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FINITE DIFFERENCE METHOD OF THE
BOUNDARY PROBLEM FOR THE SYSTEMS
OF SOBOLEV-GALPERN TYPE*

Zuovu YU-LIN ()31 .54 )
(Peking Uﬂwermty Bﬂjmg, China)

§1
Mﬁﬁy authors have paid great attention to the study of the linear and nonlinear
pseudo—parabolic equations or the equations of Sobolev—Galpern type. The nonlinear
pseudo—parabolic equations of ten ocour in praciical research, such as the equations
for the long waves in nonlinear dispersion systems, the equations in the cooling

process according to two-temperature of heat conduction, the equations for filtration
of fluids in the broken rock and so forth™% These equainons contain the differen-

tial operator w;—w.; as the main part. Some fairly general family of Imnlmear
pseudo-parabolic systemst 121 which contain the above mentioned equations as

special cases, are considered by Galerkin’s method. |
Now let us consider in rectangular domain @r= {0<o<<l, 0<{{<<T} the nonlinear

pseudo-parabolio system or the system of Sobolev-Galpern type

(—1)¥u,+A(x, t)u;,,mt—B(:n t, t, -, u,.u.l)u,u—l—F(m £, w4, o, Yga) (1)
with the boundary condition

Un(0, t) =ua(l, $)=0, %=01, ..., M—1 (2)

and the initial condition |
. " w(z, 0) =9¢(2), | (3)
where u(z, ¢) = (uy (&, t), -, ualz, £)) is a m—dimensional vector valued unknown
function. | |

Suppose that the fnllﬂwmg assumptions are fulfilled.
(L) A(z, ) 18 a mXm symmetric positively definite continuous matrix and

has bounded.derivative Az, )10, for any m~dimensional veotors § ER™, (&, AEL)

=a|&|?, where 6>>0,
(II) Bz, t, po, D1, ***, Pag—1) I8 & m Xm semibounded contfinuous matrix of

variables (z, £) €Qr and po, p1, **-, Pax_1 ER™, i. s., there exists a constant b, such
that | | |
(€, B, i, po, P1, -+, Pau-1)€) <b|{|? (4)
for any m~dimensional vectors £ € R™ and (w, ‘t) €Qr, Po, D1, **, Pam-1ER™,

(1) Flz, t, po, P1, ***, Pam—_3) I8 a m—dimensional vector valued continuous
function satisfying the relation
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2M-1
F @, &, g0, 1, -, pae) | <K2{ 3 Imsl+1}, 5)

where K ; is a constant.
(IV) @(z) is a m-dimensional vector valued initial funection, belonging to

C#0O (10, T]) and satisfying the homogeneous houndary condition (2),

In [18] it is proved by the fixed point technique, that under the conditions (1),
(11}, (I1) and @(x) CWF*’(0, 1), the boundary problem (2), (3) for the nonlinear
pseudo-parabolic system (1) has at least one m—dimensional vector valued global
solution »(z, ¢) in the functional space WI'((0, T); Wi (0, 1)), In addition that
B{z, t, po, P1, ***, Pau—1)2and F(w, ¥, Do, 1, ***, Pax-1)are continuously differentiable
or more precisely are locally Lipschitz continuous with respect to pp, P1, **-, Pax—i
€ R™, the solution u(x, ¢) i8 unique.

The purpose of thig note is to study the boundary problem (2), (3) for the system
(1) by the finite difference method under the above mentioned assumptions (I), (II),

(IIT) and (IV),

§ 2
The finite interval [0, I] can be divided into the small segment grids by the
points #;,=4A(4=0, 1, ---, J), where Jh=1{, J is an integer and % ig the stepsize. The
discrete funection {u;} ( j=0, 1, +-«, J) is defined on the grid points 2,(§=0,1, .-, J),
We denote the scalar product of two discrete funotions {u;} and {»,;} by (¢, 2),=

J 0
;2-5 wvh. Andle|,=(u, u),, Also we introduce the symbol |¢|.= max |u,

=01, »,J
Lot us denote 4,u,=wu;,1—u%; and ﬁ_u,=u,—u,_1( j=0, 1, +--, J), Similarly we

take
h=;§‘

and they can be denoted simply by |duls. Also we have

a

A_u,

i

d,u J—1
-

§=0

h

A.,.uu _ﬂd_u” s
E " I Ilﬁauﬂu.

We adopt the similar notations for the difference quotienis of higher order: | &8fu{s
and |8%u|.. (k=0, 1, ---). |

Now we state some lemmas which are useful for later discussions and whose proof
can be found in[14].

Lemma 1. For any fwo discrete functions {u;}and {v}(§j=0, 1, -, J) on finite
interval, there are tdentities

J—=1

2 u; 4 v5= “; w,d_uj UpVoTUyVy, (6)

J=1

; wyd,d = — 2 (dy2) (A,v;) —ued v +u;4_v,, (7)
Lemma 2. For any discrete fumction {u;}(j=0, 1, ---, J) on the finite interval

[0 11, there are the interpolation relations

Stuh<Eaful, #( [otuly +152)", §=0,1, 0 (8)
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and
1
_k+§ -i}l o
[Buf<Kslul) = (18l L22) " k=0, 1, 0-1, @
where K 4 and K 3 are constants independent of h, | and {uj}
Lemma 8. For any discrete funciion {u;}(§=0,1, ---, J) on the finite interval

[0,1] and any given e>>0, there exisis & consian K(s n) depmdmg only on & and n,
such that S

"55“” h‘\c-E” 3’5‘1*5" v+ K (8, n) ||'"*l|h | (10)

and
| %t < 8| ORe2| 2+ K (&, n)[uln, | (1)

where k=0, 1, -, n—1 and K (&, n) s independent of {u,}.
Lemma 4. For any diserete function {u;} ( 1;‘-—0 1, «, JY), ‘sattsfying the
homogmm boundary conditions wy=wu;_;=0 (5=0, 1, --«, M —1), there is
¥ |k s K M%) 8¥ul,, k=0,1, -, M—1, (12)
where K 4 is independent of b, T and {u,}, |
Ag a simple consequence of the formula (6) Gf Lemma 1, we have the following

lemma.
Lemma §. For any discrete function{u}( 3—-0 1, e+, J) satisfying the homo-
geneous boundary conditions wy=wy_;=0 (4=0, 1, ---, M —1), there 13 -

. J—M
J_;M Hgﬁ‘fﬂﬂf‘”ﬁ? (= Z} (d¥uy) (4fv,), (6")

where M =1 is an integer.

83

Suppose that the reclangular domain @Qr is divided into small grids by the
parallel lines z=;(§j=0, 1, ---, J) and ¢=#*(n=0, 1, .-, N), where x;=jh, t"=ndt
and Jh=1, Ndt="T. Denote the m-dimensional vector valued function on the grid
point (z;, ) by 27(§=0, 1, ---, J; =0, 1, «--) N) | |

Let us construct the finite difference scheme

'vﬂﬁ'.l-'l 1} 1 s 1 ﬂﬂdy II..U:"‘.I--l-l A EJIAH nta -
e L= By S+ Y,

j=M, -, J~M; n,=o, N—1 o (1)
correspondihg to the nonlinear pse-udq—pa,raboliﬂ system (1), where
;{?+ﬂ =4 (mfm fﬁi) 3 |

i " = r-u. * | I

Bite= Bla,,, %, 307+, -, a5 Uy (13)
+a_ nta Dpgnta .., [2M-1,n+ta

'F"; _F(mh-: b u, 31"‘— ? 3 s Vi "U}} )

and
. j+-M-k _ k r:+1 -
oje = >0 (o L0 B ), h=0, 1, -, 2M -1
+ ¥k . A’j ,ynﬁ:r. (14)
3#' ﬂ+a=‘ > .IBH + ‘ ;g k=0,1, s, 20 -1, |

i=f—M
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here all B’s, 8's and B’s are constants and > (aBu+Bu) =1 and > Bu=1 (b=

; $=F—Af _ t=3—-M
0,1, «-, 2M—1), also j—M <I<j+ M, 0<a, a<<l, - The. corresponding finite
difference boundary conditions are .

dﬁw’5=d‘iw3=0 (k=0; 1: "t M_l)- "8 (2)7!
The corresponding finite difference initial condition is | |
vi=g; (j=0, 1, -, J), (3)a

where ¢;=p(2;) (j=M, o0, J — M) and gp=gp,_3=0(k=0, 1, «, M—-1),

As 1o the existence of the m—dimensional vector valued discrete function 27(j=
0,1,--,J;0=0, 1, ---, N) for the finite difference system (1),, (2), and (3) 3, WO Oan
step by step solve the nonlinear system (1)» and (2), for the unknown- veetors o+
(4=0, 1, .-+, J), whers v}(j=0, 1, .-, J) are regarded as given vectors.

When a=0, the system (1), is an explicit difference- scheme. So the solvability
of the nonlinear system (1), and (2)s for the unknown vectors v3(j=0, 1, ---, J;

n=0, 1, --- N) is evident. | |
When 0<a<1, the system (1), can be written inl the form

1]}:-+1__1£ _ H+.l. Enh: o d’fﬂﬂ?-’ﬂ | | e o | | 15
4t ( 1) (agj-g E;' ) h3M 'G.f ’ . ( )
where % o
" En+u" AM M pn r 3
Qo= (— (L i) (16)

Henoce (16) oan be considered as the finite implicit difference scheme of certain
nonlinear ordinary parabolic system. The existence of v}t (j=0, 1, -, J: n=0,
1., N—1) for the nonlinear system (L, (@)a or (16), (2), can be established by
the fixed point technique as in[14]. | |

~ Lemma 8. Undér the conditions (I), (IT) and (TI), for the sufficient small 4t, the
finite difference system (1) 2 (s and (8), has at least one solution v3(j=0, 1, -+, J;
n=0, 1, «:, N), where O<<a<Cl, | . -

§ 4

- Now we turn to estimate the solutions 5(7=0, 1, -, J;n=0, 1, +., N)of the
: o _ i\J 3 SR
finite difference systerm (1),, (2), and (3),. |
4 M AM nic
Taking the scalar product of the Vectorq_ ﬂ+i;§!+
(1)» and summing up the resulting relations for j=M, .-, J— M, we get
| : TN ; AM AN nta " n L d=M AN AN b oo AMAM (gl om
k¥ E ( +h2;};i 4 wfﬂh?f)h-_I— E ( +hn$j , AfT* %;{H 23) )h

J—M M AM, 140 ; M AN, nia J—M M AN, n+o
-=.'dt 2 (A+A_'I.}J ’ ﬁ}H_m ﬂ.,.d;’vj )}b ll dt ; ( d.;,.d__"vj y 1F;l+u)h"

hdt and the vector equations

. j=M | ﬂﬂﬂ hﬂﬂ - hﬂﬂ :

j=M: e J-_M: n=0, 11. N_ll _ (17)

From (6") of Lemma 5, we have °
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oy TH M M nta e ¥(antl _ an
(5 (S i 5 (S5, A=,

1 " i W 1 gl
=g 1o li— S 1305+ (a—g ) Io¥ (o™ —o

Sinoe 4 is a symmetric positiveiy definite matrix, we have
J—M

% (z;aﬂj An+u(z?+1 zj))h= (ﬂn-l-:l'. An-l-n: n+1) ______(zn An+u )

. (ﬂ _ _§__) (zu.+1 __lﬁll: Zn+m (Z"+1 e ﬂn) )h

| | ¥R | o AHAH P ;
where H h’” (=M, -, J—H),
1

Asgsume that iﬁagl_ .

It follows from (18) and (19) that

; "aﬂ n+1Uﬂ ; ” ” "h“&;( l)u(ﬁzr b 1}“"'1—'1!");

and
__(3‘2]!‘ n+1 An+n32.lf n+1) ___(32]{ " An+nai]r,vs)i

,,g (S%‘H‘Uﬂ-l-u, An+n (agl’,un-l-i S aiﬂ,ﬂn) )Jh |

Since B ig a semibounded matrix
J — M

j% (zn-,l-u §n+azn+u)hgbuaﬂ n+n!|2

For the la.st term of (17), we have

of v B

‘2 (zn+t.l Fu+ﬂ)k,&;_“ BEH '+“||ji.+ HFn+uﬂ

| 2
From the assumption (III),

=1 Juif
".F'H'“" le{ 2} E lg?fw}‘+ulﬂh+1}
Here by tha._expreﬂs;ion (14) and the formulas (10) and (12)_ .

| A

J—M J—M | J+ Mk . AR a it
& 1= 3 S B A
= §= t=5—-AM . h

oMk J-2M4§ Aji m?*“ ]

: " : = . i__-'-} J‘:‘

| <Cusoei+Colstote3, k=0, 1, -, 2U -1,

he<< O] 850" =3

Hence,

- B3O 03 0r e 34O | 3™ o 3+ O,

Therefore (17) can be replaced by | .

[ BML| 2 | SRy 2 (SE; rragpiyntly (Sﬁy"‘ En-!-nsgx!f@n)#
< (25414 C6) 48| 5= | 24 Ol | SEw™ [ 2+ O3t -

<Opdt| 3¥ ™|+ Crodt| 35 0" }|2+Ondtﬂa "+1||2+0ﬂﬁt1|5,,w ﬂh+013.dt

Summmg up the above inequality for n=0, 1, -, m, we get.

(18)

(19)

(20)

. 4213

(22)

(23)

(24)
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u afwm+1ﬂ E . ” aﬁfﬁﬂ” % S ( 3§me+1: Em+a.3§ﬂwm+1) L — ( 3%'%,,01 Z“ﬁﬁ”ﬂ}_“);

" Anta_ An—Lia :
— ¥ (33“1:", 2 A 524 fv'.‘) 4t
n=1" : At A !
m+1 1

.- | o m4+
<Oy 2& |f‘5§%‘1|§dt+015 20 | &x'v" |3+ C1edt,

Hu+:: Hﬂ-'—l-l-ﬂ

= is jl_::u:nn::y:'le{:l. Since p(x) € C¥*([0, 1]), then the second and the
fourth terms of the left part of above inequality are hounded. So this becomes

' : m+l - 41
|32 2™ 3 +-a| 54y | 2Oy, 2, |9 0" idt + Cus 2 |92"[3+0ws,  (25)
Let ug denote 8

where

L == ngﬂ {| 0% "2+ a| 03%a" |3} At
Then (25) can be gimplified fo
el 8 < Ootmsa+ O, - (26)

This follows that 2, is uniformly bounded for sufficiently small 4¢, Then the right
hand side of (256) or (26) is also uniformly bounded. |

Lemma 7. Under the conditions (1), (II), (IIT) and (IV), the solution v3( j=0,
1, =y J5 n=0,1, -, N)of the finite difference. system (L), (D)5 and (8), has the
estimation relation Lk

max [S0lh<Ks, k=0, 1, -, 2M, (27)
where di i3 sufficiently small and K s 35 independent of h and At,
MAM /241 2%
Now making the scalar product of the vector 4:4-(vi* —}) h and the finife

& | A A
difference system (1), and then summing up the resulting relations for j=M, -,
J — M, we oblain by simple caleulation

| nﬁf(wnﬂ_i’n) HE_}_(BEH(QJ:HI_,UH-) o SEH(,IJHH_,H“)')
s - 27 ' 3

At A At 4t
e SFE:H ('vﬂ.q‘l_wﬂ) nta2M  nda BEM (wﬂ+1_"un) +a
(B B+, ). )
From (27), we know that max |8}v*|., is uniformly bounded for 5=0, 1, e, 2M—1,
n=0,1,,N = = :

Hence B3 and F3** are bounded. So (28) easily becomes

M7 n+l__ _n a  R2My¢ . nt+l__ .8 2
[P 4+ g | B 0D P oy afomtef 4 Oualpmee| 24O,

Vil R At
Lemma 8. Under the conditions of Lemma T, there is the estimation
Si( vt — ™) | '
max <Kg k=01, .-, 2M, (29)
#=0,1, 00, N1 A In

where K g i3 independent of hand At

Lemma 8. Under the conditions of Lemvma T, there és the estimations for the
solution vi(j=0, 1, ++-, Jyn=0, 1, -, N) of the finite di{fference system (1),, (2)x and
(3)a: A ' - 5 |
| max |45} <K A%, k=0, 1, -+, 2M—1, (30)

1=0,1, w,J=k
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SRR

. ﬂH-—l ' ST
max |G <Kgh 2, (30")

=0, :_[l -ty J—2M

where n=0, 1, «--, N;
max | Jeurtt — A | <K Gh*dt, k=0, 1, -, 2M —1, - (81)

n=0,1, -, N-1

'wh@rﬂj—o 1, -, J—F,

' ' X
Proof. Applying the formula (9) to the disorete function { 4 kfu }( 7=0, 1,
J—kn=0 1, -, N) for k=0, 1, «--, 2M -1, we have

g kg
.r‘." ? “ " oM
;’;j {]I agﬂf,v “i'l I Hszm” } »
for j=0, 1, «+-, J—Fk, n=0, 1, -+, N and k=0, 1, -+, 2M —1: From Lemma 7, the
right hand side of the above inequality is uniformly bounded for #=0, 1,.--,2M —1,
This proves the formula (30),
The formula (81) can be proved similarly,

The estimation relation (80")is a immediate consequence of the following
inequality

X+

<Ks|o'|,

1

2 Z i
h) <h™T |5por s,

1 23,
eM. a3 M3 | A5
|/-1+ ’u?l“"h’ (r hJM

[

Henoe the proof of this lemma is complete,

35

For the m—dimensional vector valued diserete function +7 (§=0, 1, =+, J; n=0,
1, ---, N); we define a get of m—dimensional vector wvalued piecewise constant

i
functions as follows. Let 2{ (z, )= A*“ T Qi={jh<a<( j+1}h ndt<I<
7+1

(n+1)4t} and of%(w, £)= Ai“"’ E LT — k)hr:mta:t ndt<t<(n+1)dt}, where j=0, 1
L n+1
wi, Bl well, 1, w5 AP 0, 1, -, 2M, Lot (s, #) =20 %0)

in @ and ¥ (z, )= ﬁ{i(ﬂ:u Vr—s) {{(J— Ie)hr:;m-‘«il ndt<t<(m+1) 4t}, Denote

59 (&, t)y=aviy (z, 1)+ (1—a) v (e, t—41), |
From the estimations (27) and (29), we have the estimations for the m-dimensional

vector valued, piecewise constant functions v§% (=, ) and vif(w, ¢) (=0, 1, -, 2M )
as follows -

gup | viz (e, £) "L,{u;anK 5»

R L1 1 4

sup |28, )| mo.n<Ke,
D=t T -

(32)

where #=0, 1, -+, 2M

Hence there is a sequence h; and Af;, such that as A+ 4i{—>0, the sequences
{vi% (=, 1)} 'a,lid {3 (», £)} weakly converge to u®(w, ¢)and u®(z, t) respectively
for k=0, 1, -+, 2M, At same time {3{%(z, ?)} ﬂﬂﬂVﬁI‘gEE to u”” (z, t) respectively
for =0, 1, .-, 2M, 5
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Tt can be easily verified!, that u® (s, t) =ua(w, ) and #®(z, ) =u?(z, {)=
Uen: (2, t), for k=0, 1, -, 2M where u(z, t) =u®(a, 1),

From the estimations (80) and (80"), we know that the convergences of the
sequences {vi%) (@, )} t0 {ue{z, t)} are all uniform in Qr for =0, 1, -, 2M —1,

Similarly, let us define Ay, (z, £) =A% in Qi (§=M, -, J—M; n=0, 1, -,
N—1) to be a m X m piecewise constant matrix. Let Byu(z, &) =B in @2 be also a
m X m piecewise constant matrix and led Fyu(z, 1) =F7"*in @7 be a m—dimensional
vector valued piecewise congtant function(§=M, -, J-M;n=0, 1, «--, N—-1) I
is clear that as AZ+ At7—0, {44, (w, 1)}, {Burs, (@, 1)} and {F) 4 (x, )} are uniformly
convergent to A{w, t), B(w, ¢, ule, 1), +, Ugua (@, $))and F (2, t, ulz, 1), *-,
Upn (@, 1)) Tespectively in @y,

By the construction of the all above piecewise constant functions, we see thai

(=) ¥vase(®, 1)+ Apas(w, $)055° (@, 1) = Basu(w, A" (2, ) +Fanla, 1),

Henoce for any smooth test function @(z, ¢), we have

Jj@[(-—l)*“m+A(m, t)u#“#_B'(mJ b, U, =, uﬂ“")u'#“

—F(x, t, u, -, Upsu) |ddt=0,
So u(®, t) satisfies the nonlinear pseudo-parabolic system (1) in generalized sense. And
u(a, t)satisfies the boundary conditions (2) and the initial condition (3) in classical
sense. Also we can see that u(a, ¢) CWL((0, T);, WE (0, 1)),

Suppose that begides the conditions (1), (II), (II1) and (IV), B(x, f, po, P1, *--,
Day—1) and F(x, t, g, 11, *++, Dau-1) aTe continunously differentiable or more precisely
are Lipshitz continuous with respect t0 @o, p1, '+, Pow-1 0N any bounded domain of
m~dimensional Euclidean space R™, Then the solution of the boundary problem (2),
(3) for the system (1) is unique. Therefore under there conditions the solution o] (j=
0,1, «, J; n=0, 1, ---. N)of the finite difference system (1), (2)a and (3)a
converges to u(w, ¢)in W ({0, T), W§*(0, 1)), as A*+ A4t*—>0,

Theorem. Suppose that the conditions (1), (1I), (III) and (IV) are satisfied and
suppose that B(w, t, mo, P1, ***, Pau-1) and F(x, 1,0, 01, **, Dau-1) are locally Lipschitz
continuous with respect to Do, D1, ***, Pau-1 ER™, Then the solution v; (=0, 1, -, J;3
n=0, 1, -, N) of the finite difference system (1);, (2), and (8), converges to u(z, t) €
WP0,7); WE(0,0)) as h?+ At2—>0, which satisfies nonlinewr pseudo-parabolic system
(1) in generalized sense and satisfies the boundary conditions (2) and the initial condition
(3) im classical sense.
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