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Abstract

A sparse-grid method for solving multi-dimensional backward stochastic differential

equations (BSDEs) based on a multi-step time discretization scheme [31] is presented.

In the multi-dimensional spatial domain, i.e. the Brownian space, the conditional mathe-

matical expectations derived from the original equation are approximated using sparse-grid

Gauss-Hermite quadrature rule and (adaptive) hierarchical sparse-grid interpolation. Error

estimates are proved for the proposed fully-discrete scheme for multi-dimensional BSDEs

with certain types of simplified generator functions. Finally, several numerical examples

are provided to illustrate the accuracy and efficiency of our scheme.
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1. Introduction

We consider the following backward stochastic differential equation (BSDE)





−dyt = f(t, yt, zt)dt− ztdWt, t ∈ [0, T ),

yT = ξ,
(1.1)

where T is a fixed positive number, Wt is the standard d-dimensional Brownian motion de-

fined on a complete, filtered probability space (Ω,F ,P, {Ft}0≤t≤T ), f(t, yt, zt) is an adapted

stochastic process with respect to {Ft} (0 ≤ t ≤ T ) for each (yt, zt), and ξ is an {FT} mea-

surable random variable. The existence and uniqueness of the solution of the BSDE (1.1) were

proved by Pardoux and Peng in [20]. Since then, BSDEs and their solutions have been exten-

sively studied. In [22], Peng obtained a direct relation between forward-backward stochastic

differential equations and partial differential equations and then, in [21], he also derived a max-

imum principle for stochastic control problems. Many important properties of BSDEs and their

applications in finance were studied by Karoui et al. in [8].
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Because analytical solutions of BSDEs are often very difficult to obtain, approximate nu-

merical solutions of BSDEs become highly desired in practical applications. There are mainly

two types of numerical methods for BSDEs. One is based on the relation between the forward-

backward stochastic differential equations (FBSDEs) and corresponding parabolic partial dif-

ferential equation (PDEs) [13,14,22]; the other is directly based on BSDEs or FBSDEs [2,3,6,

7, 10, 12, 23, 27, 28, 30, 31]. Zhao et al. proposed a θ-scheme for BSDEs in [28]; in [29], it was

extended to a generalized θ-scheme. In [31], a stable multi-step scheme was proposed which is

a highly accurate numerical method for BSDEs. Note that for the second type of numerical

methods, approximating spatial derivatives at different time-space points for the case of PDEs

is converted to approximating conditional mathematical expectations with Gaussian kernels

centered at different time-space points.

It should be noted that the BSDEs used in practice usually involve a multi-dimensional

Brownian motion, such as the option pricing problem with multiple underlying assets. Ex-

isting numerical methods for BSDEs can be theoretically extended to the multi-dimensional

cases; however, the computational cost may be unaffordable due to the so-called curse of di-

mensionality. The most popular approach to solving multi-dimensional BSDEs is the Monte

Carlo method [3,28] that is very easy to implement. However, the convergence rate is typically

very slow, although having a mild dependence on the dimensionality. Thus, an accurate and

efficient numerical method for solving multi-dimensional BSDEs is highly desired in the BSDE

community.

In this paper, we extend the multi-step method in [31] using the sparse-grid method for

solving multi-dimensional BSDEs. As discussed in [31], the target BSDE (1.1) is discretized by

the multi-step scheme in the time direction. In the spatial domain, a quadrature rule is needed

to approximate all the conditional mathematical expectations (multi-dimensional integrals) and

an interpolation scheme is also needed to evaluate the integrands of the expectations at non-

grid quadrature points. The sparse-grid method is highly suitable for the multi-step scheme

because it has been demonstrated to be effective and efficient in dealing with multi-dimensional

interpolation and quadrature [1,4,9,11,16–19]. Sparse-grid interpolantion (or quadrature rule)

resulting from the Smolyak algorithm depends weakly on dimensionality so the computational

expense can be significantly reduced; however, the accuracy can be preserved up to a logarithmic

factor compared with tensor-product interpolantion (or quadrature rule). On the other hand,

the multi-step method is also highly suitable for the sparse-grid method because no spatial

derivatives are involved in the multi-step scheme and the solution can be obtained without

solving a linear system. In comparison, the sparse-grid method can be potentially used together

with finite difference or finite element method to solve the associated parabolic PDE instead

solving the BSDE directly; in this case, spatial derivatives need to be discretized on sparse

grids such that the resulting linear system may have stability or conditioning issues and a CFL

condition needs to be satisfied for solving the time-dependent problem. In [24, 25], a spectral

sparse-grid method was proposed for elliptic problems, which does not have severe stability

or conditioning issues. However, in this paper, those issues on linear systems are completely

avoided in our method and the CFL condition is not needed either. In addition, the sparse-grid

method is also suitable for the θ-scheme in [28] and the generalized θ-scheme in [29]; we focus

on the multi-step method because it is more accurate than the other two schemes in the time

direction.

The main contributions in this paper are as follows:

• propose a fully-discrete scheme with the sparse-grid method for multi-dimensional BSDEs;
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• rigorously analyze the error of the proposed scheme for a particular type of BSDEs.

As what is discussed above, based on the semi-discrete scheme obtained by the multi-step

scheme, a quadrature rule and an interpolation scheme are needed to derive a fully-discrete

scheme. Several types of sparse-grid quadrature rules and interpolation schemes can be chosen

to achieve our objective. For the quadrature rule, the sparse-grid Clenshaw-Curtis (SG-CC) rule

can be used within a local truncated domain due to its nested structure; the sparse-grid Gauss-

Hermite (SG-GH) rule is preferable because the expectations have symmetric uncorrelated

Gaussian kernels. For the interpolation scheme, a straightforward way is to use the Lagrange

polynomial interpolation based on Clenshaw-Curtis or Gaussian points as in [17]. However, in

this case, the interpolation points are pre-determined so there is no room for adaptivity. Thus,

in this paper, we utilize hierarchical sparse-grid (HSG) interpolation with local support, the

same idea as in [11, 16], to construct the needed interpolants. Moreover, we also investigate

adaptive hierarchical sparse-grid (AHSG) interpolation that can refine the sparse grid locally

according to the smoothness of the solution (yt, zt). When the generator f is independent of zt,

we rigorously prove the convergence of the proposed scheme based on the SG-GH quadrature

and the AHSG interpolation.

The rest of the paper is organized as follows. Some preliminary notions are discussed in

Section 2. The semi-discrete scheme based on the multi-step method is given in Section 3

and in Section 4, we present a fully-discrete scheme based on the sparse-grid method for multi-

dimensional BSDEs. Error estimates of the proposed scheme are proved in Section 5. Extensive

numerical tests and comparisons are given in Section 6; the results are shown to be consistent

with the theoretical ones. Finally, some conclusions are given in Section 7.

2. Preliminaries and Problem Definition

Let {Ω,F ,P, {Ft}0≤t≤T } be a complete, filtered probability space on which a standard d-

dimensional Brownian motion Wt is defined, such that {Ft}0≤t≤T is the natural filtration of

the Brownian motion Wt and all the P-null sets are augmented to each σ-field Ft. Denote by

| · | and L2 = L2
F([0, T ];R

d) the standard Euclidean norm in the Euclidean space R
m or Rm×d

and the set of all Ft-adapted and mean-square-integrable processes valued in R
d, respectively.

A process (yt, zt) : [0, T ]× Ω → R
m × R

m×d is called an L2-adapted solution of the BSDE

(1.1) if it is {Ft}-adapted, square integrable, and satisfies (2.1) in the sense of

yt = ξ +

∫ T

t

f(s, ys, zs) ds−
∫ T

t

zs dWs, t ∈ [0, T ), (2.1)

where f : [0, T ] × R
m × R

m×d → R
m is an adapted stochastic process with respect to {Ft}

(0 ≤ t ≤ T ) for each (yt, zt) and the third term on the right-hand side is an Itô-type integral.

Under certain reasonable regularity conditions for f(t, yt, zt), Pardoux and Peng [20] proved

the uniquene solvability of the BSDE (2.1). Some properties and applications of BSDEs are

given in [8]. We are interested in the numerical solution of the BSDE (2.1). Without loss of

generality, assume the BSDE (2.1) admits a unique L2-adapted solution (yt, zt).

We suppose that the terminal value of yt is of the form ϕ(WT ). Then, the solution (yt, zt)

of (2.1) (see [8, 15, 22]) can be represented as

yt = u(t,Wt), zt = ∇u(t,Wt), ∀ t ∈ [0, T ), (2.2)
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where ∇u denotes the gradient of u(t, x) with respect to the spatial variable x and u(t, x) is

the solution of the parabolic PDE

∂u

∂t
+

1

2

d∑

i=1

∂2u

∂x2
i

+ f(t, u,∇u) = 0, (2.3)

with terminal condition being u(T, x) = ϕ(x).

It is well known that when the functions f and ϕ are bounded and smooth with bounded

derivatives, the PDE (2.3) has a unique solution u(t, x) which is also bounded and smooth with

bounded derivatives. Consequently, the BSDE (2.1) with ξ = ϕ(WT ) has a unique solution

(yt, zt) which takes the form (2.2). Because of the equivalence of the BSDE (2.1) and PDE

(2.3), it may be feasible to solve the BSDE by solving the equivalent PDE with, e.g., a finite

difference method or finite element method. However, when dealing with multi-dimensional

problems, it becomes very difficult to use such classical numerical methods.

Now we introduce some notations which will be used in the sequel. Let F t,x
s (t ≤ s ≤ T )

be a σ-field generated by the Brownian motion {x + Wr − Wt, t ≤ r ≤ s} starting from the

time-space point (t, x) and set F t,x = F t,x
T . Denote by E[X ] the mathematical expectation of

the random variable X and by E
t,x
s [X ] the conditional mathematical expectation of the random

variable X under the σ-field F t,x
s (t ≤ s ≤ T ), i.e., Et,x

s [X ] = E[X |F t,x
s ]. When s = t, we

simply use E
x
t [X ] to denote E[X |F t,x

t ]. Let x ∈ R
d mean x = (x1, x2, · · · , xd)⊤ with xi ∈ R

(i = 1, . . . , d); (·)⊤ denotes the transpose operator for a vector or matrix.

3. Multi-Step Semi-Discrete Scheme

In this section, we briefly review the multi-step method proposed by Zhao et al. in [31]

which is used in this paper to discretize the target BSDE (2.1) in the time direction.

Let N be a positive integer and consider a uniform partition of the time interval [0, T ]

0 = t0 < t1 < · · · < tN = T, (3.1)

with ti = t0+i∆t (i = 0, 1, · · · , N) and the time step ∆t = T
N . Suppose the BSDE (2.1) involves

a standard d-dimensional Brownian motionWt = (W 1
t ,W

2
t , · · · ,W d

t )
⊤ with W i

t (i = 1, 2, · · · , d)
being independent standard one-dimensional Brownian motions. Let (yt, zt) : [0, T ] × Ω →
R

m×R
m×d be the solution of the BSDE (2.1), where yt = (y1t , y

2
t , . . . , y

m
t )⊤ and zt = (zi,jt )m×d.

For two given positive integers k and Ky satisfying 1 6 k 6 Ky 6 N , it is easily shown that

ytn = ytn+k
+

∫ tn+k

tn

f(s, ys, zs) ds−
∫ tn+k

tn

zs dWs, (3.2)

where f is a vector function of dimension m.

We now take the conditional mathematical expectation E
x
tn [·] of both sides of (3.2) and

approximate the integral in (3.2) by a multi-step scheme. Choosing Lagrange interpolating

polynomials ptn,xKy
(s) = (ptn,x,1Ky

(s), · · · , ptn,x,mKy
(s))⊤ based on the support points, (tn+i, E

x
tn

[f(tn+i, ytn+i
, ztn+i

)]) (i = 0, 1, . . . ,Ky), to approximate the integrands E
x
tn [f(s, ys, zs)] on

tn ≤ s ≤ tn+k, we obtain a reference equation for solving ytn as

ytn = E
x
tn [ytn+k

] + k∆t

Ky∑

i=0

bkKy,iE
x
tn [f(tn+i, ytn+i

, ztn+i
)] +Rn

y , (3.3)
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where Rn
y = (Rn,1

y , Rn,2
y , · · · , Rn,m

y )⊤, i.e.,

Rn
y =

∫ tn+k

tn

{Ex
tn [f(s, ys, zs)]− ptn,xKy

(s)} ds, (3.4)

and the coefficient bkKy,i
for i = 1, . . . ,Ky is defined by

bkKy,i =
1

k

∫ k

0

Ky∏

j=0

j 6=i

(
s− j

i− j

)
ds. (3.5)

Next, let us turn to the derivation of a reference equation for solving ztn . Let ∆Ws =

(W 1
s − W 1

tn , · · · ,W d
s − W d

tn)
⊤ for s ≥ tn; then ∆Ws is an increment of the d-dimensional

standard Brownian motion with mean zero and a diagonal covariance matrix (s− tn)Id. Let l

and Kz denote two positive integers satisfying 1 ≤ l ≤ Kz 6 N . Multipling both sides of (3.2)

(with k replaced by l) by ∆Wtn+l
and then taking the conditional mathematical expectation

E
x
tn [·] of both sides of the derived equation, we are led to the Itô isometry formula

0 = E
x
tn [ytn+l

∆W⊤
tn+l

] +

∫ tn+l

tn

E
x
tn [f(s, ys, zs)∆W⊤

s ] ds−
∫ tn+l

tn

E
x
tn [zs] ds. (3.6)

Using the relation (2.2) between the solution (yt, zt) of (2.1) and the solution u of (2.3), it is

easy to verify that Ex
tn [ytn+l

∆W⊤
tn+l

] = l∆tEx
tn [ztn+l

] (see [31] for details). Again, similar to the

way we have obtained the reference equation (3.3), we obtain the following reference equation

for solving ztn :

0 = E
x
tn [ztn+l

] +

Kz∑

i=0

blKz,iE
x
tn [f(tn+i, ytn+i

, ztn+i
)∆W⊤

tn+i
]

−
Kz∑

i=0

blKz,iE
x
tn [ztn+i

] +
1

l∆t
Rn

z ,

(3.7)

with Rn
z = Rn

z1 +Rn
z2 of size m× d, where

Rn
z1 =

∫ tn+l

tn

{
E
x
tn [f(s, ys, zs)∆W⊤

s ]−
Kz∑

i=0

blKz,iE
x
tn [f(tn+i, ytn+i

, ztn+i
)∆W⊤

tn+i
]

}
ds,

Rn
z2 = −

∫ tn+l

tn

{
E
x
tn [zs]−

Kz∑

i=0

blKz,iE
x
tn [ztn+i

]

}
ds.

The equations (3.3) and (3.7) are the two reference equations for the BSDE (2.1).

Let yn = (y1,n, y2,n, · · · , ym,n)⊤, zn = (zi,j,n)m×d, and Kyz = max{Ky,Kz}. We regard

yn as an approximation to yt and zn as an approximation to zt at the time tn, respectively.

Note that ∆W⊤
tn = 0 in (3.7). Combining the two reference equations (3.3) and (3.7), the

semi-discrete scheme for solving the BSDE (2.1) is defined as follows: given random variables

yN−i and zN−i, i = 0, 1, · · · ,Kyz − 1, find random variables yn and zn (n = N −Kyz, . . . , 0),

such that

yn = E
x
tn [y

n+k] + k∆t
Ky∑
i=0

bkKy,i
E
x
tn [f(tn+i, y

n+i, zn+i)],

0 = E
x
tn [z

n+l] +

Kz∑

i=1

blKz,iE
x
tn [f(tn+i, y

n+i, zn+i)∆W⊤
tn+i

]−
Kz∑

i=0

blKz,iE
x
tn [z

n+i].

(3.8)
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Remark 3.1. In the reference equations (3.3) and (3.7), we have four positive integers k, Ky,

l and Kz. They can be any positive integers satisfying 1 6 k 6 Ky ≤ N and 1 6 l 6

Kz 6 N . However, to guarantee the stability of the scheme (3.8), they should be selected

properly. According to [31], if we set k = Ky, the scheme (3.8) for solving yn is stable for

Ky = 1, 2, 3, 4, 5, 6, 7, 9. For the scheme (3.8) for solving zn, l can only be 1 for Kz = 1, 2, 3.

So, hereafter, we set Ky = k and l = 1. In addition, we can see that several conditional

mathematical expectations are involved in (3.8) instead of spatial derivatives as in PDEs. As

discussed in [31], the stability of a fully discrete scheme based on (3.8) is not affected by a CFL

condition.

In order to solve the BSDE (2.1) using the multi-step scheme (3.8), we need to discretize the

spatial domain, i.e., the d-dimensional Euclidean space Rd, and find an approach to approximate

all mathematical expectations in (3.8) in the discretized space domain, especially in the multi-

dimensional case. This is discussed in the following section.

4. Sparse-Grid Fully-Discrete Scheme

4.1. Properties of the time-space domain

We assume a uniform grid for the interval [0, T ] defined by (3.1), which is denoted by T ,

and focus on the discretization of the spatial domain R
d. Taking yn+k as an example, the

conditional mathematical expectation E
x
tn [y

n+k] in (3.8) is defined by

E
x
tn [y

n+k] =
1

(2kπ∆t)d/2

∫

Rd

yn+k(v) exp

[
− (v − x)⊤(v − x)

2k∆t

]
dv (4.1)

with mean x and covariance matrix k∆tI where I is the d×d identity matrix. The expectation

defined over the unbounded domain R
d is always estimated by some numerical quadrature

rules within a truncated bounded domain. Moreover, all the components of the d-dimensional

Brownian motion are mutually independent, the expectation E
x
tn [·] can be estimated within

a local bounded symmetric hypercube [x1 − r, x1 + r] × · · · × [xd − r, xd + r] centered at x =

(x1, . . . , xd) with an identical local radius r in all spatial directions. Under the above conditions,

according to the semi-discrete scheme (3.8), if we want to obtain the numerical solution of the

BSDE (2.1) at the point (x, t0) = ((0, . . . , 0), 0) based on the time grid T , we need to solve the

equation within the domain [−r, r]d on time level t1. Recursively, the needed spatial domain

on time level tn (n = 0, 1, . . . , N) is [−nr, nr]d. The whole bounded time-space domain is a

conically shaped region with vertex at the point (x, t0) and a base of radius Nr at time level

tN . An illustration of the bounded domain for d = 1 is shown in Fig. 4.1.

Note that the magnitude of the local radius r is determined by the numerical quadrature

rule used to approximate the integral Ex
tn [·]. For instance, for the Gauss-Hermite quadrature

rule used in [30, 31], the local radius is determined by the maximum magnitude of the used

Gaussian points. If M Gaussian points {ηi}Mi=1 are involved, the local radius r for computing

E
x
tn [y

n+k] in (3.8) is defined by r =
√
2k∆t max

i=1,...,M
|ηi|.

After determining the bounded spatial domain, we need to construct a spatial grid on

each time level. A straightforward way is to define the set of all needed quadrature points

as a spatial grid on each time level. However, in this case, the number of grid points will

increase geometrically rather than arithmetically with the number of time steps N . Thus,

in [30,31], a uniform spatial grid is used in each spatial direction and the integrands of Ex
tn [·] are
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Terminal time tN

∆t

r (x, t0)x− Nr x + Nr

Wt

t

Fig. 4.1. The truncated time-space domain in one-dimensional case(d = 1).

evaluated at non-grid quadrature points using interpolating polynomials. Combining the Gauss-

Hermite quadrature rule and polynomial interpolation, the multi-step scheme (3.8) can be

discretized accurately in the bounded spatial domain on each time level. However, in the multi-

dimensional case (d > 1), the computational cost of the tensor-product Gauss-Hermite rule and

the interpolating polynomials based on a tensor-product spatial grid will increase exponentially

with the dimension d, i.e., the curse of dimensionality. Thus, in the next section we use

sparse-grid methods to reduce the complexity for constructing the multivariate interpolating

polynomials and for estimating the needed conditional mathematical expectations.

4.2. Smolyak algorithm

The Smolyak algorithm provides an approach to construct multivariate interpolating poly-

nomials based on a small number of points in a multi-dimensional space. In the context of

Smolyak method, univariate interpolation formulae are extended to the multivariate case by

using tensor products in a special way. This algorithm provides a linear combination of tensor-

product interpolants chosen in such a way that the needed number of interpolation points

can be reduced significantly but preserve nearly the same accuracy as the full tensor-product

interpolation.

Let us consider a smooth function f : [−1, 1]d → R. In the one-dimensional case (d = 1),

the interpolation formula is

U i(f) =

mi∑

j=1

f(xi
j) · aij(x), (4.2)

where i ∈ N, xi
j(j = 1, . . . ,mi) are the interpolation points, and aij(x)(j = 1, . . . ,mi) are basis

functions. In the multi-dimensional case (d > 1), the tensor-product interpolatant is

(
U i1 ⊗ · · · ⊗ U id

)
(f) =

mi1∑

j1=1

· · ·
mid∑

jd=1

f
(
xi1
j1
, · · · , xid

jd

) (
ai1j1 ⊗ · · · ⊗ aidjd

)
. (4.3)

Clearly, if we put identical high resolution in each direction, i.e., m1 = · · · = md, then the

above formula needs Πd
i=1mi function values, which is computationally expensive when d is

large. Thus the Smolyak interpolant [1,11] is a linear combination of a series of tensor-product

interpolants, each of which is defined on a coarse grid with different resolutions in different
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dimensions, i.e.,

Aq,d(f) =
∑

q−d+16|i|6q

(−1)q−|i|

(
d− 1

q − |i|

)(
U i1 ⊗ · · · ⊗ U id

)
(f), (4.4)

where q ≥ d, the multi-index i = (i1, . . . , id) and |i| = i1 + · · ·+ id. Here, ik(k = 1, . . . , d) is the

level of the tensor-product interpolant U i1 ⊗ · · · ⊗ U id along the kth direction. The Smolyak

algorithm builds the interpolant by adding a combination of all tensor-product interpolants

satisfying q − d + 1 ≤ |i| ≤ q. The structure of the algorithm becomes clearer when one

considers the incremental interpolant, ∆i given in [1, 11]

U0(f) = 0, ∆i = U i(f)− U i−1(f). (4.5)

The Smolyak interpolant (4.4) is then equivalent to

Aq,d(f) =
∑

|i|6q

(∆i1 ⊗ · · · ⊗∆id) = Aq−1,d(f) +
∑

|i|=q

(∆i1 ⊗ · · · ⊗∆id)(f). (4.6)

According to (4.4), to compute Aq,d(f), one only needs function values at the “sparse grid”

Hq,d =
⋃

q−d+16|i|6q

(χi1 × · · · × χid), (4.7)

where χi denotes the set of interpolation points used by U i. According to (4.6), to extend the

Smolyak interpolant Aq,d(f) from level q − 1 to q, one only needs to evaluate the function at

the incremental grid ∆Hq,d defined by

∆Hq,d =
⋃

|i|=q

(∆χi1 × · · · ×∆χid), (4.8)

where ∆χij = χij \ χij−1, j = 1, . . . , d.

By integrating the interpolant Aq,d(f) over the interval [−1, 1]d, a sparse-grid quadrature

rule is obtained as

Qq,d(f) =

Ns∑

i=1

ωif(x
1
i , . . . , x

d
i ), (4.9)

where Ns is the number of points on the sparse grid Hq,d and the weight ωi is the integration

of the basis functions in (4.4) associated with the ith grid point xi = (x1
i , . . . , x

d
i ). See [9] for

details about the computation of the weights.

Our goal of using the sparse-grid method is to estimate the conditional mathematical ex-

pectations in (3.8) at all spatial grid points on each time level. An interpolating polynomial is

also needed to evaluate the integrand at non-grid points. Thus, in the multi-dimensional case,

we need one sparse-grid quadrature rule used to estimate the multi-dimensional integrals and

one sparse-grid interpolation formula to construct approximations of yn and zn on time level

tn.

4.3. Choice of sparse-grid quadrature rule

First, we consider the choice of the needed sparse-grid quadrature rule. It is suggested to

choose the quadrature points in a nested fashion to obtain many recurring points with increasing
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Fig. 4.2. For a two dimensional space (d = 2) and maximum level q = 4, we plot the full tensor-product

grid having 81 points(left) and the sparse grid H
4,2 based on SG-CC rule having only 29 points(right).

level q. One such choice is the sparse-grid Clenshaw-Curtis (SG-CC) rule with grid points at

the extrema of the Chebyshev polynomials [1,17,18]. The grid points in this case are given by

mi =

{
1, if i = 1,

2i−1 + 1, if i > 1,
(4.10)

xi
j =





0, for j = 1, if mi = 1,

− cos

(
π(j − 1)

mi − 1

)
, for j = 1, . . . ,mi, if mi > 1.

(4.11)

In this way, the one-dimensional grid is fully nested, i.e. χi ⊂ χi+1, and thereby the resulting

sparse grid, i.e., Hq,d ⊂ Hq+1,d. Then, if we estimated the expectation E
x
tn [·] within a truncated

domain bounded by a pre-selected local radius r, the Clenshaw-Curtis rule is a good choice

due to its nested structure. Fig. 4.2 shows, as an example, the sparse grid H4,2 and the

corresponding full tensor-product grid based on Chebshev points. It is easy to see that the

sparse grid has many fewer points than the full tensor-product grid. On the other hand, because

the expectations in (3.8) have symmetric uncorrelated Gaussian kernels and the Gauss-Hermite

quadrature rule was used in one-dimensional cases in [30,31], the sparse-grid Gauss-Hermite(SG-

GH) rule based on Hermite polynomials is preferable for solving BSDE (2.1). In this case, the

number of grid points mi is defined to be mi = 2i− 1 and the grid points on level i is the roots

of the Hermite polynomial of degree mi, i.e.,

Hmi
(x) = (−1)miex

2 dmi

dxmi
(e−x2

). (4.12)

Fig. 4.3 shows, as an example, the sparse grid H3,2 based on the SG-GH rule and the corre-

sponding full tensor-product grid based on Hermite points. The full tensor-product grid has 81

points while the sparse grid has only 22 points. Note that the SG-GH rule is not nested but

has higher accuracy. Thus, if we compare the SG-CC rule and the CG-GH rule, the latter will

have higher accuracy but also a greater number of points. When measuring efficiency, we really

need to balance the cost in quadrature points against the accuracy.

4.4. Choice of sparse-grid interpolation scheme

Here, we consider the choice of the sparse-grid points for constructing the interpolating

polynomials for yn and zn on time level tn for n = 1, . . . , N .
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Fig. 4.3. For a two dimensional space (d = 2) and maximum level q = 3, we plot the full tensor-

product grid having 81 points(left) and the sparse grid H
3,2 based on the SG-GH rule having only 22

points(right).

4.4.1. Hierarchical sparse-grid interpolant

It is noted that the Lagrange interpolating polynomials based on the Chebyshev points used by

the SG-CC rule can be directly employed to construct the needed interpolating polynomials.

However, because the grid points are pre-determined as in (4.11), it is not suitable if we want

to apply adaptivity. Thus, we propose to use sparse grids based on Newton-Cotes points, i.e.,

equidistant points. By this, it is easy to refine the grids locally. Moreover, due to the Runge’s

phenomenon caused by Lagrange interpolating polynomials on uniform grids, we use instead the

piecewise linear hat function as the basis function aij in the univariate interpolant (4.2) [4, 16].

The piecewise linear function has local support in contrast to the global support of the Lagrange

basis function. The grid points on [-1,1] in this case are given by

mi =

{
1, if i = 1,

2i−1 + 1, if i > 1,
(4.13)

xi
j =





0, for j = 1, if mi = 1,

2(j − 1)

mi − 1
− 1, for j = 1, . . . ,mi, if mi > 1.

(4.14)

For a general interval [a, b], the grid points are simple translations and scalings of (4.14). The

nodal basis function aij with local support [xi
j − 21−i, xi

j +21−i] is defined as follows. For i = 1,

a11 = 1; for i > 1 and j = 1, . . . ,mi,

aij =





1− mi − 1

2
· |x− xi

j |, if |x− xi
j | <

2

mi − 1
,

0, otherwise .

(4.15)

Then the multi-linear basis functions used in the tensor-product interpolant (4.3) are defined

by

aij = ai1j1 ⊗ · · · ⊗ aidjd =

d∏

k=1

aikjk . (4.16)

Substituting into Aq,d(f), the equation (4.4) can be rewritten as

Aq,d(f) =
∑

q−d+16|i|6q

∑

j

(−1)q−|i|

(
d− 1

q − |i|

)
· f(xi1

j1
, . . . , xid

jd
) · aij. (4.17)
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Note that the sparse-grid interpolant (4.17) does not give much information about the smooth-

ness of the function f so that it is not appropriate for an adaptive implementation.

Next, let us consider the hierarchical sparse-grid (HSG) interpolant in (4.6) based on the

multi-linear basis functions aij. Taking advantage of the nested structure of the Newton-Cotes

abscissas, i.e. χi−1 ⊂ χi, the hierarchical basis and the hierarchical surpluses can be derived for

the interpolant (4.6). Clearly, ∆χi = χi\χi−1 has mi
∆ = mi −mi−1 points due to χi−1 ⊂ χi.

By consecutively numbering the points in ∆χi, and denoting the jth point of ∆χi as xi
j , the

incremental interpolant in (4.5) can be represented by (see [11, 16] for details)

∆i(f) =

mi
∆∑

j=1

aij ·
[
f(xi

j)− U i−1(f)(xi
j)
]
, (4.18)

where ωi
j = f(xi

j)− U i−1(f)(xi
j) is defined as the one-dimensional hierarchical surplus on level

i, which is just the difference between the values of the interpolating polynomials at level i

and i− 1; the set of the basis functions {aij , j = 1, . . . ,mi
∆} is defined as the hierarchical basis

functions on level i. By (4.18), the HSG interpolant (4.6) can be rewritten as

Aq,d(f) = Aq−1,d(f) +
∑

|i|=q

(∆i1 ⊗ · · · ⊗∆id)(f)

= Aq−1,d(f) +
∑

|i|=q
j∈Bi

ωi
j · aji(x) =

∑

|i|6q

∑

j∈Bi

ωi
j · aji(x),

(4.19)

where the multi-index set Bi is

Bi =

{
j ∈ N

d : xik
jk

∈ ∆χik for jk = 1, . . . ,mik
∆ , k = 1, . . . , d

}
, (4.20)

and the surpluses ωi
j are

ωi
j = f(xi1

j1
, . . . , xid

jd
)−Aq−1,d(f)(xi1

j1
, . . . , xid

jd
). (4.21)

As proved in [1,11], for smooth functions, the hierarchical surpluses tend to zero as the interpo-

lation level tens to infinity. On the other hand, the magnitude of the surplus is a good indicator

to show the smoothness of the interpolated function. The bigger the magnitude is, the stronger

the underlying discontinuity is. Thus, the hierarchical surplus can be used for error control and

implementation of adaptivity.

4.4.2. Adaptive hierarchical sparse-grid interpolant

As discussed above, if the solution of the BSDE (2.1) is not equally smooth with respect to

the Brownian motion Wt over the bounded domain shown in Fig. 4.1, an adaptive sparse

grid [16] is preferred, which may place more points in the non-smooth region and fewer points

in the smooth region. In this method, the hierarchical surplus ωi
j is used as the indicator for

adaptation. Analogous to the HSG interpolant (4.19), the adaptive hierarchical sparse-grid

(AHSG) interpolant can be defined by modifying the multi-index Bi to

Bε
i =

{
j ∈ Bi : |wi

j| > ε
}
, (4.22)
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and the AHSG interpolant is defined by

Aq,d
ε (f) =

∑

|i|6q

∑

j∈Bε
i

ωi
j · aji(x), (4.23)

where the constant ε is called the threshold of the interpolant Aq,d
ε (f). To increase the level of

the interpolant (4.23) from level q − 1 to q, one needs to evaluate the function f at the points

∆Hq,d
ε =

{
xi
j : |i| = q and j ∈ Bε

i

}
. (4.24)

It is easy to see that a q-level adaptive sparse grid, denoted by Hq,d
ε , is a subgrid of the

corresponding q-level sparse grid Hq,d. If ε = 0, the AHSG interpolant (4.23) is equivalent to

the HSG interpolant (4.19); if ε > 0, it will adaptively select which points are added to the

sparse grid. Subsequently, the sparse-grid points will become concentrated in the non-smooth

region. The refinement algorithm of adaptive sparse grids can be found in [16].

4.5. Approximation errors

First, we discuss the errors of the sparse-grid quadrature rules. The errors are considered

in the function space

F k
d (D) =

{
f : D → R|Dαf continuous if αi 6 k for all i

}
, (4.25)

where D ⊂ R
d, α = (αi, . . . , αd) ∈ N

d
0, |α| = α1+ · · ·+αd and Dα denotes the d-variate partial

derivative of order |α|, i.e.,

Dαf =
∂|α|f

∂xα1

1 · · · ∂xαd

d

. (4.26)

As discussed in [1, 19], for any function f ∈ F k
1 ([−1, 1]), the error of the one-dimensional

Clenshaw-Curtis rule is given by
∣∣∣∣
∫

D

f(x)dx −Qq,1
CC(f)

∣∣∣∣ 6 CN−k
s , (4.27)

where Ns is the number of quadrature points and the constant C depends on the upper bound

of the k-th derivative of f . For the SG-CC quadrature rule, we have the following lemma given

in [1, 19].

Lemma 4.1. For any function f ∈ F k
d ([−1, 1]d), the error of the sparse-grid Clenshaw-Curtis

rule is ∣∣∣∣
∫

D

f(x)dx −Qq,d
CC(f)

∣∣∣∣ 6 Ck,dN
−k
s (log(Ns))

(k+1)(d−1) , (4.28)

where Ns is the number of sparse-grid quadrature points used by Qq,d
CC(f) and the constant Ck,d

only depends on d and the upper bound of the k-th derivative of f .

Analogously, as discussed in [26], for any function f ∈ F k
1 (R) whose growth at infinity satisfies

the condition in Theorem 1 in [26], the error of the one-dimensional Gauss-Hermite rule is given

by ∣∣∣∣
∫

R

f(x)e−x2

dx−Qq,1
GH(f)

∣∣∣∣ 6 CN−k/2
s . (4.29)

By conducting the same procedure as that in [1, 19], we can obtain the following lemma:
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Lemma 4.2. For any function f ∈ F k
d (R

d), the error of the sparse-grid Gauss-Hermite rule is

∣∣∣∣
∫

Rd

f(x)e−x⊤xdx−Qq,d
GH(f)

∣∣∣∣ 6 Ck,dN
−k/2
s (log(Ns))

(k/2+1)(d−1) , (4.30)

where x = (x1, . . . , xd), Ns is the number of the sparse-grid quadrature points used by Qq,d
GH(f)

and the constant Ck,d depends only on d and the upper bound of the k-th derivative of f .

Next, we discuss the interpolation errors of the HSG and AHSG interpolation. Analogous

to the error analysis of the SG-CC quadrature rule, we can obtain the error for the HSG

interpolation scheme as follows [11, 16].

Lemma 4.3. For any function f ∈ F 2
d ([a, b]

d) where [a, b]d is bounded, the error of the HSG

interpolant (4.19) in L∞ norm is given by

∥∥f −Aq,d(f)
∥∥
∞

6 CdN
−2
s (log(Ns))

3(d−1) , (4.31)

where the constant Cd only depends on d and the upper bound of the second derivative of f .

Relying on Lemma 4.3, we can obtain the error estimate of the AHSG interpolant (4.23) in the

following lemma [16].

Lemma 4.4. For any function f ∈ F 2
d ([a, b]

d) where [a, b]d is bounded, the error of the AHSG

interpolant (4.23) with the threshold ε in L∞ norm is given by

∥∥f −Aq,d
ε (f)

∥∥
∞

6 CdN
−2
s (log(Ns))

3(d−1)
+ εNm,ε, (4.32)

where Ns is the number of points of Hq,d, Nm,ε is the number of the missing points of the

adaptive sparse grid Hq,d
ε under the threshold ε, the constant Cd depends on d and the upper

bound of the second derivative of f .

In fact, for a fixed threshold ε, a q-level HSG interpolant (4.19) can be written as a sum of two

terms, i.e.

Aq,d(f) = Aq,d
ε (f) +

∑

|i|6q

∑

j∈Bi\Bε
i

ωi
j · aji(x), (4.33)

where the second term involves all the missing points whose surpluses are below the threshold

ε. Since for any piecewise multi-linear basis function aij(x), ‖aij‖∞ = 1, for any function

f ∈ F 2
d ([a, b]

d), the interpolation error of the AHSG interpolant is given by [3, 16]

∥∥f −Aq,d
ε (f)

∥∥
∞

=
∥∥f −Aq,d(f) +Aq,d(f)−Aq,d

ε (f)
∥∥
∞

6
∥∥f −Aq,d(f)

∥∥
∞

+
∥∥Aq,d(f)−Aq,d

ε (f)
∥∥
∞

=
∥∥f −Aq,d(f)

∥∥
∞

+

∥∥∥∥∥∥

∑

|i|6q

∑

j∈Bi\Bε
i

ωi
j · aji(x)

∥∥∥∥∥∥
∞

6 CdN
−2
s (log(Ns))

3(d−1)
+ εNm,ε. (4.34)

Note that the number of points, denoted by Ns,ε, on an adaptive sparse grid is Ns −Nm,ε.
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4.6. Fully-discrete scheme

The scheme (3.8) is a stable semi-discrete scheme in the time direction. To develop a fully-

discrete scheme for solving the BSDE (2.1), an effective discretization in space is also necessary.

According to the discussion of the time-space domain in Section 4.1, for a fixed local radius r,

we construct an adaptive sparse grid Hqn,d
n,ε with threshold ε to discretize the spatial domain

[−rn, rn]d on time level tn. It is clear that Hqn,d
n,ε ⊂ Hqn,d

n . Denote by Nn
s and Nn

s,ε as the total

number of points in Hqn,d
n and Hqn,d

n,ε , respectively. Nn
m,ε is the number of missing points of

Hqn,d
n,ε , so that Nn

s = Nn
s,ε + Nn

m,ε. By consecutively numbering the points in Hqn,d
n,ε , it can be

represented as

Hqn,d
n,ε = {xn

i , i = 1, . . . , Nn
s,ε}.

In addition, because the volume of the spatial domain increases along with time, the level qn
should also increases accordingly. If ε = 0, i.e., no adaptivity, the abscissas of Hqn,d

n,ε can be

determined in advance for a fixed qn; otherwise (ε > 0), the abscissas cannot be predetermined

until the solver gets to the time level tn.

Based on the semi-discrete scheme and sparse-grid methods, we propose the fully-discrete

scheme for solving the BSDE (2.1) as follow: given the random variables yN−l
i , i = 1, . . . , NN−l

s,ε

and l = 0, 1, · · · ,Kyz − 1, find the random variables (yni , z
n
i ), i = 1, . . . , Nn

s,ε and n = N −
Kyz, · · · , 0, such that

yni = Ê
xn
i

tn [ŷn+k] +Ky∆t

Ky∑

j=1

b
Ky

Ky,j
Ê
xn
i

tn [f(tn+j , ŷ
n+j, ẑn+j)] +Ky∆tf(tn, y

n
i , z

n
i ), (4.35a)

0 = Ê
xn
i

tn [ẑn+1] +

Kz∑

j=1

b1Kz,jÊ
xn
i

tn [f(tn+j , ŷ
n+j , ẑn+j)∆W⊤

tn+j
]−

Kz∑

j=1

b1Kz,jÊ
xn
i

tn [ẑn+j]− b1Kz,0z
n
i .

(4.35b)

Here, ŷn+1 and ẑn+1 are the AHSG interpolants on Hqn+1,d
n+1,ε defined by

ŷn+1 = Aqn+1,d
n+1,ε (y

n+1) and ẑn+1 = Aqn+1,d
n+1,ε (z

n+1), (4.36)

and ŷn+j , ẑn+j are defined for j = 2, . . . ,Ky or Kz in a similar way. E
xn
i

tn [yn+1] in (3.8) is

approximated by Ê
xn
i

tn [ŷn+1] within a local hypercube [xn
i − r, xn

i + r] by Clenshaw-Curtis or

Gauss-Hermite sparse-grid quadrature rule (4.9), i.e.,

Ê
xn
i

tn [ŷn+1] = Qq,d(ŷn+1) =

NQ
s∑

i=1

ωiŷ
n+1(ηi), (4.37)

where NQ
s is the number of quadrature points, ωi, ηi are the weights and quadrature points for

i = 1, . . . , NQ
s . The same number of quadrature points are used for computing the expectation

at any time-space point (tn, x
n
i ). Because some quadrature points may not belong to the sparse

grid Hqn+1,d
n+1,ε , we use the interpolating polynomial ŷn+1 to evaluate the integrand yn+1 at non-

grid points. This discussion is also applied for approximating other expectations in (4.35).

5. Error Estimates

In this section, we carry out error analysis for the fully-discrete scheme (4.35) for solving

the BSDE (2.1) with the generator function f being independent of the random variable zt,
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i.e.,

yt = ϕ(WT ) +

∫ T

t

f(s, ys)ds−
∫ T

t

zsdWs. (5.1)

For simplicity of the analysis, we consider only the case of m = 1 and d > 1, i.e., there is only

one BSDE but Wt = (W 1
t , . . . ,W

d
t )

⊤ is a vector of d mutually independent Brownian motions.

The error estimates obtained in the sequel also hold for a system of BSDEs. In such a simplified

case, the reference equations (3.3) and (3.7) with k = Ky and l = 1 have the following reduced

form:

y
xi
n

tn = E
xn
i

tn [ytn+Ky
] +Ky∆t

Ky∑

j=0

b
Ky

Ky,j
E
xn
i

tn [f(tn+j , ytn+j
)] +Rn

y ,

0 = E
xn
i

tn [ztn+1
] +

Kz∑

j=0

b1Kz,jE
xn
i

tn [f(tn+j, ytn+j
)∆Wtn+j

]−
Kz∑

j=0

b1Kz,jE
xn
i

tn [ztn+j
] +

1

∆t
Rn

z .

(5.2)

The corresponding fully-discrete scheme (4.35) becomes:

yni = Ê
xn
i

tn [ŷn+k] +Ky∆t

Ky∑

j=1

b
Ky

Ky,j
Ê
xn
i

tn [f(tn+j , ŷ
n+j)] +Ky∆tf(tn, y

n
i ),

0 = Ê
xn
i

tn [ẑn+1] +

Kz∑

j=1

b1Kz,jÊ
xn
i

tn [f(tn+j , ŷ
n+j)∆W⊤

tn+j
]−

Kz∑

j=0

b1Kz,jÊ
xn
i

tn [ẑn+j],

(5.3)

for n = N −K, . . . , 0 with K = max(Ky,Kz). In the following analysis, Êxi

tn [·] is defined using

the sparse-grid Gauss-Hermite rule ŷn+j is constructed using the AHSG interpolation.

To simplify the presentation, we assume that the following two assumptions hold.

Assumption 5.1. The positive integers Ky and Kz are chosen such that the roots of the char-

acteristic polynomial

ρ1Kz
(λ) = λKz−1 −

Kz∑

i=0

b1Kz,iλ
Kz−i (5.4)

satisfy the root conditions.

Assumption 5.2. The functions f(t, yt) and ϕ(WT ) are bounded and have bounded derivatives

of order up to k.

Next, we present two lemmas as follows.

Lemma 5.1. Let Rn
y and Rn

z be the local truncation errors defined in the reference equations

(3.3) and (3.7). Then under Assumption 5.2, we have the local estimates

|Rn
y | ≤ C(∆t)Ky+2, |Rn

z | ≤ C(∆t)Kz+2, (5.5)

where C > 0 is a generic constant only depending on T , the upper bounds of ϕ and f and their

derivatives.

Lemma 5.2. Suppose N and K are two non-negative integers with N ≥ K and ∆t is any

positive number. Let {ηn} be a series satisfying

|ηn| ≤ β + α∆t

N∑

j=n+1

|ηj |, n = N −K,N −K − 1, · · · , 0, (5.6)
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where α and β are two positive constants. Let M0 = max
N−K<j≤N

|ηj | and T = N∆t, then

|ηn| ≤ eαT (β + αK∆tM0), n = N −K,N −K − 1, · · · , 0. (5.7)

Proofs of the above two lemmas are similar to that of Lemma 3.1 in [30] and Lemma 3 in [31]

and thus we omit them here.

Now we give an error estimate of y
xn
i

tn − yni in the following theorem.

Theorem 5.1. Let y
xn
i

tn and yni be the solution of the BSDE (5.1) and the fully-discrete scheme

(5.3), respectively. Suppose Assumption 5.2 holds and the initial values satisfy

max
N−Ky6j6N

i=1,··· ,N
j
s,ε

|yx
j
i

tj − yji | = O((∆t)Ky+1).

Then for sufficiently small time step ∆t, we have

max
06j6N

i=1,··· ,N
j
s

|yx
j
i

tj − yji | 6
C

∆t

{
(
NQ

s

)−k/2 (
log(NQ

s )
)(k/2+1)(d−1)

+ max
i=2,...,N

[(
N i

s,ε

)−2 (
log(N i

s,ε)
)3(d−1)

+ εN i
m,ε

]}
+ C(∆t)

Ky+1,

(5.8)

where C > 0 is a generic constant only depending on T , upper bounds for the functions ϕ and

f and their derivatives, and the levels of used sparse grids qn (n = 2, . . . , N).

Proof. Let eni = y
xj
i

tn − yni for n = N,N − 1, . . . , 0. From (5.2) and (5.3), we obtain

eni = E
xn
i

tn [ytn+Ky
]− Ê

xn
i

tn [ŷn+Ky ]

+Ky∆t

Ky∑

j=0

b
Ky

Ky,j

{
E
xn
i

tn [f(tn+j , ytn+j
)]− Ê

xn
i

tn [f(tn+j , ŷ
n+j)]

}
+Rn

y

= I1 + I2 +Rn
y ,

(5.9)

where
I1 = E

xn
i

tn [ytn+Ky
]− Ê

xn
i

tn [ŷn+Ky ],

I2 = Ky∆t

Ky∑

j=0

b
Ky

Ky,j

{
E
xn
i

tn [f(tn+j, ytn+j
)]− Ê

xn
i

tn [f(tn+j , ŷ
n+j)]

}
.

(5.10)

We rewrite I1 as

I1 = E
xn
i

tn [ytn+Ky
]− Ê

xn
i

tn [ytn+Ky
] + Ê

xn
i

tn [ytn+Ky
− ŷtn+Ky

] + Ê
xn
i

tn [ŷtn+Ky
− ŷn+Ky ]. (5.11)

Based on Assumption 5.2 and the error of the SG-GH quadrature rule given in Lemma 4.2, we

have ∣∣∣Exn
i

tn [ytn+Ky
]− Ê

xn
i

tn [ytn+Ky
]
∣∣∣ 6 Ck,d

(
NQ

s

)−k/2 (
log(NQ

s )
)(k/2+1)(d−1)

. (5.12)

If the AHSG interpolant is used to approximate ytn+Ky
with threshold being ε, then based on

Lemma 4.4, we have
∣∣∣Êxn

i

tn [ytn+Ky
− ŷtn+Ky

]
∣∣∣ 6 Cd

(
Nn+Ky

s,ε

)−2 (
log(Nn+Ky

s,ε )
)3(d−1)

+ εNn+Ky
m,ε , (5.13)
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and ∣∣∣Êxn
i

tn [ŷtn+Ky
− ŷn+Ky ]

∣∣∣ 6 max
i=1,...,N

n+Ky
s,ε

|en+Ky

i |. (5.14)

Combining (5.12), (5.13) and (5.14), we have

|I1| 6Ck,d

(
NQ

s

)−k/2 (
log(NQ

s )
)(k/2+1)(d−1)

+ Cd

(
Nn+Ky

s,ε

)−2 (
log(Nn+Ky

s,ε )
)3(d−1)

+ εNn+Ky
m,ε + max

i=1,...,N
n+Ky
s,ε

|en+Ky

i |. (5.15)

By a similar procedure, we obtain

|I2| 6LKyCk,d∆t
(
NQ

s

)−k/2 (
log(NQ

s )
)(k/2+1)(d−1)

(5.16)

+Ky∆t

Ky∑

j=0

b
Ky

Ky,j

[
Cd

(
Nn+j

s,ε

)−2 (
log(Nn+j

s,ε )
)3(d−1)

+ εNn+j
m,ε + max

i=1,...,Nn+j
s,ε

|en+j
i |

]
,

where L is the Lipchitz constant. To simplify the presentation, we define some notations in the

following derivation:

‖en‖ = max
i=1,...,Nn

s,ε

|eni |,

esg1 = Ck,d

(
NQ

s

)−k/2 (
log(NQ

s )
)(k/2+1)(d−1)

,

esg2 = max
i=2,...,N

[
Cd

(
N i

s,ε

)−2 (
log(N i

s,ε)
)3(d−1)

+ εN i
m,ε

]
,

R̃n
y = (1 + LKy∆t)(esg1 + esg2) +Rn

y ,

(5.17)

where n = 1, . . . , N −Ky. By these notations, substituting (5.15) and (5.16) into (5.9), we get

‖en‖ 6 ‖en+Ky‖+ LKy∆t

Ky∑

j=0

b
Ky

Ky,j
‖en+j‖+ |R̃n

y |. (5.18)

Let NKy
=

[
N − n

Ky

]
. For an integer s satisfying 1 6 s 6 NKy

, we similarly have the estimate

‖en+(s−1)Ky‖ 6 ‖en+sKy‖+ LKy∆t

Ky∑

j=0

b
Ky

Ky,j
‖en+(s−1)Ky+j‖+ |R̃n+(s−1)Ky

y |. (5.19)

Now we add up the above inequalities (5.19) over s = 1, 2, . . . , NKy
and obtain

‖en‖ 6 ‖en+NKyKy‖+ 2LKy∆t

NKyKy∑

j=0

b
Ky

Ky,j
‖en+j‖+

NKy−1∑

j=0

|R̃n+jKy
y |, (5.20)

which is equivalent to

(1− 2LKy∆t)‖en‖ 6 ‖en+NKyKy‖+ 2LKy∆t

NKyKy∑

j=1

b
Ky

Ky,j
‖en+j‖+

NKy−1∑

j=0

|R̃n+jKy
y |. (5.21)
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Let D = 1
1−2LKy∆t , N1 =

2LKy

1−2LKy∆t , and

M0 = max
N−Ky6j6N

i=1,··· ,N
j
s,ε

|yx
j
i

tj − yji |+
NKy−1∑

j=0

|R̃n+jKy
y |.

For sufficiently small time step ∆t, D and N1 are clearly positive and bounded by a positive

constant. Then by Lemma 5.2 and (5.21), we obtain the following inequality

‖en‖ 6 eN1T (DM0 +∆tKyN1M0) = eN1T (D +∆tKyN1)M0. (5.22)

On the other hand, by the fact in Lemma 5.1 that

Rn
y 6 C(∆t)Ky+2, (5.23)

and the given condition |yx
j
i

tj − yji | ∼ O((∆t)Ky+1) in the theorem, we obtain

M0 = max
N−Ky6j6N

i=1,··· ,N
j
s,ε

|yx
j
i

tj − yji |+
NKy−1∑

j=0

|R̃n+jKy
y |

6C(∆t)Ky+1 +N(1 + LKy∆t)(esg1 + esg2) +

NKy−1∑

j=0

Rn+jKy
y

6
C

∆t

{
(
NQ

s

)−k/2 (
log(NQ

s )
)(k/2+1)(d−1)

+ max
i=2,...,N

[(
N i

s,ε

)−2 (
log(N i

s,ε)
)3(d−1)

+ εN i
m,ε

]}
+ C(∆t)

Ky+1.

(5.24)

Combining the inequalities (5.22) and (5.24), we immediately get (5.8) and the proof is com-

pleted. �

In the following we present an estimation of z
xn
i

tn − zni . Because both z
xn
i

tn and zni are vectors

of d elements, we measure the error by the L∞ norm, i.e., ‖zx
n
i

tn − zni ‖∞. Note that he error

y
xn
i

n − yni of the fully-discrete scheme (5.3) in Theorem 5.1 consists of two parts. One is the

time-discretization error of order (∆t)Ky+1 provided in Theorem 1 in [31]; the other is the

space-discretization error caused by sparse-grid approximation. Similarly the error z
xn
i

tn − zni
can be bounded combining the proof of Theorem 2 in [31] for the semi-discrete scheme and

interpolation error bounds of the spares-grid method given in Section 4.5. Therefore, we only

provide a conclusion but omit the proof.

Theorem 5.2. Let z
xn
i

tn and zni be the solution of the BSDE (5.1) and the fully-discrete scheme

(5.3), respectively. Suppose Assumption 5.1 and 5.2,the hypotheses of Theorem 5.1 hold, and

the initial values satisfy

max
N−Ky6j6N

i=1,··· ,N
j
s,ε

‖zx
j
i

tj − zji ‖∞ = O((∆t)Kz ).
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Then for sufficiently small time step ∆t, we have

max
06j6N

i=1,··· ,N
j
s

‖zx
j
i

tj − zji ‖∞ 6
C

∆t

{
(
NQ

s

)−k/2 (
log(NQ

s )
)(k/2+1)(d−1)

+ max
i=2,...,N

[(
N i

s,ε

)−2 (
log(N i

s,ε)
)3(d−1)

+ εN i
m,ε

]}
+ C(∆t)

Kz ,

(5.25)

where C > 0 is a generic constant only depending on T , the upper bounds for the functions ϕ

and f and their derivatives, and the levels of used sparse grids qn (n = 2, . . . , N).

Remark 5.1. From the conclusions of Theorem 5.1 and 5.2, we can see that, for the same

number of grid points, our method with (adaptive) sparse grids is much more accurate than

existing numerical methods with full tensor-product grids. For example, if we use the existing

multi-step scheme with full tensor-product grids where the number of quadrature points NQ
f is

set to NQ
s and the number of interpolation points N i

f is set to N i
x,ε for i = 1, . . . , N , then the

error estimate of zni in (5.25) becomes

max
06j6N

i=1,··· ,N
j
f

‖zx
j
i

tj − zji ‖∞ 6
C

∆t

{(
NQ

f

)− k
2d

+ max
i=2,...,N

(
N i

f

)− 2
d

}
+ C(∆t)

Kz . (5.26)

Apparently, when the dimension d is large, the accuracy of the scheme with full tensor-product

grid is much worse than our scheme with (adaptive) sparse grids. As discussed in Section 3, the

total computational cost mainly depends on the number of grid points because at each point xj
i ,

we need to approximate 5 conditional mathematical expectations and solve a nonlinear equation

to obtain the values yji and zji . Thus, under the same computational cost, our method is more

accurate than existing methods in solving multi-dimensional BSDEs. On the other hand, our

method with sparse grids can attain a prescribed accuracy with much fewer grid points than

the existing methods with full tensor-product grids, which shows much improved efficiency of

our scheme. Some comparisons between schemes with sparse grids and full tensor-product grids

are provided in Example 6.1 for the dimension d = 2, 3, 4.

6. Numerical Examples

In this section, we report on the results of two numerical tests that illustrate the accuracy

and efficiency of the proposed scheme (4.35) based on the sparse-grid method. Denote by Wt

the standard d-dimensional Brownian motion. In the experiments, we take uniform partitions

in time with the time step denoted by ∆t. The time partition number N is then given by

N = T
∆t , where T is the finite terminal time.

The errors y
xn
i

tn − yni and z
xn
i

tn − zni arise from three causes:

1. the time discretization for obtaining the semi-discrete scheme;

2. the approximation of the conditional mathematical expectation E
xn
i

tn [·] by Ê
xn
i

tn [·];

3. the interpolation for computing ŷn+j and ẑn+j.

In order to obtain optimal numerical solutions, the errors from the three parts should often be

balanced. Because the time-disretization error has been studied in [31], in this paper, the time
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step ∆t is set small enough such that the error contributed by time disretization is very small.

On the other hand, from the error bounds given in Theorem 5.1 and 5.2, the interpolation error

for computing ŷn+j and ẑn+j dominate the error from space-discretization. Therefore, in the

following examples, our task is to investigate the errors caused by the HSG interpolant and the

AHSG interpolant. Hereafter, we define ey = y
x0
0

t0 − y00 and ez = z
x0
0

t0 − z00 to be the errors of the

numerical solution at the time-space point (t0, x
0
0) = (0, (0, . . . , 0)).

Example 6.1. In this example, we consider a d-dimensional BSDE with d from 2 to 4. Let

Wt =
(
W 1

t , · · · ,W d
t

)⊤
be a d-dimensional Brownian motion. W i

t (i = 1, · · · , d) are d indepen-

dent standard one-dimensional Brownian motions. The BSDE of interest is




−dyt =

[
(d− 1)yt + 2

d∑

i=1

W i
t z

i
t

]
dt− ztdWt,

yT = exp

[
T −

d∑

i=1

(
W i

T

)2
]
,

(6.1)

where zt = (z1t , · · · , zdt ). The analytical solution of (6.1) is given by




yt = exp

[
t−

d∑

i=1

(W i
t )

2

]
,

zit = −2W i
t exp

[
t−

d∑

i=1

(W i
t )

2

]
, i = 1, · · · , d.

(6.2)

Note that the kernel f has a more general form containing Wt. Although we do not analyze

properties of this type of kernel, it still can be used to test the performance of our scheme.

The exact solution (yt, zt) at the time t = 0 is y0 = 1 and zi0 = 0 (i = 1, · · · , d). In the time

direction, set the terminal time T = 0.1, N = 17, Ky = 2 and Kz = 3, so that the fully-discrete

scheme (4.35) is of third-order [31] in the time direction with ∆t = 0.00625. In space, a 3-level

sparse-grid Gauss-Hermite quadrature rule is used to compute all mathematical expectations.

The number of quadrature points is 22, 37, 57 in the cases of d = 2, 3, 4 [5]. Thus, in the

following we focus on the interpolation error caused by the approximations ŷn and ẑn.

First, we investigate the convergence of our scheme (4.35) along with the increasing num-

ber of grid points. For d = 2, 3, 4, the AHSG interpolation is used with threshold being

ε = 10−4, 10−5, 10−6. In comparison, HSG interpolation without adaptivity and full-grid in-

terpolation are also conducted. The results are shown in Fig. 6.1. Note that because the

number of grid points varies on different time levels, the averaged number of points over all

time levels are used in Fig. 6.1. It is clear that both the HSG and AHSG methods are more

accurate than the full-grid interpolation for the same number of points. The convergence rate

of the HSG interpolation is consistent with the theoretical analysis in Theorem 5.1 and 5.2, i.e.

O(N−2
s · log(Ns)

3(d−1)). In order to compare the convergence rate between the HSG and AHSG

methods, we choose the same maximum interpolation level for both methods. However, note

that the AHSG method has almost the same convergence rate as the HSG method. The reason

is the analytical solutions yt and zt in (6.2) are almost equally smooth over the spatial domain

so that the surplus decreases almost equally fast in the interpolant (4.17). This is illustrated

for d = 2 in Fig. 6.2 in which the shapes of z1t , z
2
t and the corresponding adaptive sparse grids

on a particular time level are plotted. It is clear that equally decreasing of the surplus leads to

an almost equal density of grid points over the entire domain.
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Fig. 6.1. The errors ey and ez with respect to the number of grid points for d = 2, 3, 4 in Example 6.1.

Next, we set the maximum interpolation level to be large enough to investigate the conver-

gence of the interpolation error of AHSG method with respect to the threshold ε = 10−4. Fig.

6.3 shows that the convergence rate is consistent with the theoretical result in Theorem 5.1 and

5.2, i.e., first order convergence O(ε).

Example 6.2. In this example, we present an application of our scheme to financial problems.

As discussed in [8], BSDEs appear in numerous financial problems, such as pricing and hedging

of European and American options. Here, we consider the pricing of a basket call option in the

Black-Scholes model. Denote pt and St = (S1
t , . . . , S

d
t ) as the bond price and the prices of d
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Fig. 6.2. For d = 2, the shapes of the solution z1t , z
2
t in (a),(c); and the corresponding adaptive sparse

grids in (b), (d) with the threshold ε = 10−4 in Example 6.1.
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Fig. 6.3. The error ey with respect to the threshold ε for the AHSG method(left); The growth of the

number of grid points with respect to the threshold(right) in Example 6.1.

independent stocks, respectively. Assume that pt and St satisfy

dpt = rtptdt, t > 0,

dSi
t = bitS

i
tdt+ σi

tS
i
tdW

i
t , i = 1, . . . , d and t > 0

(6.3)

with initial conditions p0 = p and S0 = x, where rt is the return rate of the bond, bit is

the expected return rate of the i-th stock and σi
t is the volatility of the i-th stock. Wt =

(W 1
t , . . . ,W

d
t ) is a vector of d mutually independent standard Brownian motions. Note that rt,

bit, σ
i
t, 1/σ

i
t for i = 1, . . . , d are all bounded.

An investor with wealth yt at time t puts πi
t money to buy the i-th stock and uses yt−

∑d
i=1 π

i
t
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to buy the bond. Suppose that the stocks pay dividends continuously with a bounded dividend

rate qit at the time instant t. Then the processes yt and πi
t (i = 1, . . . , d) satisfy the following

stochastic differential equation [8]:

−dyt = −
[
rtyt +

d∑

i=1

(bit − rt + qit)π
i
t

]
dt−

d∑

i=1

σi
tπ

i
tdW

i
t , (6.4)

Let zt = (z1t , . . . , z
d
t ) = (σ1

t π
1
t , . . . , σ

d
t π

d
t ). Then (yt, zt) satisfies

−dyt = −
[
rtyt +

d∑

i=1

bit − rt + qit
σi
t

zit

]
dt−

d∑

i=1

zitdW
i
t . (6.5)

For the European call option, the terminal condition for the equation (6.5) is given at the

mature time T by

yT = max

{
d∏

i=1

(Si
t)

αi −K, 0

}
, (6.6)

where αi > 0,
∑d

i=1 αi = 1, ST is the solution of St at the mature time T and K is the strike

price. When rt = r, bt = b, σi
t = σi and qit = qi, then the analytical solution can be obtained

based on the classic Black-Scholes formula, i.e.,




yt = V (t, St) = e−q̂(T−t)




d∏

j=1

(Sj
t )

αj


N(d̂1)− e−r(T−t)KN(d̂2),

zit =
∂V

∂Si
σi = αie

−q̂(T−t)




d∏

j=1

(Sj
t )

αj


N(d̂1)σ

i, i = 1, . . . , d,

d̂1 =
log

∏
d
j=1(S

j
t )

αj

K +
[
r − q̂ + σ̂2

2

]
(T − t)

σ̂
√
T − t

,

d̂2 = d̂1 − σ̂
√
T − t, σ̂2 =

d∑

j=1

(σjαj)
2,

q̂ =

d∑

j=1

αj

(
qj +

σ2
j

2

)
− σ̂2

2
.

(6.7)

For our test, we set T = 0.1, K = 100, rt = 0.03; and for i = 1, . . . , d, set Si
0 = 100, bit = 0.05,

dit = 0.04 and σi
t = 0.2. In the time direction, let Ky = 2, Kz = 3 and N = 17, so that the

fully-discrete scheme (4.35) is of third order in time with ∆t = 0.00625. As in Example 6.1, we

also choose a 4-level sparse-grid Gauss-Hermite quadrature rule to approximate all conditional

mathematical expectations and focus on the interpolation error caused by ŷn and ẑn.

First, we solve this problem for d = 2, 3, 4 in order to compare with Example 6.1. It has

already been demonstrated in Example 6.1 that the sparse-grid interpolation (both HSG and

AHSG method) can attain higher accuracy than the full-grid interpolation for the same number

of grid points, so in this example, we just solve the BSDE using HSG and AHSG method. The

threshold ε is set to 10−3, 10−4, 10−5 for the AHSG method. The computational results are

shown in Figs. 6.4, 6.5 and 6.6. It is noted in Fig. 6.4 that our scheme with HSG method

achieves the theoretical convergence rate O(N−2
s · (log(Ns))

3(d−1)) proved in Theorem 5.1 and
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5.2. Also note that many fewer points are needed for the AHSG method than the HSG method

to achieve the same accuracy for solving yni . In the two-dimensional case, the shape of yt at

a certain time level and the evolution of the adaptive sparse grid for the threshold 10−3 is

shown in Fig. 6.5. Because of the shape of the terminal condition in (6.6), the solution yt
is not equally smooth over the entire region. The region around the diagonal line, where the

derivative of yt has relatively large variation, can be detected by the AHSG method, so that

more grid points are placed in this region. In comparison, many fewer points are placed in the

off-diagonal regions because yt is much smoother in these regions.
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Fig. 6.4. The errors ey and ez with respect to the number of grid points for d = 2, 3, 4 in Example 2.
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Fig. 6.5. The evolution of the adaptive sparse grid at the time level tN−1 with the threshold ε = 10−3

in Example 2.

Next, to test the performance of our scheme in solving high-dimensional BSDEs, we consider

the BSDE (6.5) for a European call option in dimension 8. In addition, because long-term

computation is of great interest in real financial applications, we set the maturity time is T = 10.

In the temporal domain, we still use the third-order multi-step scheme with Ky = 2, Kz = 3

and set ∆t = 0.01; in the spatial domain, a 4-level sparse-grid Gauss-Hermite quadrature rule is

used to approximate the conditional mathematical expectations. Thus, the interpolation error

of interest caused by ŷn and ẑn will dominate the total error. The results are shown in Fig.

6.6. In Fig. 6.6(a) and 6.6(b), the convergence of our scheme with the HSG method and AHSG

method (ε = 10−1, 10−2) are plotted. In Fig. 6.6(c) and 6.6(d), the error and the needed

number of points with respect to threshold ε are provided. All the results are consistent with

our theoretical analysis. As discussed in Section 2 Remark 3.1, the chosen values of Ky and Kz

guarantee the stability of our scheme in the time direction. Furthermore, because there is no

approximation of spatial derivatives involved in our scheme, the stability of our scheme is not

affect by any CFL condition.

7. Conclusions and Future Work

In this paper, we propose a sparse-grid method for solving multi-dimensional backward

stochastic differential equations. The BSDE is discretized by the multi-step scheme [31] in time

and the sparse-grid method in space. It has been shown that the combination of the multi-step
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Fig. 6.6. (a,b) The errors ey and ez with respect to the number of grid points for d = 8, T = 10; (c)the

error ey , ez with respect to the threshold ε for the AHSG method; (d) the growth of the number of

grid points with respect to the threshold in Example 2.

method and the sparse-grid method is a highly suitable choice for solving multi-dimensional

BSDEs. Moreover, the sparse-grid method can be use together with several one-step meth-

ods [28, 29] in a similar way. The numerical experiments demonstrate the effectiveness of our

scheme and verify the consistency between theoretical analysis and computational results. For

future study, we are going to extend our method to solve coupled forward-backward stochastic

differential equations (FBSDEs) which are more general and applicable in real-world applica-

tions. When solving FBSDEs, sparse-grid approximations need to be constructed for solutions

of both forward and backward equations, so that the sparse-grid mesh refinement will also de-

pend on the smoothness of the driving process, i.e. the forward solution that may be highly

non-smooth such as Lèvy processes with jumps. In addition, if a FBSDE system is not fully

coupled, i.e. the forward solution does not depends on the backward solution, then the forward

and backward equation can still be solved separately, in which case sparse-grid methods can be

used with relative ease. However, if a FBSDE system is fully coupled, then the forward and

backward equations must be solved simultaneously, in which case how to do sparse-grid mesh

refinement will become more challenging.
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