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ON THE EXISTENCE OF FUNCTIONS
WITH PRESCRIBED BEST L. APPROXIMATIONS®

SHI Ying-cuaNe (5 %)%
(Computing Center, Academia Sinica, Beijing, Ching)

Abstract

This paper gives a partial answer to a problem of Rivlin!i?in Z; approximation,

1. Introduction

In this paper we prove the following (X =[—1, 1])

Theorem. LetViand Vy be Chebyshev subspaces of O(X) with dimensions m
and n{m<n), respectively. Let V.V 4 and v,CV,(j=1, 2).

(a) If the function v=vg— v changes sign at least m times in X, then there ewists
an f € C(X) such that v; is a best Ly approwimation to f from V,;(j=1, 2):

(b) If there exists an f € O(X) such that v, is @ best Ly approximation to f from
Vi (7=1, 2), then v has at least m zeros in (—1, 1),

This theorem provides a partial answer o a problem of Rivlin™ in I,
approximation. However, in the cagse m=n—1if v%0 has at least m zeros in (—1,
1),thenr: none of them can be a double zero and =, in fact, changes sign at least m
times. Thus, we can give the complete answer in this particular case, which is a
generalization of the result # by the author, and we have

Corollary. Let ¥y and ¥V, be Chebyshev subspaces of O(X)with dimensions
n—1 and n(n>1), respectively. Let V1V g and »,EV;( j=1, 2). Then there exists
an f € U(X ) such that v, is a best L, approximation to f from ¥V, ( j=1, 2) if and
only if the function »=wvs— v, changes sign at least n—1 times in X or is identically
Zero.

Before proving the theorem we introduce some notation:

Z(9)={w€ X:g(z)>0},
) Z_(g)={s€ X :g(x)<0},
Z(g)={z€X:9(x) =0},

M (&) =the Lebeggue measure of the set Z,

2. Proof of Part (a) of the Theorem
Let o change sign at points 2%, £=1, 2, ..., 1 (I=m),
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—1 =g < gt <L < <L =1,
By Lemma 2 in [3] there exist points
2= gl gE L e LA L g =¥ §=0, 1, +ee, 1,
such that

L | TFi1 |
3 (~0f [udn=0, Vu€Vs, =0, 1, - 1, .
= x

Write n;= [-é—(n-l—l—j)](tha iﬁtegral part of%-(n—l—l—j)l, 7=1, 2 and denote

ny 5
?.:E;.Jg[mgﬂ'f"l: mgi-l'i:l: }‘7=0: 1.1' e ZJ .?=1: 2:

[1/2] .
GJ= U Gﬂ:: j =l: 2;
. k=0

[10-0]

G;$ U G?H—l: .?211' 2:
k=0 :
Hf’=(ﬂ?f—h, Wf"i‘h) ﬂ(GsUG;); '?:'=1: 2: *et, N, k=0; 1: e Z;
! v
H= ;,;LJ;,L*:JH?HGE-'

H*~ \JUHING,

F
=1

where 0<k-rii min (2%, —«F) will be defined later. With this notation (1) becomes

2 1<ic<n
O i

fmﬂm=j wds, VuCVs, FI=0,1, =, 1,
el G5

Whenoe

( wto=| uds, | wudo- [ uds, vuevs, (2)
G Gh a1 @3

Now put | |

| [ Wﬂ(ﬂ’), $691UG;,

vi(w), 2 € (GaUG\(HUH"),

) = 4
f@)=1, continuous function on HY lying strictly between v, and v,

almost everywhere on HY, é=1, 2, ---, n, k=0, 1, +-, L.

It is eagy to see that fEO0(X). Now take #*<#* such that v(a*)#0 and leb
s=sgn v(x"). Thus o
s, «€GiUH,
sgn(f(2) —vi(@))={—s, @CGUL,
| L0, =€(GaUGH\(HUH")

and

=By mEGg’

sgn( f(@) —va(2)) =4 s @€6
01 mEGIUG;

are valid almost everywheré.
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Sinos by (2) for any u &V -
J usgn(f-_—mg)d'm ='U&. udw—-.jﬂi udw | =

<;J lu| do= J [u|dra;
@1 UG} - S E(f-m)

by Theorem 4-2 in [4] vs is a best apprommatmn 130 f from Va.
On the other hand, for any u €V satisfying ”uﬂm_max lu(z) | =1 we have
. ' sEX

J o, wa= e

,, v~ ot [ udo—| udey

_ ”Iuﬂgﬂ(f‘f‘l’i)i’” I =

oo g e It |l

<|| wdo— udm“j |0 s,

7y HUH*

Woe olaim that

Gy

o Uil (j it udm—j udml)>o, (3)
 uwEVyull =1 GG} If}’: TE

Whenoe taking A<<¢/2n(I1+1), it follows that
j u]deM(HUH*)Qlc
HUH* . 2

Iu sgn( f—oy)dw

and
u|da3+.[ |u|de—eo

FUH*

<<

FaUu Gy

luldae+2 |u| dz—e

—I(G.UG:)I{HUH*} HuH*
<[ julde=| |ulda,

(@ UGN (T UE*) Z(f~v1) |
This means that #; is a best approximation to f from V,, hecause the restriction

of |¢|»=1 may be removed.
The remainder of the proof is devoted to showing (8). In fact, if c=0, we can find

au& V4 such that |#].=1 and

_ L’Ug: u|de = L’ wdaw — . ude |,
It implies that
. -.Bg-'n u(m)={ &, w6y,
Ll—5*, a€Gs )

is true almost everywhere, where s*~1 or —1. Hence u hag at least {>>m zeros in X , a
contradiction. |

3. Proof of Part (b) of the Theorem

We need the following |
Lemma. IffcC(X) saiisfies t]uat v 48 @ best appq*ummﬁt@an to f from V,(]=s
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AT p—— g ST

1, 2), then there ewists ¢ g€ O (X) satisfying that v, is a best approwimation to q
f‘l"ﬂm Vj(j=1, 2) and

min{vi(), v2(2)}<g(z)<max{vi(z), va(z)}, | (4
Proof. Put
- min{v;(z), va(a)}, S (2) <min{v,(2), va(2)},
g(2) =4 max{vi(z), va(2)}, f(2)>max{v,(2), va(a)},
f(x), for the other 2.
Obviously, g€ O0(X) and gatisfies (4).
On the other hand, since by (4) g(z) > (<)v,(x) implies that vg_s(2) 2= (<) g(@)
> {(<)(z) and f(z) > (<)v{z)(j=1, 2), we have
Sgﬂ(g(m) S '?Jj(ﬂ?)) =Sg'll{f($) _m!(m)>: VﬂFEX\Z(g—W;), j=1.r 2-
Thus for any «u€V,;(j=1, 2)
qusgn(g—wf)dwf = U

I\Z{g—1vs)

<)y =0

Z(@—vNZ(S —vy)

usgn(g—-wj)dml e “Iw@_m vsgn (f—v,)de

usgn(f—w,)dwl

lu | de

J Z{g—vyNE{f —vys)

[ wsgn(f—uda|+ ] do

Z{g=—v )\ —13)

< | do+- ulde=|  |ujda,

Z{f—vy) Z(g—=vINE{ —vy) Z{g—vy)

which means that v, is a best approximation to g from V,(j=1, 2).
This completes the proof of the lemma.

Now assume that there exigts an f €0 (X)) such that », is a best approximaiion to
J trom V;(3=1, 2), but the condition of the theorem is noi satisfied, i. e. ¢ has at

most m—1 zeros in (—1, 1). By the lemma we can without loss of gonerality suppose
f satisfies (4).

It is not hard to see that
>0, 2CZ.(f—v)UZ_(f—wg),
<0, 2€Z (f-v)UZ:(f~na),
Since ¥ has at most m—1 zeros in (—1, 1), we can find 8 ¥ € ¥, such that

sgn u(z) =sgn v(z), Yo € X\Z (),

Whence by Theorem 4-2 in [4] | '

Lusgn(f—,w,)dm,

w(m){

2

>, lulde=3

I=1
2

= 2
2-%"[1\3”-1?3) Iu!dﬂi}; Z(f—vy-p) Iu]dw=§,[£{f—-w) [ulda:_
This gives that

(-0 wsgn(f-v)do={  |ulds, j-1,2

and
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uldo= | Julds, j=1, 2

.[ X\Z(f =) 2 —v3my) ,

which impljes that

Z(f—v)UZ(f—v)=X,
Thus

ZAf=wUZ_(f—2) N Z:(f—v)UZ.(f—wa)  Z(v)
and there also exists a «* € V' such that

u*(a:){}o’ €L (f—v1) UZ:(f—vs),
<0, mez_(f—-'vi) UZ_(f—9a).

The similar argnments as above give that

J‘Iu*sgn(fm-wf)dm=‘|.w_m ol B
Henoe, noting that sgn w*(@) = sgn u(z) on Z(f—va)\Z(v) =Z,.(f—ny) U Z_{f—-
'TJ;[_), we have

Jx(u*—u)sgn(fwwﬂ)dmxj (|| + |u|) da> |u* —u|dz,

E(f~ta) Z(f~14)
a contradiction,
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