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Abstract

Based wpon a new error bound for the linear interpolant to a function defined on a triangle and
having continuwous partial derivatives of second order, the related error bound for a-th Bernstein
tirangular approximation is obtained. The order of approximation is 1/x.

1. Introduction

Bernstein-Bézier polynomials, or surfaces, have been studied extensively™—?,
In this paper we first present an error bound on the right-hand side of (12) and show
that the coefficient 1 is the best. Then, based on (12), the error bhound for the
Bernstein—Bézier triangular approximation is obtained and the coefficient 1 is again
proved to be the besi.

2. Definition and Notation

We begin with a brief discussion on the area coordinates of points with respect
to a given ¥riangle. Let T' be a triangle with vertices T'.= (2, 9,), a=1, 2, 8, and
area |4, An internal point P= (#, y) of T divides the triangle 7,7",F, into three
smaller ones, PT.T;, PTT,, PT'T,, with respective areas |4:|, |da|, |4s|, which
may vary from zero to | 4|, depending on the position of P. In other words, the ratios

Th =-[f171|], = inj[i, W == ”13" will take up any value between zero and unity. Here

(u, v, w) with u+v4-w=1 are called area coordinates of the point P,
It is easy to see that

4], 1 1 1w
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Let F(«, y)be a function defined on 7', where # and y are Cartesian coordinates;
the related function f dependent on area coordinates u, v, w is given by

flu, v, w)=F(outz0+ 230, y10-+9ya0+ysw), (2)
The n~th Bernstein-Bézier polynomial of the function f over the triangle 7' ig
given by ‘

Bn(f: u, v, “H.?.) = 2 f(i: ? ’ i )J?:jrk(ul v, ‘IU), (3)

§+f+k=n n T T
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wheore

sy, v, w) = rr dve? @

and 4, j, & designate nonnegative integers such that 44+4j+%k=n, Funoctions in (4)

are callod Bernstein basis polynomials of degree n, for they form a bagis for all

k

hivariate polynomials of degree n. In some cases B,(fiu, », w) and f ( :;_: f.;: T;)

are replaced by B, (f) and fi,; for simplicity.

We outline the bagic properties of Ba(f) as follows:

(a) B, is a positive and linear operator carrying every function defined on T’ to
a bivariate polynomial of degree n.

(b) B.(f) interpolates to f at the three vertices of T, i. e. Ba(f; T =f(Ts),
a=1, 2, 3,

(0) Since the functions Ji,; in (4) are nonnegative on T' and sum 1o (ut+v+w)®
—1, each point on the Bernstein—Bézier triangular surface is a convex combination
of fi..x Hence we can say that the surface (8) lies within the convex hull of the

a F

T n
with the function f.
(d) If f is a continuous function on T, then

lim Bn(fi u, v, 'H-') -_—f(%, v, 'H.l) (5)

n—s0a

points 4,4 =(i i i; f;,_.;,;-,), i+7-+k=mn, which are on the surface assooiated

uniformly on T’ (see, e. g., p. b1 of [11);
(¢) Bimple caloulation shows

o= ey LG DT G DTt (DT 1l (6)

which enables us to express B,(f) in terms of the Bernsiein Dasis polynomials of
degree n+-1.

Buf) =2 B (Gfersatifurrsthfon-0 ik (7)
n+1 ¢+jfe=n+1

Concerning the surface pointd Py, ¢+ j+ k=n, in (e), we further note that

there are altogether (%+1)2(n+gj such pointe in the space. If a line segment ig con-

neoted each two of the three points

P’i‘i‘lrf!k] Pilj'i"j-lk} Pi'ij1#+1J
where i-+j-+k=n—1, a piecowise linear function on 7T is obtained, which is denoted

byr f,,(u, », w). fp is called the n-th Bézier net of f, in accordence with literature in
Each of the points< .
//////Z*;,_ ///A"‘* /////ﬁ"* ///’z"' . %he. subtriangles in S,(7) can be divided
Fig. 1 o ;

The projection of f, onto the triangle 7’
produces a subdivision of T, denoted by 8, (7).
/////J,’r,. ////[ﬁr _ /////ﬁn —mn ig called a node of 8,(T). S4(T') is illustrated

| CAGD (gee Farin®™).
////Aftﬂh
, --—) satisfying ¢+ 7+ &
into two categories:
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(1) With vertices
(634 By (3 FH LR w), (8)

n ' o’ n n’ n ' n/’
where ¢+j+k=n—1,

(ii) With vertices

i=L § kY (i g-1 kY (5 § k=1
( n ° on’ n)’ (n’ n n)" (-n’ n’ o0 )" %
where 44 j+k=mn+-1.
For example, the shaded subtriangles in Fig. 1 belong to the first category.

It is easy to verify thab the Bézier net f, restricted on the subtriangle with
vertices in (9) has the following equation

=@—m)fi1,50+ (G—00)fy -1+ F—nw) fi, 4,51,
where 44 j+k=n-+1. The following equality
( % 2' k )= ) (@?—1 _g_ _I’:_), ; (*L _j—l k)
n+-1’ a4+1’ a1 n—+1 n ° n’ 9 n n+1\n’ n > n
.k ('b q k—l)

X

n+1 n 7
indicates that the point (ﬂi % —:I?— T ﬁ_]r_ 1) lies ingide the subtriangle with

vertices in (9). Thus (7) can be rewritten as

Bif)= 3 fu(e Lo, Ao

i+j+k=n+1 n+1l’ nt+l? n+l

and hence we have

IBn(f) "-Bn+1(f) [ <

f+i+ke=n+1

- 1’ .? ]‘7 f n+1 1
f(n+l’ n+1’ n :L)rJ‘”‘F $19)

e i o
417 Bld1® wmpd

3. Lemma

From (10) we see that to estimate | (By— Bp:1) (f) | it suffices to estimate the
difference between f and its n—th Bézier net 7,

We need the following

Lemma. ZLet T=T,TT; be a triangle with sides hy<<hs<<hg and vertices
To= (%a, Ya), =1, 2, 3 respectivelyy. Lot F(w, y) be a Ffunction having continuous
partial derivatives of second order on T. Seai

ya
M:%.@?EET (?;3@-9_" %” %) m:chger ma.x | Emﬁg 1!3;1;2 )
(11)
Then
[fCu , v, w)—Z(f) (%, v, w) | <Mk (12)

and the coefficient 1 is the best, where f is dstermined by (2) and Z(f) is the linear
Jfunction interpolating to f at the three vertices of T.

Proof. Let
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olu, v)=f(u, v, 1—u—2),

where 0<u, v, u+2<1. The plane interpolating to f ab the three verhces now hag
the equation

Z (p) (u, v)=up(1, 0)+vp(0, 1)-!-(1—%—@)?(0, 0).
Sinoe p(1, 0)=p(0, 0)+ [ pulz, 0)dr,

@(0, 1)=¢(0, 0)+ Jj @s (0, o) do,
p(u, 1) =00, 0)+uf pu(ur, O)dr+s | ¢.(0, vo)do

1 (1
+uw jﬂjﬂ@u“(ﬂrj vo ) dr do,

&y

b WO have

where @,= %, Pp= g»‘v and gu,=

p(u, v —2(9) (o, 0 =u [ [[7 (s, 0)d¢|dn

1 v it
£ '!«"L U P (0, 1) dn] do +uv Ju L pun(uv, vo)dr do, (18)
Let . |
Hence
lo—Z (o) |\m<%Muu<1—u> L Moo (1—2) + Mg << Mo, (16)
From (1), it is easy to verify the relation
Puu Fﬂm
(pug = Mg me (16)
Pov Hyy
with
(@~ 23)? 2 (@1 —23) (41— Y3) (y1~9s)*
My =| (B1— @) (a—w3) (@1—g) (Ya— Ys) + (wa—3) (Y1 —Y3) (Y1—Ys) (Ya—9s3) |.
(w2 —25)? 2(@a— @) (Y2— Ya) - (ya—9s)®
(17)
It follows that .
| (Puy Puv, Pov) [| o< M N (Fozy Foyy Foy) | w<2MAZ,
and then
M < 2MhAs, | - (18)
Now, from (15) and (18), we conclude that
lo—Z (@) | o< Mh3,
In order to complete the proof of the lemma, let
Ti=(—1, D), Ta=(1, =D, Ts=(a, @), a>9, (19)

and
Flo, p)=(—9)"/2, | | (20)
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Pl

It is easy to see that the linear interpolant to F(z, ¢) is
Z(F) (o, y)=2—(z+9)/a
on. the triangle 7,7, T';. For any >0, let e?<g/2. Then
Mhe=242a*<2+8 - (21)
and
|F(a, )~ Z(F) (2, ) |>|(@~0)?/2-2+2(a+y) | =2>Mij—s. (22)

Ir==4=0

(22) shows that the coefficient 1 is the besi.

4. Main Theorem

Theorem.
| Ba(f) —f o =M~ /n+0(1/n%)
and the cosfficient 1 is the best.
Proof. Applying the lemma to f and f,, the latter is restricted to the subtriangle

with vertices in (9), we obtain

( £ 7 k ) f( 1 7
"\n+l’ n+l’ o+l n+1’ n+l’ n+l
From (10) we get

| Ba(f ) = Bara(f) | <M(ha/n)® 22 Jiji(w, v, w)=M(ha/n)?,

§+i+k=n+1

1 Ba(f) — Basa () | <M (ha/n)? (23)
for n=1, 2, 3, .-+, By the triangle inequality

| " Bﬂ(f) "Bn+m(f) ]II M‘Qéﬂ Bﬁ+i-1(f) B Bﬁ+i(f) "n-
and then by (23) we have

[ Ba(f) — Busm() | -<MAE 311/ (nti—1)3, (24)
Let m—>-+ oo on both sides of (24), we obtfain by (5)

|Balf) ~Fl-<<MAGe DV1/47,

'QM (ha/n)?,

Thus we have

and
L Ba(f) — f | o= MA3/n+O0(1/n?) ' (25)
by the well-known result that
E 1/’,%2 1/n+0(1/n%),

k=n

For the function F(z, y) and T,(a=1, 2, 3) defined in (20) and (19)
respectively, using relation (1), it follows that

p(u, v)=2(u—2)" (26)
Noting identities _,

7 c9 i _ .
2By Putvw =nu (1l —u) +nu? (27)

and
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n!
§+itk=n ‘i!jlk!
from (3), (26), (27) and (28), we have

ijut v wF=n(n—1)ww, (28)

Ba(piu, )=ty v)+2(u(1—u) +o(1—0)+2w),

It follows that

| Bu(ps %, v) —p(%, 9)j==2/n,
"The same kind of argument as in the proof of the lemma shows that coefficient 1
in (25) is the best,
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