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Abstract

A general theory for nonlinear implicit one-step schemes for solving initial value problems for
ordinary differential equations is presented in this paper. The genoral expansion of “symmetric”
implicit one-step schemes having second-order is derived and stability and convergence are studied. As

examples, some geometric schemes are given.
Based on previous work of the first anthor on & generaligation of means, a fourth-order nonlinear

implicit one-step scheme (GMS)is presented for solving equations with steep gradients. Also, 2 hybrid
method basad on the GMS and a fourth-order linear scheme is discussed. Bome numerical results are

given.

1. Introduction

Many classical methods for solving initial value problems for ordinary differential
equations are based on piecewise polynomial inferpolation. If the solution of the
problem possesses a very steep gradient, these schemes produce poor results. In
particular, if a singularity ocours, it is often inappropriate to attempt to represent the
solution in the neighborhood of the singularity by a polynomial . In this paper, we
consider a class of nonlinear implicit one—step schemes that may be more appropriate
for such problems. | |

A goneral theory for nonlinear implicit one-step schemes ig developed in Section
3  Conditions for congistency, stability and convergence are obfained. Every
consistent symmetric scheme is at least second—order, and the condition for them to
be fourth-order is given. A clags of symmetric and homogeneous schemes which are
generalizations of the well-known trapezoidal rule is oblained. .

The trapezoidafl rule is exact for second—degree polynomials. In terms of geometry,
a second—degroe polynomial is a conie. As examples of nonlinear symmetric implicit
schemes, we develop several geometric schemed based upon ‘“circles”, “ellipses”,
‘“parabolae”, and “hyperbolae” in Section 3.

On the other hand, in terms of means, the trapezoidal rule is the arithmetic mean
of the first derivative of the solution at two neighboring grid points. In Section 4,
based on the generalization of meanst™, a fourth-order nonlinear implicit one—step
scheme(GMS)which isg shown to be efficient in numerical tests is presented for solving
problems with steep gradients.

* Reesived December 17, 1983.
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In Section b, we disouss some practical considerations including the use of hybrid
methods based upon the GMS and more traditional schemes. |

In thig paper, the theory of nonlinear implicit one—sbep schemes is restricted to
soalar equations. However, we have used these schemes sitccessfully to solve gystems of
equations. The application of these schemes to systems is discussed briefly in Section 6.

Numerical results for seven test problems, some of which contain gystems of
equations, are given in the lasgt section. T'wo of the examples use an imbedding tech-
nigue to apply the GMS to the solution of two—point boundary value problems.

2. A General Theory for Nonlinear Implicit One—step Schemes

Congider the initial value problem(I. V. P.)

y'=f(@, ¥), y(a)=y (a<az<b), (1)
where f(, %) is continuous in # and Lipschiz continuous in y in the region e<<a <o,
— oo < y< oo, ¢ and b finite. a

We investigate the following general nonlinear implicit one—step scheme

__ Yn+1=yn+ks(fn; fn+1), (2)
where b=y — Tn, fn =f (mn; Yn) ’ fn+1 =f (@ps1, Yn+1) .
The local truncation error for the scheme(2)is
L(f) =y (@) —y(@a) —BS(f(@n, Yy(@)), [ (Tus1, Y(@nr1))), (3)

where ¢(#) is the solution of (1), |
Definition 150, T'he scheme (2) i3 said to have order p 4f p is the largest integer
for which

L(f)=0(h?*1),

Defnition 9. Thsahond(? is i & 4d snsians wh i L V. 2. (D 5l
o(h).

We will use the notation f(¢)=f(¢, y(¢)) throughout this paper except where it
may be Gonfused. For sa<a<@y,y, lob t=(x—=z,)/h. Since

y(mn+1) hy(mn) =h 'E f(mn+th}dt;

(8) may be rewritten as

L() =b{[ fantih)di=8(f @, y@), f@ms, y@dD}. @

By the Integral Mean Value Theorem, there exists a point £ between @, and @4y
guch that | -

[(r@rmai=se, v
So L) — (€, y(@)) = 8(S (@, 9(@0)), F(@nss, 9(ames))).

Furthermore, if /() =%— exigts, then

[} Foutihydi=f o)+ [" 1/t th) (L—D)de
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2 S(f (@), f@nra)) =8 (F (), f o)) J dS(f (@), f (antth)).

Hence, we have -
Lemma 8. Let the function S(f, g) be continuous n its two variables f and g. Then
the scheme (2) is consistent with (1) if and only ¢f
S(F, f)=F. (5)
Moreover, if both f and S have continuous first derivatives, then any scheme (2) satisfying
(8) has truncation error o

L(7) =h [ AF ot ) (A=) =8 (f (@n, y(an)), Fantib)}ds, (O
where F(D=SL, 'tg, Fliyy~TRL L1,

The proof of the following theorem is similar to the one given in [2] for general
explicit one-gtep methods. |

Theorem 4. Let

(1) the fumction S(f, g) be continuous jointly as @ funciion of its two arguments i
the region fg=0, and

(i) S(f(w, y), gz, y)) satisfy the Lipschitz conditron

S(f (e, 9), f(z, w)—8(f(o, ¥, f(z, W) | <M(ly—y¢*|+|w—u"])
for all points in the domain defined by
a<w, 2<b, —co<y, ¥, w, W< +oo

under the constraints f(z, y)f (2, w)=>0 and f(x, y*)f (2, w*)>0, Then the scheme (2)
és convergent if and only ¢f 4t 4s consusient.

In order to get a second—order schems, note that

j f(@y+th)dt —f(m..)+ f’(a:,.)+—J F'' (wn+th) (1 —1)dt,

LdS(f(mn): f(ﬂﬁn-}-th)) =fi -{i_m-s(f(m")’ f(m)) s
187 (f ), flont i) A—t)dk.

Therefore,
Theorem B. If S, f €O, then the scheme (2) has a second—order rate of convergence
if amd only if _
~ S(f:f) f: 3f P 2- ()

Moregver, if the second derivatives of S and f are continuous, then
L) =2 [ (A=Y @t th) =21 =)8"(f (), f(on 1))},

where S(f(@n), flmatth)) =S(f(aa, y(za)), f(@ntth, y(2m+th))).

Corollary 6. Keeping S(f,f)=f, the second condition of (7} is equivalent fo one
of the following four conditions

o8, | _1 8@ f| _1
of o=t 27 oy g=t 27
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o8(g, f)| _28(, f) and 250, ) | _
af =1 g g=1" dy f=g

Buppose now both § and f belong to 2. Expinding f aboub the point @,.4 g =
(e +@ps1)/2, we have

J : f(on+1h)dt = for1a+ 'g_; I (Zns1/2) +O(R), (8)

On the other hand,
S(f (), f(@as1)) =8 (f (Tar1/2), J(@as1s2))

-
5"

PBU@IN | o ay
=} 218 (56)7; f(n) ), — (ﬂ’n+1“—ﬂ=n+i/n)
LPSUE), f@) (2 =ns1)®

o&? £ =R psars 2
" S (f égg;f (1)) _— (@ns1—Tnr1/2) (Tn—Tns1/2)
P ?8( ?_‘ Sggﬂz f(m)) 'hﬂﬂﬂﬂ” (mn+1“";n+1f2)ﬂ -

For gymmetrio schemes, S(f, g) =8(g, f)and, consequently,

S(f(mﬂ): f(_wll-i-ij ) =f(¢n-151,{2)+ }g {aﬂs(-fgg;;f(ﬂ))
+ P, I _y PSGYE) TN
on’ onog
: _@:S(I(g)hf(‘??)) =3S(f(§), f(??)) M ! yS(f(f), (7?))_ 2
But &) S @) gy ZEUL S D) gy,

FE(f), fn)) _PEfE), fm)) prp y e
3&3’!} af () 9f () Jnf 6.

Hence, from Corollary 6

S(f (@), f(@ns1)) =f (Bus1/a)

-l--};—ﬂ‘[.;f”-I-E_}Hrﬂ [3’8‘;‘{; _9_) 'aaggjf‘;}g g) J 1, ﬂ':ﬂ#n+1u}}

Substituting (2) and (8) into (4), we obtain the following theorem.
Theorem 7. If S and f €O, then each symmetric consistent scheme

SCf, P =f, 8(F, 9)=8(g, ) (10)
has a sccond—order rate of convergence, ai least. Moreover, if the fourth derivatives o F f
and N are continuous, then

It should be noted that symmetry is a sufficient but not necessary condition for a
scheme 1o be second—order. For example, the schems

| aeme i_fl +fn+1) /2 +ﬁfﬂ+1_
ParEate 1+fn(fh+fn+1)/2

+0O(A%).,

f!‘ N=2un+tlg

+0A%), (9)

+0%). (11)

is seoond—order but not symmetric.
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e

Corollary 8. A symmetric scheme is fourth—order it
{395’( f,9_ P8¢, 9 } I ‘ (12)
3f 3f39 f 0=NZn+13) 3f E=Tp+112
Now we congsider a general representation of consistent symmetric schemes (2).

| _f-9 _[f+tg
{ gy, 1 S,
and assume S(f, ¢)can be expanded in ferms of its two variables f and g¢:

S(f, =B, ) =3 k.

Using conditions (10), each consistent symmeti'ic jmplicit one-step scheme (2) has
the expansion ’

s -0 e 3 el OGO

where ag,, ; are real constants to be chosen. .
Furthermore, it is often ugeful to restrict the class of schemes to be homogeneous
in the sense that

S(cf, cg) =e8(f, 9) | (14)

for any positive constant ¢. For these schemes, we obtain the following conclusion:
Theorem 9. Asswme S can be expanded in terms of dts two variables f and g. Then
each homogeneous consistent symmetric nonlinear implicit one-stép scheme (2) has the
following expansion o

st o=lpt{-galz)"y O

awhere o, are real constants to be determined.

Obsorve thit the trapezoidal rule is the principal pars of each homogeneous con-
sistent symmetric nonlinear implicit one-step scheme (2). Hence, in this sense, these
nonlinear schemes are an extension of the trapezoidal rule.

Setting a, =0 for all £>>0, we get an “extended trapezoidal rule” with one extra
term: -

_ftg _e(f—9)” T
57 g)_—fz__ 3(f+e) " ! S

From (11),

L=t s o). (17)

In terms of rﬁeﬂns, the scheme (16) repfesents a linear combination between the
arithmetic mean and the harmonic mean of f and g: | |

s f+g ,‘ Qfgf"_-'. B
For example, if =1, the above scheme represents the harmonic mean between f and

4

Finally, we discuss the stability of the nonlinear implicit one—step scheme (2).
Lot f(z, y)=Ay and Y1 = pY,, Where p 18 the “growth factor” in the step.
Assuming that the scheme (2) is homogensous in the sense of (14), woget . - -.
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| p=1-+hMS(1, p). (18)

Definition 10. A4 nonlinear implioit one—step scheme (2) is said to be A-stable if all
the roots of its characieristic equation (18) satisfy |p| <1 for any Re 24 <0,

For nonlinear implicit one—stop schemes, (18) may have more than one root for
a fixed A2, and it may be possible 1o choose which root the scheme follows, unlike the
case for multi-step methods. Hence, the following definition may be of some praoctical
value. |

Definition 11. A nonlinear implicit one—step scheme (2) is said to be conditionally
A-stable if at least one root of ¢is characteristic equﬂtm (18) satisfies |p| <1 for any
Re Me<C0,

Theorem 12. For each real symmetric homogeneous scheme O (f, 9), the charac-
teristic equation (18) transforms the unit circle of the p plane o the imaginary awis of
the ) plane.

Proof. Sinoe S(f, f) S(F, =8, ), S(f, £)ie real for any f. Hence, for
-

P

Mo = S(e®, 1) = S(ﬂiﬁjﬂ -iﬁfﬂ)

is purely complex.
A necessary requirement for a homogeneous scheme o be A-stable is that it is
stable at infinity.
Theorem 18. For a homogensous mdmwr implicit one—step scheme (2) to be
A-stable a necessary condition is that all roots of
S, p)=0 (19)
satisfy |p| <1, And for if to be cand@twnmllg A-stable, at least one root ﬂf (19) must

 satisfy |p] <1.
As an example conmder the sta.b1l1ty of the scheme (16) with the characterisiio

equation - : : )3 .
_; pt+l  al(p—1 }
F HM‘{ 2 2+ I° Wy

If |p| =1, then p=¢€*, 045{2@, and

p—1 _;
PES itan 8/2,

Hence, (20) may be rowritten as
o 2iten B/2
1+altan 8/2}%"
It follows that if |p| =1, then A is purely complex and les in the interval
(—éa%2 4o=1/%) for @>0. For a<0, AA may assume any value on the imaginary axis.

Also note that, for the scheme(16), equation (19) becomes

 That both roots of S(1, p) are on the unit circle for a<0 and that one is inside
and the other is outside the unit cirele for a>>0 follows from the well-known resuli

Lemxia 14. The one-to-one mapping in the complex field

-2 - (21)
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maps the domains |z| <1, |2| =1, and |2|>1 onto Re W<0, Re W =0, and Re W >0,
respectively. _
The characterisiic equation. (20) can be rewritten as

(o) +-- W (p) ~1=0, (22)

where W is defined in(21), | -

Since W =0 is not a root of equation (22), any root W satisfies AA Wi+ (—a)W}
=9  If a<<0 and Re A< 0, then Re W0, whence, by Lemma 14, any root of the
characteristic equation (20)for the scheme(16)satisfies|p] <1,

Also note that, if a#0, then the roots of the quadratic equation(22)satisfy WiW,
= —a 1., Henoe, if a>0, then Arg(W.)+Arg(Ws)=w and, consequently, either
Re W,—Re Wa=0 or Re Wy and Re Wy have opposite signs. Therefore, by Lemma 14,
either both roots of the characteristic equation (20) for the scheme (16) satisfy |pi =1
or one ig larger than 1 in magnitude and the other-is smaller. According to Theorem
12 when Re Ah<C0, we may simply choose the value of Y..4 in the scheme (2) with
(16)such that | Y es1] << |Y |- Thus we have proven

Theorem 15. Scheme (16) is A-stable for a<<0 and conditionally A—stable for a>0.

For the more general scheme(15)with a finite number of terms, the correspond-
ing characteristio equation is '

3 (W ()} + - W (p) =10, | (28)
By the relationship between coefficients and roots,
2n+2 2
-1 2R 2

where Wy (k=1, -, 2n+2)are roots of (23). Hence, if Re(k?u.);:ﬂ, then Re W, <0 for
at least one root Wy of (23). Therefore,
Theorem 18. Each scheme (15) with & finite number of terms is conditionally

A-stable.
Remark. Theorem (18) is valid even if the coefficients oy of the scheme (15) are

complex.

3. Derivation of Some Geometric Schemes
The trapezoidal ruls can be viewed as an arithmetic mean of fa and fy:q since

| S(fa Fars) = (fatFurd).

Lot fa=tana,, fai:1 = 8D anis, (Y (@ni1) — y(2a))/h = tan dyi1/a. The trapezoidal
rule satisfies

a1 cys 10 = 5 (181 0+ a1 0y, (25)

It is easy to see that the scheme (25) is poor if the angle o, Or a,+1 i8 close to 90°.
In this case, it is natural to replace (25) with the arithmefic mean of the angles e,
and og1:

Ol i1/ = %(ﬂn +Cint1) . (26)
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The corresponding functiﬂn S(far fuee) 18

8(fuy Fas) ~LLHE) (ot P bfufura—1 (27)
_}L 7 +f n-+1
From analytic geometry, the ourve which satisfies (26) everywhere is a circle. So
we call (27) a circle scheme. The cirele scheme (27) is not linear with respect to the
solution y(z) or f, but (26) is linear with respect to the angles. Hence, if the angles
are not too large, the circle scheme is close to being linear. In fact, if we rotate the
coordinate system by an angle B=ay.1/s, then the circle scheme coincides with the
trapezoidal rule in the new coordinates.
Introducing a parameter o into (27) leads to a class of elliptic schemes:

BEE, Fonss @)=L Hh) (mﬂ?ff+})}1fﬂ+fnfﬂ+i—aﬂ | (28)
3 h’H_ 1 E : n_.l_ ‘H; .-' :
Note PE(f, @) __ (@+¢"E  2E(f, 9 _  (a*+f)HVE
3f ({I.H~}—fﬂ)1fﬂ(f+g)? ag (aﬂ+‘9.2)1jﬂ(f+g)

cF _oFE E-2f &' oFR E
af* eof &'+’ dfog of a’+4*’
TE| _ P s, i | o

of l1=0 . 2(a*+f*)" 0Of0q 1=y 2(*+F*)"
A straightfoward computation leads to the following conclusion.
Theorem 17. E (f,, fai1; @) in (28) has the following prupwtaes

(fﬂ+fn+1)E:”‘0 with ‘=" éﬁfn+‘fﬂ+1ﬂ_0’

oK - oE » of
f Y, Of n+1 o (fn +fn+1>l Z
]Il.i]].(fﬂ, fﬂ+1) QE(fn; fn-f-l'i ﬂ) -ﬁ;max (fﬂ: fﬂ+1):

- (fnfn-?l) UE{E(JCH; fn+1i ﬂ') < fﬂ +éf“+1 if a > (fﬂf!l‘l*‘l‘i) 1;{

Ef:_?:—:i NQE(f"J fﬂ+1; ﬂ) = (f"fﬂﬂ;— ur if- a < (fnfn+1\ 1;5.

As a function of a, K has only one fized point @ = (f,,f;ﬁi)”ﬂ, for fﬂf,,+1:>0_

Hence, the elliptic scheme (28) represents a mean which lies between the arith-
metic mean and the harmeonio mean. |

Similarly, we can derive two other geometric schemes: the parabolic scheme and
the hyperbolic scheme. An easy way to derive the parabolic scheme is to apply the
trapezoidal rule in a coordinate system rotated by an angle a—arctan(e) from ths
original coordinate system:

f"+fﬂ+i fnfﬂ+1—{—{3 T
Sl et P e e (29)

Substltutmg hyperbolic functions into the formulas(25) (26)instead of trigonometric
functions, we get the hyperbolic scheme

ot ﬂﬂ“"‘fn.fﬂl {(ﬂ — ) ':'5’- —~fain }1;3 >
H{( fa, [rs1; @) - S (30)
Since schemes(28), (29), (30)are 2ll symmetric, by Theorem 7, we have
Theorem 18. Tre elhpt@c parabolic, and hyperbolic schemes (28), (29), (30) are

second—order. The local truncation error for the elliptic and parabolic schewws 28
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.‘E__I_fﬂ
and for hyperbolic scheme(80)
_E- P Sffm &
192 { —{I‘E*i-'fﬂ} - n+_ﬂ.+0<h )

Remark. 1. In practice, the parabolic scheme has an advantage over the elliptio
and hyperbolio schemes in that it does not require square roots. Also, it is valid for

all f, 5 f,..[.;[_ inﬁluding fn +f,;+1 = (J,
2. The parameter ¢ can be chosen so that one of the schemes (29) and (80)

is fourth—order.
3. These geometric schemes are not homogeneous unless we multiply the

parameter e, as well as f, and f,.1, by the constant e.

4. Generalized Mean Scheme (GMS)

In addition to the above geomefric means, another useful mean for solving
O. D. E. s is the Generalized Mean developed by Sun Jiachang™,
Definition 19. For a given positive sequence a = (as, +, a,) on @ real plane (r, t)
a generalized mean of the sequence {a} S(as, +, ay; 1, 1) is defined by
ri
Say, o, ar, ) ={BZDILUID rgp .., s, (31)
where [y, -, yal f(¥) is the (n—1)-th divided difference of the function f(y) at the

POINLS Y1, -0, Yn
Now, we use the generalized mean (GM) in (81) to construct the generalized mean

scheme (GMS), a nonlinear implicit scheme. In this paper we only consider the one-

step case. From (81), the GM between f, and fu.1 i8
1 D Tl }i.frr
]

- i3
SCfw furs 72 O =175 -
where r, ¢ are real, Substituting (82) into the local trunocation error formula (11),
we gel
Theorem 20. Let f () have constant sign for €, <& <<@y.q, then each schems (32)%@%
two real parameters (r, t) is second—order at least. Moreover,
L{fs r)= —~—-—{f” [B—r(241)] %}—E} +G(h5), whereg b =Ty 1—T,. (33)

:E_.m,,+-2-

(82)

1o simplify the study of this scheme, we consider the resfriction r¢{=1 on the
parameters r, . The scheme (82) reduces to

S(fo fuvs Y=g LEZLL (34)
where
S(fﬂ: fn+1-.'l 0) e 10;5}1:5}& ’ S(fm fn+1¥ _1) e ]-Og;i{n.f:);n+1) ¥ (35)
and the local truncation error (33) becomes
L(fi )=~ 351"~ @=L} oy, (86)
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I+ is obvious that for r =0 the scheme (85) is A—stable in the sense of the previons
definition, because this scheme is exact for any exponential function. In general, the
characteristio equation (18) for (84) is

1 Aar P1+r___1
Q 1 | 1 r pr—-—l
oI r
sy pi—1  Ahr
(p—1) S i = (87)

Note that 1 |p[*#n—plp[*— g o+ % —pi** o' 1p 1

( _'1) 1+r ] ( 1+r 1) (P1+r 1)
Let p=Re®, Then the real part of the numerator is
RN _ (BY% — Reos B— (R — R cosrB—1
which, for »>>0 and RB>=1, is greater than or equal to
Rin _ (Ri+or By (R*— R —1=(R—-1)(R —1) (R —1)>0,
whenoce Re AM=0 in (37). Consequently, if »>>0, then the scheme (34) is A-stable.
For r<<0, r# —1, rewrite (37) as -

(g W) e (i )0 2

First, assume = is a rational number: r=—m/n, where m and n are two positive
integers. Substituting Z =p/* into (38) and multiplying by 2™, we get

z"+ﬂ—(1 lq’rm)z" ( flfrm)zm+1 0.

Sinoe the product of roots of the above equation equals (—1)™*", if any root is greater
than 1 in magnitude, then at least one root is less than 1 in magnitude. By continuity,
this holds for all real r<0, including r= —1, Therefore, if r<(0, then the scheme
(84), (86) is conditionally A-gtable.

In summary, we have proven

Theorem 21, The scheme (84), (85) iés A-stable for each parameter r=0 and 1s
conditionally A—table for r<<0.

Given a fixed », the scheme (34) is exact for equations

y' =f(w, y(w)) =01(z—0)"",

where O and O; are constants, just as the trapezoidal rule is exact when f is a linear
funotion of x. This explains why the GMS may lead to better resulis near a singu-
larity, provided we can find a good approximation 1o 7.

Noto that*we can interpret the GMS as an intergrand approximation method".
That is, the discrete numerical solulion {¥ .} can be extended to a coniinuous approx-

imation ¥ (@) to the solution ¢ (o) of (1) salisfying ¥ (@,) =y(xs) by

Y (@)=Yt | PLFC, Y (D) 1 (8)ds,
where, for € [#s, Zasal,
PLg; r] ()= { 9(ar 22 4 g(ay0) 252

P[g; r] is a nonlinear interpolation operator computed by firsh raising ¢ to the power
r, then performing linear inlerpolation and finally back transforming by raising the.
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interpolant to the power 1/r. Of course, if r=1, P reduces to a linear interpolation
operator. -

A similar technique can be employed to enrich a piecewise linear space to solve
singular two point boundary value problems, using either the finite element method
or the finite difference method (see [10, 11]).

In order to obtain a more accurate scheme, weo set

it 9
el f’rﬂ s=m,.+ff‘;!~_' 8 )
From (88) - the scheme (84) is fourth—order acourate for this value of r.
It is worth mentioning that the function in (39)

FG, 1 =L o (40)

often remains bounded even when f and its derivatives are unbounded. For ingtance,
F is a constant for any power funetion f=0Ci(z—0Co)°. And, more interegling, F is
identically equal to 1 for any exponential function f=0C1exp(0s(z—0)).

However, F is not easy to compute, as an evaluation of f" is required. Somse
high-order schemes based on non—polynomial interpolation developed by Lambert™
and Lambert and Shaw™ have not been used widely, posgibly because they too require
‘the evaluaion of higher derivatives of f. Furthermore, it is not clear whether these
methods are applicable to systems of equations.

Fortunately, we can avoid computing " in (39) by setting

i 1 f n+l1 _f_n_ ) |
r=ilFn ) -
With this approximation, the scheme (34) refains its fourth-order rate of conver-
gence. Also, it remaing exact for f(z, y(z)) =0 (x—Cp)'",

Computing experiments show that there is only a slight difference in acouracy
between using (39) and (41) in the scheme (34); sometimes one is a little more accu-
rate, and sometimes the other. But (41) saves computing time, and f" is not required.

An alternative derivation of the GMS is obtained by taking

Ff =fHr(rs0), B =f, Gu)=|" FEdE. (42)
With this notation, (34) may be written as

S(fa, fass) = [F-Fuss, F10()=EE ) "GS- (a3)
| f n+1 ¥ f %
This formulatioh can be generalized by considering other functions F. Using
Theorem 7 and the local truncation error formula (11), we have
Theorem 22. For any one-to-one map F, (43) defines a second—order one—siep
implicit scheme with local truncation error
i ga BFA [
L == EEL(EEL) T
This formulation unifies most of the schemes described in this and the previous
gections. Some examples follow.
1. Ff=f leads 1o the trapezoidal rule.
2. Ff=¢" loads to the scheme (85).(It is independent of the parameter r)

+O0(A°). (44)

T=Fn+L 3%
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3. Ff =5 ‘}J; 175 loads to tho aliptio scheme (28).

4. Ff = (l—l—f”)l”ﬂ leads to the hyperbolic scheme (30).
Many other schemes can be derived by using this formulation.

5. Some Computational Comideraﬁbﬁs for the GMS

First, we consider how to solve the 1mp1im1: quuﬂtion (2). For an initial value
system (1) with steep gradients, the following iteration may be employed,

Y®y =¥y t-hS( fa, FED; 1%D), (45)

where |
5 1 (1) Jn |

-1y _ - 1 . . .dn 46

! h(f::_fz“ f:.,.)' (46)

For stiff problems, a Newton iteration should be used insiead.
| .A.E a Blmplﬂ stO];iplng oriterion for the iteration, we use

” Y[ ﬂiﬂ | <ey,

where ¢, is a parameter to be specified.

The starting value, ¥(2;, is computed by a eonventmnal explicit methed. For
simplicity, we uge the Fuler Method for the numerical tests in the last goction. Of
course, a more aceuratbe predictor may be used. |

The rate of convergence of the iteration (45) depends upon the value of the
“contraction factor”

S Ea‘S 7, oS or
dy ~4 c?f 8‘; k or oy’ | (1)

where, for the GMS,

s __ 8 o« {fﬂfmgf—fwlogf,. flog f—filog fa g s
or (1+r)®  1+r - =7
If f is continuous, then, | '

S > 11-T fﬂ:IﬂShﬂO: f__}fﬂ:

and

oS . fa r {1+r 1, 14w 4 }=
or }fr(1+*r)+l+fr T fﬂlogf".+mf" 7 (f,.logf,,+rf,.)

Also, from Theorem B, 8S/9f—1/2 ag h—>0. Therefore, for sufficiently small i, tha
iteration (45) is convergent and, moreover, its rate of convergence is close to that of
the trapezoidal rule using the same functional iteration procedure.

It is worth mentioning that the GMS is particularly well-suited fo solving
problems having steep gradients, especially those problems for which f(a, y(x))
behaves like a piecewise power function of #. In practice, it may be more efficient to
use the GMS only on the sections of the problem having steep gradients and a conven-
tional scheme on the sections of the problem where f(z, y(z)) is well-behaved. We
consider two fourth-order hybrid schemes of this type. If |fa; <<f", then Mix] uses
the cubic Hermite scheme (modified trapezoidal rule)
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3 |
Ypru=Y 14 ‘fﬂ_;f”l ] %(.ﬁ:"‘_ﬂﬁl) (48)

And MixII uses the olassical fourth-order Runge-Kutta scheme in place of (48). If
| fa| >f", then both MixI and MixII use

8(fus fura) ==L227Se _ 3¢ |r|<er,

10g ( fati/fa)
S Fust) = “’ff{ 1’2};1’-’ A el <er®,
and _ | .
S(fay fre1)= l—T—rr f “E}E{ :;}: {:_);If 5 . otherwise, (49)

where f” and er” are constants. In our numerical tests, we take f*=2 and er*=0.01.

6. Extension to Systems

So far, our discussion has been restricted to scalar equations. However, we have
used nonlinear implicit one—step schemes successfully to solve gystems of equations;
some numerioal results are presented in the last section. |

For systems, up to now we apply the scheme (2) 1o the individual components of
the system. The parameter » is a veotor whose component elements ars determined
componentwise by formula (46), where

F=gpfe g =Ly
dw : ox T oy
18 & veotor. Henoe, the Jacobi matrix of f(#) needs to be computed for finding the
index vector r o get a fourth—order scheme, The advantage of (41) over (89) is more
significant for systems than for scalar equations. |

The analysis of nonlinear schemes for systems of eguations is an open problem

that we will consider in the futurs.

7. Numerical Tests

In this seotion, we present some numerical results. Throughous, ¥(») denotes the
solution of the problem (1) and O(x—¢)* is a piecewise approximation to the funotion
y'(z), where p=1/r is the index of the approximation. If p<.0, the approximate
position of the singularity is

. E=a,+h {(—&)r —-1}_1 ;
f ntl ;
Throughout this section, we use the following abbreviations:

GMS———-the scheme (84):

R-K the classical fourth—order Runge—Kutta scheme:

C-H-——-cubic Hermite scheme (48);

MixT the hybrid scheme composed of GMS and O-H (49);

MixII——the hybrid scheme composed of GMS and R-K;

L-S the scheme pro posed by Lambert and Shaw!®:

Error Y,—y(x) for the GMS:

Er(f)——the error in the first derivative ¥, — ¥’ (¢) for second-order.equations.
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A uniform mesh, h=a,,,—2,, is used throughout the section. The Foriran
program was run in double-precision, on a DEC-System 2060 computer at Yale. The
iteration error e, is taken to be 10717,

Test 1.5 y =1+, y(0)=1
with solution y{&) = tan(m +-§-) which has a strong singularity at z— %:—

Table 1. x=0 (0.05) 0.75

| y GMS ‘o g L8 R-K

! o ; -

0.70 11.6814 11.6808 —-1.975 0.7828 11.6813 11 .6680

0.75 28.2383 28 .2305 -1.993 0.7851. 28.2378 ] 27 .6047

Remark. For the exact solution, p= —2, E“'if‘ e 0,7835,

X

Test 2." vy =y +baxe?/ % 4(1) =0
with solution y(a) = —b log(2—2) which hag a weak singularity at o=2.

Table 2. x==0 (0.05) 1.95

2 y GMS o £ I8 R-K
1.90 21.8745 21.8753 —1.055 2.001 21.8748 21.8746
1.95 29 . 2084 29 2008 ~0.997 2.001 20 .2099 20.2077

Remark. Por the exaet solution, p=—1, {=2,

Test 3.0 (1—2)y' =ylogy, y(0)=¢"
with solution g(2) =¢>¥ @~ which has an essential singularity at #=1.

Table 8. x=0 (0.05) 0.95

z y GMS P ¢ L8 R K
0.90 7.3891, 7.8902 —2.521 0,963 7.8954 7.8646
0.95 54,5082 54,8956 —3.126 0.976 57.1189 47 1138

Remark. For the exact solufion, p= — oo, fm=1,

These resulis show that the GMS is more accurate than the classical fourth—-order
Runge-Kutta scheme in Tests 1 and 8; the accuracy is about the same in Test 2. Also,
the GMS is rhore acourabe than the scheme of Lambert and Shaw in Test 3; the
acouracy ig about the same in Tesis 1 and 2. However, the GMS does not need f*

which the L-S scheme requires.
Test 4 (Artificial). A system of equa.tlonﬂ oonsisting of four components:

vi=—0.1e7"/ys, | ¢.(0) =0.35,
y2=2{(y1—0.1) (10y3)°}*%, ya(0) =0,
ys=¢"""log y,, y3(0) =0.1,
Vs = 24/s¥a, | v4(0) =e2,

The soluntion is
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Y1(2)=0.25(1—a)*+0.1, g(2)=—log(1—x),
Ys(2) =0.1(1—2) 7%, ya(@) =e"¥ ™2, |
Table 4. h=—0.05
% Yz () fe £ GMS R-K C-H
0. 900 | | SR B ]
1) 0.1000 3.01 0.77 0.1000 0.1000 0.1000
(2) 2.3026 —-1.00 0.91 2.3025 9.1122 2.2580
(3) 10,0000 5,00 0.97 9.0902 8.8420 9.8817
(4) : 7 .8890 —~0.25 0.96 7.3867 |  7.0125 7.1183
0.950 | = |
(1) 0.1000 —11.54 0.27 0.1000 0.0999 &
(2) 2., 0057 —0.50 0.95 2.4771 3.5606 "
(3) 40 . 0000 5.53 0,84 36.4946 40,0606 %
(4) 54.5982 —3.97 0.98 50,0038 32,9154 "
(h/2=0,025) 54,4607 46.0766 44,9161

¥ The C-H scheme overflows on the last point using (45).
Remark. On the last point x=0.95 the vecior of first derivatives is equal to (—0.16 x10~8, 2.1, 1.4 x 108,

3.8x109),
Test 6. A problem with an integrable singularity:
o 'g . ) t (D) O—(1+1) 1<' &
st | ..I_m &5 — — ' = t'{ -
The solution is
(@) =si n(m 1)1"2: )m— 8
Y 'g o) 1vs 1P| -
Table 5. Errors x=0.1 (¢.1) 1.0
z : == — (), 1 t=—0.3 t=-—0.5 I=—0.,7 #l=—0,7T»
0.1 —0.214—5 —0.115—4 ~0.60—5 —0.87—4 0.54—12
0.4 —0.237—4 —0.416—-6 0.70—4 | —0.19-3 " —0.18 =10
0.5 0.245—1 0.959—1 0.634+0 ~0.74+1 0.29—-08
0.6 - 0,431 —1 0.150-+0 0.87-+0 —0.86+1 0.29—08
0.9 0.507 -1 0.178+0 Palesd —0.10+2 0.40— 08
1.0 0.533—1 0.187 + 0 0.114-1 —0.11+2 0.42—08

m
Remark. The right column is the error for ancther problem -

—{1+1)
e (L) y(e—0.5)-1, y(0) =2

1+1
the solutiom of which is
y(2)=0.5—z)1/(1+1), for z<1/2,
Cy{(x) =(x~0.5)1/ (141}, for a>1/2

1
which bas a turning peint at z=—5-,

y —1I<<i<0,

The GMS scheme may be used with invariant imbedding to solve linear two—point
boundary value problems with various singularity properties. For these problems,
y''= f' is available directly and may be used in the computation of the fourth—order
GMS scheme using (41) to compute 7.
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Consider the two—point boundary value problem
y" (@) +p(@)y (&) +q(a)y() =r(2),
ay(0) + by’ (0) =¢o, a1y (1) +byy (1) =c4,
To solve this problem, we use tha sweep mﬂthod of Glﬁlfa.nd and Formln (seo [1],
p. 133). (See also [7] or [B]) .
For by50
(1) the initial valnﬂ problem for the furwa,rd gweep is

: 1&(0)———1}:

(60)

$'=—g—pu—u

@ =1y — *v(u-—i—p), &J((})==

0
(ii) and the initial value problem for the backward sweep is

Y =uytu, y(1) =S

For bu=0
(i) the initial value problem for the forward sweep is
' o =1+u(p+au), u(0)= ——Zi,
L

o =u{r+gqv), ¥(0)= =

(ii) and the initial value problem for the backward sweep id

¢gu (1) — b1 (1)
a1 (1) 2 b]_ ;

Test 8. An unstable two—point boundary value problem
y" — 165y’ — 2700y +4 . 956155 =0,
i/ (0)=0.015, g(1)=0.001e"
with solution y(a) =0.001"*,

wy' =y+wv, y(1) =

Table 8. =0 (0.005) 1
e ———————

x _ NI ¥ Exrror E(C-H) I Er(f) Ef(C-H)
0..000 2 0.752—4 | —2.48-5 2.73—7 | 1.5-2 - s
0.005 19 2.106—8 | —1.08—5 1.26—7 | 8.2-2 1.6—4 | —1.9-6
0.500 a7 1.808 _1.95—8 | —8,28~8 27.1 1.9—7 3.3—7
0.900 34 7.29442 | —8.48-11| -1.31-5 1.14+-4 —1.8-8 2.8—-4
0.950 " 35 154443 | —1.00~111 —2.77—5 | 2.8+4 1.8—8 6.0—2

___-______.—_—h-——-ll—-l—-——_——____-—_
Remark. NI—number of jterations with g,=10-10 for the GMS.

Test 7. A linear singular perturbation problem with constant coeflicients

where

Ly=

y(0) =y (1) =0,
g=14-e"+¢ p=1+4¢",

—ey'+y'+ (1 +e)y=F(2), In (0, 1),

f(@)=(1+e€)(a—b)v—ea—0b,
with true solution
(@) =g WtXi-afe L o2 — g+ (a—b)w,
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Table 7.1. Maximum error in Y at the nodes

—0,24—3

e 1/h . RK GMS MixT C-H M

0.1 10 0.81+40 —0.18-1 | 0.79—3 0.87—1
20 | 0.11-1 0.75—4 —0.12—4 0,47 —4 0,993
40 0.45—3 0.10—4 ~0.74=8 0.29—5 0.16—3
80 0.91—5 0.23-5 —0.48-7 0.18—6 0.33—4

0.01 100 |  0.21+40 -0,24—-2 -0.19~4 0.56—-8 -—0,24—2
200 0.75—2 0,855 —0.12—5 0.34—4 0.10—4
400 0.30—3 0.81—6 | —0.76—7 0.21—5 0.17=5
800 | 0.15-4 0.19-6 | —0.47-8 0.13-86 0.34—6

—0.19--5

R-K GMB MixT
0.1 10 0.3441 —0.194-0 0.38~3
20 0.124-0 0.83-3 | —0.12-3 0.52—3 0.25—1
40 0.49—2 0.11-3 | —0.80—5 0.32~4 0.73—3
80 0.41-8 0.25—4 | —0.50-8 0.20—5 0.28—2
! -
|
0.01 100 0.2142 ~0.2440 | —0.19-2 0.57 -1 —0.24 40
300 0.75+0 0.66—3 | -0.12—3 0.34--2 0.27—2
400 0.31—1 0.82~4 | -—0.76—5 | 0.21-38 0.76:~3
300 0.16-2 0.19—4 —0.48—6 0.13—-4 0.29-—-3
0.001 1000 0.194-3 ~0.124+0 | —0.19-2 0.54+0 —0.12+40

M

Table 7.3. CPU TIME in seconds on & DEC 20

M

¢ 1:/h R-K GMS MixI O-H MixII
0.1 10 0.08 0.57 0.48 0.38 0.283
20 0.15 0.52 .41 0.88 0.21
40 0.28 0.64 0.54 0.62 0.37
80 0.55 1.15 0.93 1.12 0.68
0.01 100 1.83 .66 5.63 6.20 2.82
200 3.88 7.49 6.78 7.83 4.69
400 7.30 12,08 11.48 13.96 7.02
800 14.63 23.36 21.76 24.77 15.62
0.001 1000 ° 91.82 58.30 47.74 50.17 23.40
M
able 74. S —
Table 7.4 7 1
| e R-K | GMS MixI C-H MixII
0.1 0.314-0 —0.18—1 —0.24-3 0.79—38 0.37—1
Error 0.01 0.2140 —0.24-2 | —0.18—4 0.56~3 0,942
0,001 0.204-0 —0.12-3 -0.19—5 0.54—3 —0.12—3
0.1 0.8344-1 —0.1940 0.38—23 0.88—2 0.464-0
Er(£) 0.01. 0.214-2 —Q.244-0 —0.19-38 0.57—-1 —0.2440

0.001

¢.194-3

—0.1240

—~0.19-23

0.54+40

—0.1240

M}
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