1+ (ﬂ'i'!"f +Gi+§-)/ 2) (GE-I-E 2 G[IF+E)UE+1
g i (ﬂ'HE 3 ﬂ.l:+g-)/2) (Gl‘r-}--f i G_’l:+—%—)Uih+1

= (G**F + Q%) Uk, +UY )—- (%% +-0**3)

x 3 (G‘“‘"'*“TAr + G”“'lf )(Uﬁ"nﬂ Uﬁ;)—l—2dt(f"+’z‘ +f"+r)
ThlS schems is of second order aﬁcuracy Its stab:llty follows from the discussion in

[1]. ; |
For each differential equatinn, difference equations can be obtained by using thig
scheme. Finally we have the following systems of equations:

4 Aim}Um+1 ¥ 3 A&m]Uﬂ =A§M},

$ Bi"Ups1+Bi"WU = B{™, | (14)
DU iy + DSPU o= D§M,  m=0, 1, ---, M —1,

Eq. (14) can be solved by the double-sweep method. First we eliminate Uj, -, Uy_4
from (14) and obtain the gystem of equations with U, and Uy |
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.A.]_U M ~+ AﬂUu o AE,
B:LUH+ BﬂUﬂ —_— Bg, (15)

-DIUH + DﬂUﬂ o Da.

In view of the boundary condition 9,=0 and eliminating w, and p, from (15), we
obtain the equation |

A‘Hx’!“ .B'IL’H+DPH=F_ (16)
The quantities in front of the shock wave can be evaluated by the given analytic
expressions (2)—(B). By using shock relations (6), we can obiain a nonlinear
equation f(z) =0 from (16). Solving i, we obfain the strength of the shock z.
Quantities vy, py, Py and the speed of the shock ¥V can be easily obtained by using z.
Then we can also calculate the gquantities at the intferior points in terms of the
quantities on the boundary 4 ().

I the location of the shock wave is apart from the explosion point at 2=0.1 we
can compute the flow field in region 1I by the singularity—separating method used in
[4]. In this case the location of the shook wave can be detarmmed by using the
following sehema with second order acouracy:

X3 = X5 VA /2,
Xkl XLV R+T A
If the location of the shock wave ig very near the explosion point B, we can obtain

numerical solution by solving difference equations approximating (13). To caloulate
the location of the shock wave we make use of

d‘” ~1.85
e A G N R — ) =15

and thuas
(0.1—2)1de—=Vd:,

J: (0. 1@} dip = I 7

- 25 ((0.1— X¥+1)335_ (0,1 — X¥)235) - H+ S A,

(0.1— Xk+1)2.95 (0.1 Xk)ﬂ.iﬁ —9 2541‘-?3""}_
In our computation we use the following scheme:
X% =0.1— ((0.1— X*)235_1 1954F7%)*/*?

X*1=0.1—((0.1— X*)*% 2 25473 )#*,

At £=1.9925%10~°% =,(t) is very close to but less than 0.1, then we change the time
increment by setting 4t=(0.1— X*)3%/(2.25F*%). Finally we have the coordinates
of B as (0.1, 1.9938 x10~%), Although the above derivation is long, it enables us to
overcome the difficulty cansed by high temperature singularity and makes it possible
to caloulate the reflested shock wave 1ill it reaches the explosion center B.

II. The compuiation of flow fidd after the passage of the reflected wave through the
explosion center. _

There remains difficulty if we want to compute further. Now we will describe the
method for the computation of the flow field in the upper region of Fig. 1. By analysis
of the flow we conclude that we should treat first of all the reflected wave with




254 JOURNAL OF COMPUTATIONAL MATHEMATICS v.,z._ 1

increasing strength, as well ag a singular-trajectory, along which the densily is zero
while the velocity and the pressure are continuous. Furthermore we sghould freat an
additional left—facing shock wave as shown in the upper part of Fig. 1, i. e., for >4
=1.9938 % 10~°, The formation of this wave can be understood if we examine (8) and
(11). One can see that the second family of characteristics starting from the curve GB
intersects each other near B, whioh means formation of a now shock wave, We will
explain how to calculate these three difficult unknown lines ag well as the quantities
in subregions 1, 2, 3 of the upper part of Fig. 1. We use still the singuwlarity-
separating method to avoid smearing of discontinuity lines. The guaniities in
subregion 4 can be computed by using (3), (4) and (). Difficulty lies first in
initiating the caloulation of the three unknown lines, which we shall describe below.

To caloulate the flow variables between these lines we can transform the subregion
whose boundaries are z,(¢) and x,,4(2) into a strip 0<<£<<1 on the £~ plane by using
the transformation t =%, &= (z—a:(%))/(@u1(#) —=(t)). We denote by x,(¢) =0 the
location of the rigid wall, 4 (¢) the location of the left—facing shock wave at time ¢,

z4(2) the location of the singular—trajectory and «;(¢) the location of the r1ght—fm1ng
shook wave—— the reflected wave. Meanwhile we transform the system of equations
(1) into the characterigtic form:

ol , ol

5 AnGla 2 = (),

G

n=1, 2, 8,

Here

Ny (-0 — 2 (8) — & (Thn s (8 — & (£)))/ (B () ~ (2D,
fon (et () — 8t CEY— 2] (T st (0,
Ag = (‘u; c— @, Ct) g(m-i+1 (t) mi (f’)))/(miﬁt(t) —a:,_(t)}

&, is the n—th row of the matrix

- pe, O, 1 B
0, vyp, —p| and U=|p |,
L.._-Pc: 0: 1_ ' pr..

By aid of the above scheme a system of difference equations in the form (14) valid
for each of the three subregions can be obtained. We eliminate U,, --, Uy_1 and
obtain the system of equations with U, and Uy in the form (15) in each subregion.
The quantities on the boundaries can be found by solving the system of nonlinear
squations (15) for three subregions with appropriale boundary conditions. Affer these
we can compute the quantities at the interior points in various subregions. The
double-sweep method used is explained in [1].

Now we concentrate our attention on the initiation of computation for boundaries
of subregions from 1 to 4. We have explained how to calculate flow quantities in
region II up o the dotted line in Fig. 1. They are the initial value for subregions. The
difficulty is that according o (7) and (11)’ the gas density p tends to zero and the
particle velocity ws tends fo infinite as reflected shock tends to @=R,. Here we
introduce the following approximation: The quantities at point B in subregion ‘1 can
be obtained by using an extrapolation based on mneighbouring points. The guantilies
near point B in subregion 4 can be obtained again by Whitham’ s characteristic rule,
which gives £,=1.9988 x 10~° for #=0.101, by using (3), (4), (5) we can Obtain w,
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p, p. We regard these values ag the initial values for subregion 4.

In a leoture delivered at Beijing University Huang Dun presented an analytical
formula for the relation between the distance r and the shock Mach number M*® in
the region near point B, on the bagis of (10) and some physical reasoning, the details

of which should be published elsewhere. He gives M*=1.0880 at 2=0.101. Then the

strength of the right—facing shock wave z,.=% (M2 —1) =0.09035. The initial

strength of the newly formed shock wave which propagates towards the rigid wall
(we shall call it the left—facing wave) is of course zero. By uding the shock relations
(6) we can thus obtain the quantities in the vicinity of the left end in subregion 2
and the right end in subregion 3: us ¢, p2,0, Pa,0, Us, ¥, Ps, us Pa, x- Here M is the total
number of mesh points in each subregion. On the singular trajectory, p=0, u and
o are continuous we take the approximation

1
Uﬂ,x=u3.u=§(uﬂ.u+u3.ﬂ),

1
Ps, u=Ps,0=5 (P3,0FPs,u0),

Pay=pPg 0= b x 10~% instead of Zo1rQ,

«l +=1.9938 X 103
250040
20000L
150001
10000}
5000
-="_"-_"--_
0 0.0]
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| 1 r
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Fig. 3b Fig. 3¢
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Linear inferpolation in subregions 2 and 3 respectively gives the initial values for

these subregions. Thus we have explained how to treat tha mngulantles near point B
and how to obtmn inifial values for t=to. |

4. Numerica.l Results

By using the singularity-separating method developed in this paper, we have
obtained the distributions of 4, p, p shown in Figs. 3a, 8b and 3¢ at time #,=1.9938
X 10~* (at this moment, the reflected shock wave reaches point B). The locations of
the discontinuities in the whole flow field are deseribed in Fig. 4. To evaluate the flow
for ¢>i, we take At=2x10"% and 40 mesh points in each subregion in the
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computation. Typical results are shown by figures. Figs. ba, b, o give for t=10t
2004t —=2.08 x 10~% the distributions of u, p, p. Figs. ba, b, ¢ describe for {=1lot 160047
=B 2% 10~° the distributions of #, p, p. The variation of pressure on the rigid wall
is shown in Fig. 7. :

From our numerical results we can make the following comments:

1) For t>t, the velocities, pressures and dengsities near the shock wave,
especially near the left—facing shock change rapidly with . If we use a method with
artifioial viscosity, the shock waves would be seriously smeared and the accuracy of
computation would be poor. The singularity—separating method may evaluate these
rapid changes very well.

2} The strengths of both the right—facing shock wave and the left-facing one

(pﬂ ;pi) increase slowly. They are about 1 for a certain long period.
1 :
3) The gas velocities in subregions 9 and 8 are very large when the reflected

shock wave is located mear point B, bub they decreases soon. The accuracy of our
results is high although some approximate treatment of velocity near point B is used.
This is guaranteed by the stability of the scheme used.

4) In the computation we use p~=~10~% ingtead of vanishingly gsmall quantities
near the singular trajectory starting from point B. This approximate treatment will
lead to some errors. But these errors will nof increase owing also to the stability of
our scheme. The density on the singular—trajectory is zero, and the sound speed C is
infinity. This makes usual explicit schemes inapplicable for our problem in view of
the Courant condition. |

To sum up, we have presented in this paper satisfactory numerical results and a
clear physical picture for this problem by using the singularity—separating method
and ite further development and making some approximate treatments near the
singular point B of Fig. 1 based on analysis of the character of singularity (the
analysis will be published elgewhere). Although the approximate treatments
mentioned above can be further improved, our results are much more accurate than
what could be obtained by any other of the existing methods, especially of shock-
capturing type, since shocks and trajectory with zero densily are treated separately

and accurately.
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