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Abstract

In this paper we present the error estimate for the fully discrete local discontinuous

Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet bound-

ary condition in one dimension. The time is advanced by the third order explicit total

variation diminishing Runge-Kutta method under the reasonable temporal-spatial condi-

tion as general. The optimal error estimate in both space and time is obtained by aid of

the energy technique, if we set the numerical flux and the intermediate boundary condition

properly.
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1. Introduction

In this paper we shall present the a priori error estimate for one fully discrete algorithm to

solve linear convection-diffusion problem with Dirichlet boundary condition. The scheme under

consideration in this paper, which is referred to as the LDGRK3 scheme, uses the third order

explicit total variation diminishing Runge-Kutta (TVDRK3) time-marching [19] and the local

discontinuous Galerkin (LDG) spatial discretization with piecewise polynomials of arbitrary

degree k ≥ 1.

This type of method was introduced by Cockburn and Shu in [10] as an extension to gen-

eral convection-diffusion problems of the numerical scheme for the compressible Navier-Stokes

equation [2], which is a remarkable development from the famous Runge-Kutta discontinuous

Galerkin (RKDG) methods for purely hyperbolic problems. After that, this method has been

rigorously studied by a number of researchers, for example, for elliptic problem [1, 6], Stokes

problem [9], and convection-diffusion problem [7]. For a fairly complete set of references on

this method as well as its implementation and applications, please refer to the recent review

papers [11, 18] and book [13].

To put our result in proper perspective, let us briefly describe the relevant results available in

the current literature. In [10], the semi-discrete LDG method for convection diffusion problems

with periodic boundary conditions was considered, and the quasi-optimal error estimate was

obtained (namely k-th order accuracy in L2-norm if the piecewise polynomials of degree k are

used). Later, the convergence properties and the optimal error estimate of the hp-version of
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the semi-discrete LDG method has been studied in [7], for convection-diffusion problems with

Dirichlet boundary condition.

However, as far as the authors know, there are few analysis for the fully-discrete version

of the LDG method. Since we actually care about the convection-dominated case in this pa-

per, we are interesting in the explicit time-marching. We would like to adopt the explicit

TVDRK3 time-marching which has a strong stability preserving (SSP) property [12] and high

order accuracy in time. Based on the works of [7,22], we will devote to obtaining, for this fully-

discrete method, the optimal error estimates in both time and space, for the convection-diffusion

problem with Dirichlet boundary condition. In this paper we abandon the second order total

variation diminishing Runge-Kutta (TVDRK2) time-marching, since it requires a more strict

restriction on the temporal-spatial condition, such as τ = O(h4/3), for the high-order piecewise

polynomials, where h and τ are the maximum cell size and the time step respectively; see [3,20].

The difficulty of analysis in this paper mainly lies in two points. One is how to define nice

numerical flux for the general Dirichlet boundary condition other than the periodic boundary

condition. It is well known that the numerical flux is an important issue to ensure the success

for LDG methods. The numerical flux is easy to implement for periodic boundary conditions,

but not for Dirichlet boundary condition. In this paper we would like to follow the idea in [7],

and only make some minor modifications on the numerical flux for periodic boundary condition

at the boundary points. We want to find a uniform setting for numerical flux to solve out the

convection-diffusion problem, in whatever case that the problem is convection-dominated or

not.

The other difficulty comes from the boundary treatment at each intermediate stage time.

Since the higher order TVDRK3 time marching is made up of the first-order Euler forward time-

marching in each stage, incorrect boundary condition treatments may destroy the high accuracy

of the LDGRK3 algorithm as that for periodic boundary condition. An important development

on this reduction of convergence order has been given by Carpenter and his colleague [4], where

some corrections on the intermediate boundary condition is presented for the finite difference

methods to solve the hyperbolic equation. In this paper we would like to seek a reasonable

treatment on the intermediate boundary condition for convection-diffusion problem from the

viewpoint of energy analysis. The strategies presented here are very similar as that given in [4],

which are solely based on the physical information of the given boundary condition. Several

numerical experiments are also given to show the validation of our strategy on the boundary

condition treatment.

The main analysis tool in this paper is the energy technique, which has been used in [20–22]

to analyze the fully discrete algorithm of DG method with Runge-Kutta time-marching. This

technique has many advantages in the numerical analysis. It does not demand the used mesh in

uniform size, and can be extended to problems with varying-coefficients even to the nonlinear

problems, it also works well for different types of boundary conditions [14]. Furthermore, it helps

us to find out the reasonable and good treatment on the numerical boundary condition [15].

The remainder of this paper is organized as follows. In section 2 we present the LDGRK3

scheme for a model problem. In section 3, we give some preliminaries for the discontinuous

finite element space, including the inverse properties and approximation properties for two

local Gauss-Radau projections. Then we present some elemental properties of the corresponding

LDG spatial discretization. Section 4 is the main body of this paper where the main result on

error estimate is presented and proved by energy technique. In this process, the numerical flux

and intermediate boundary conditions will be defined well. Several proofs of some basic lemmas
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are presented in section 7, as appendix. In section 5, some numerical experiments are given

to verify the theory results and illustrate the effects of the intermediate boundary conditions.

Finally, the conclusion remarks are given in section 6.

2. LDGRK3 Scheme

In this section we follow [7, 10] and present the precise definition of the LDGRK3 scheme

for the model problem in one dimension

Ut + cUx − dUxx = 0, (x, t) ∈ QT = (a, b)× (0, T ], (2.1a)

U(x, 0) = U0(x), x ∈ Ω = (a, b), (2.1b)

U(a, t) = Ua(t), U(b, t) = Ub(t), t ∈ (0, T ], (2.1c)

where the constant d > 0 is diffusion coefficient and the constant c is the velocity of the flow

field. Assume c > 0 in this paper, hence the location of the possible boundary layer [17] is at

x = b. The initial solution U0(x) is assumed to be smooth enough to ensure the solution of this

model problem exists uniquely with sufficient smoothness.

Let Q =
√
dUx and define (hU , hQ) := (cU −

√
dQ,−

√
dU). The LDG scheme is started

from the following equivalent first-order differential system

Ut + (hU )x = 0, Q+ (hQ)x = 0, (x, t) ∈ QT , (2.2)

with the same initial condition (2.1b) and boundary condition (2.1c). For convenience, we

denote by W = (U,Q) the exact solution of this system.

2.1. Semi-discrete LDG scheme

Let Th = {Ij}Nj=1 be the quasi-uniform partition of domain Ω, where Ij = (xj−1, xj) is a cell

with length hj = xj − xj−1 for j = 1, . . . , N . Here x0 = a and xN = b are boundary endpoints.

Denote h = maxj hj ≤ 1. Since the mesh is quasi-optimal, there exists a positive constant ν

such that h/hj ≤ ν, ∀j = 1, . . . , N , as h goes to zero.

Associated with the mesh Th, we define the discontinuous finite element space

Vh =
{
v ∈ L2(Ω) : v|Ij ∈ Pk(Ij), ∀j = 1, . . . , N

}
, (2.3)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k ≥ 1. Note that

the functions in this space are allowed to have discontinuities across element interfaces. At

each element interface point, for any function p, there are two traces along the right-hand and

left-hand, denoted by p+ and p−, respectively. As usual, the jump is denoted by [[p]] = p+−p−.

We would like to seek the numerical solution, denoted by w(t) := (u(t), q(t)), in the finite

element space Vh × Vh, where the argument x is omitted. The semi-discrete LDG scheme is

defined as follows: for any t > 0, w(t) satisfies the variation form

(ut, v)j = Hj(w, z) = (hu, vx)j − ĥu,jv
−
j + ĥu,j−1v

+
j−1, (2.4a)

(q, r)j = Kj(w, z) = (hq, rx)j − ĥq,jr
−
j + ĥq,j−1r

+
j−1, (2.4b)

in each cell Ij , j = 1, 2, . . . , N , for any test functions z = (v, r) ∈ Vh×Vh, where (·, ·)j is the usual
inner product in L2(Ij). The initial condition u(x, 0) ∈ Vh can be taken as any approximation
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of the given initial solution U0(x), for example, the local Gauss-Radau projection of U0(x).

Please refer to (3.7) for the precise definition.

In (2.4), ĥu and ĥq are the numerical fluxes defined at every element boundary point. They

depend on two values besides both sides of u and q. In this paper we would like to define them,

in the similar way as that in [7]. For notational convenience, we introduce the ghost values at

two boundary points

(u−
0 , q

−
0 ) = (ga, q

+
0 ), (u+

N , q+N ) = (gb, q
−
N ), (2.5)

where ga = Ua and gb = Ub are the given Dirichlet boundary conditions. Then we define the

numerical flux at xj in the general form

(ĥu,j , ĥq,j) = (cu−
j −

√
dq+j ,−

√
du−

j )− (γjc[[u]]j , ρj
√
d[[u]]j), j = 0, 1, . . . , N, (2.6)

with nonnegative constants γj and ρj .

Actually, the first term in definition (2.6) comes from the numerical flux which works well for

the periodic boundary condition. The last term in (2.6) is necessary to deal with the Dirichlet

boundary condition. We would like in this paper to set both γj and ρj as zero at every element

boundary points, except at the boundary points of the computation domain. Note that, it is

enough to set all of them to be zero for the periodic boundary condition.

The left four parameters, γ0, γN , ρ0 and ρN , need to be defined carefully to ensure the

stability and accuracy of the LDG scheme, when Dirichlet boundary condition is considered.

In this paper we shall seek the nice setting for these parameters from the view point of optimal

error estimate. The detailed evaluations for these parameters are almost the same as that in [7].

Some of them may depend on the Péclet mesh number Pe, defined as

Pe =
ch

d
. (2.7)

If there holds P−1
e = O(1) for a given mesh, the considered problem is said to be convection-

dominated.

Till now we complete the definition of the semi-discrete LDG scheme.

At the end of this subsection, we write the above scheme in the compact form for convenience.

To that end, we denote by (q, r)h =
∑N

j=1(q, r)j the usual inner product in L2(Ω), and by

〈q, r〉h =
∑N−1

j=1 qjrj the so-called L2-inner product on all interior mesh grids. Summing up

variation formulations (2.4) over j = 1, 2, . . . , N , we can write the semi-discrete LDG scheme

in the global form: for any t > 0, find the numerical solution w = (u, q) ∈ Vh × Vh such that

(ut, v)h = H(g;w, v) := Hint(w, v) +Hbry(g; v), (2.8a)

(q, r)h = K(g;u, r) := Kint(u, r) +Kbry(g; r), (2.8b)

hold for any test function (v, r) ∈ Vh × Vh. Here g = (ga, gb) reflects the boundary condition,

and the LDG spatial discretizations are given as follows:

Hint(w, v) = (cu−
√
dq, vx)h + 〈cu− −

√
dq+, [[v]]〉h − c

[
(1 + γN )u−

Nv−N + γ0u
+
0 v

+
0

]

+
√
d(q−Nv−N − q+0 v

+
0 ), (2.9a)

Kint(u, r) = (−
√
du, rx)h − 〈

√
du−, [[r]]〉h +

√
d
[
(1 − ρN )u−

Nr−N − ρ0u
+
0 r

+
0

]
, (2.9b)

Hbry(g; v) = c
[
γNgbv

−
N + (1 + γ0)gav

+
0

]
, (2.9c)

Kbry(g; r) =
√
d
[
ρNgbr

−
N − (1− ρ0)gar

+
0

]
. (2.9d)

Note the subscripts “int” and “bry” are used to emphasize the inner of domain (a, b), and the

domain boundary points x = a and x = b, respectively.
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2.2. Fully discrete LDG scheme

In this paper we would like to adopt the high-order explicit TVDRK3 time-marching [19] to

update the semi-discrete LDG scheme (2.4) or (2.8). This forms the fully discrete LDG scheme,

called LDGRK3 scheme in this paper.

Let {tn = nτ}Mn=0 be the uniform partition of time interval [0, T ], with the time step τ . The

time step could actually change from step to step, but in this paper we take the time step as a

constant for simplicity.

Then the numerical solution of LDGRK3 scheme is given by the following process. Take the

initial solution u0 = u(x, 0), as the same as that in the semi-discrete scheme. Assume un ∈ Vh

is obtained at the time tn, we would like to find out the solution un+1 ∈ Vh at the next time

tn+1, through two intermediate solutions un,1 ∈ Vh and un,2 ∈ Vh. For any test function v ∈ Vh,

the numerical solutions satisfy that

(un,1, v)h = (un, v)h + τH(gn;wn, v), (2.10a)

(un,2, v)h =
3

4
(un, v)h +

1

4
(un,1, v)h +

τ

4
H(gn,1;wn,1, v), (2.10b)

(un+1, v)h =
1

3
(un, v)h +

2

3
(un,2, v)h +

2τ

3
H(gn,2;wn,2, v), (2.10c)

in which the auxiliary solutions qn,ℓ ∈ Vh is determined by the variation form

(qn,ℓ, r)h = K(gn,ℓ;un,ℓ, r), ∀r ∈ Vh, ℓ = 0, 1, 2. (2.10d)

Here the notation gn,ℓ = (gn,ℓa , gn,ℓb ) is used to represent the boundary conditions at x = a and

x = b, on each intermediate time level tn,ℓ. Note that if the stage index ℓ = 0 we would like to

drop this superscript here and after; for example, qn,0 = qn. Now we complete the definition

of the considered LDGRK3 scheme.

To ensure the numerical stability of the LDGRK3 scheme, we must demand the time step

τ satisfy the following temporal-spatial conditions

cτ

h
≤ λc, and

dτ

h2
≤ λd, (2.11)

where both λc and λd, the CFL numbers for convection and diffusion respectively, are suitable

positive constants independent of h and τ . A sufficient condition will be given in the next

analysis process.

3. Preliminaries

In this section we first present some notations and norms which will be used throughout

this paper, and then we give some properties of the finite element space and the LDG spatial

discretizations.

3.1. Notations and norms

In this paper those norms and semi-norms in the Sobolev space are used as usual. For

example, we denote by L2(D) those functions which are square integral in D. Let (·, ·)D be

the scalar inner product in L2(D), with the associated norm ‖ · ‖D. For any integer s ≥ 0, let

Hs(D) represent the space equipped with the norm ‖ · ‖s,D, in which the function itself and the
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derivatives up to the s-th order are all in L2(D). If D = Ω = (a, b), we omit the subscript Ω

for convenience.

Furthermore, we would like to consider the (mesh-dependent) broken Sobolev space

H1(Th) =
{
φ ∈ L2(Ω) : φ|Ij ∈ H1(Ij), ∀j = 1, . . . , N

}
, (3.1)

which contains the discontinuous finite element space Vh. Let Γ = {a, b} be the boundary of

domain Ω, and let Γh be the union of all element endpoints in the mesh. Denote by Γint
h = Γh\Γ

the union of all interior element endpoints. For any function p ∈ H1(Th), we define the following
mesh-dependent notations

‖[[p]]‖2Γint
h

= c〈[[p]], [[p]]〉h, ‖p‖2Γ,γ = c
[
(1 + 2γ0)(p

+
0 )

2 + (1 + 2γN )(p−N )2
]
, (3.2a)

‖p‖2Γh,γ = ‖[[p]]‖2Γint
h

+ ‖p‖2Γ,γ. (3.2b)

Note that the above notations all involve the convection velocity c, and the latter two also are

related to the parameters γ0 and γN .

Let {wn,ℓ}ℓ=0,1,2
∀n be a series of functions defined at every stage time levels. Following [21,22],

we would like in this paper to adopt two series of simplifying notations

E1w
n = wn,1 − wn, D1w

n = wn,1 − wn, (3.3a)

E2w
n = 4wn,2 − wn,1 − 3wn, D2w

n = 2wn,2 − wn,1 − wn, (3.3b)

E3w
n =

3

2
wn+1 − wn,2 − 1

2
wn, D3w

n = wn+1 − 2wn,2 + wn. (3.3c)

The left three notations describe the evolution of numerical solutions under the explicit TV-

DRK3 time-marching. The right three notations play similar roles as the time derivatives from

the first order up to the third order, and have critical functions in our analysis. The detailed

explanation will be given in (4.14).

It is worthy to point out that the notations in one column can be linearly expressed by those

in the other column. For example, there hold the identities E1w
n = D1w

n and

E2w
n = 2D2w

n + D1w
n, E3w

n =
3

2
D3w

n + D2w
n + D1w

n. (3.4)

Consequently, there exists a positive constant C independent of n, ℓ and w, such that

‖Eℓw
n‖ ≤ C

∑

1≤ς≤ℓ

‖Dςw
n‖, ℓ = 1, 2, 3. (3.5)

3.2. Properties of the finite element space

Now we present some inverse properties with respect to Vh. For any function v ∈ Vh, there

exists a positive constant µ > 0 independent of v, h and j, such that

‖vx‖Ij ≤ µh−1‖v‖Ij , (3.6a)

‖v‖∂Ij ≤ µ1/2h−1/2‖v‖Ij . (3.6b)

Here ‖v‖∂Ij = ((v+j−1)
2 + (v−j )

2)1/2 is the L2-norm on the boundary of Ij .
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In this paper we will use two Gauss-Radau projections from H1(Th) to Vh, denoted by π−
h

and π+
h , respectively. For the given function p ∈ H1(Th), the projection π±

h p is defined as the

unique element in Vh such that, in each element Ij = (xj−1, xj),

(π−
h p− p, v)Ij = 0 ∀v ∈ Pk−1(Ij), (π−

h p)
−
j = p−j , (3.7a)

(π+
h p− p, v)Ij = 0 ∀v ∈ Pk−1(Ij), (π+

h p)
+
j−1 = p+j−1. (3.7b)

They are different only at the exact collocation on different endpoint of each element, which

provides a great help to obtain the optimal error estimates.

Denote by η = p− π±
h p the projection error. By a standard scaling argument [5], it is easy

to obtain the following approximation property

‖η‖Ij + h1/2‖η‖∂Ij ≤ C‖p‖Hs(Ij)h
min(k+1,s), ∀j, (3.8)

where the bounding constant C > 0 is independent of h and j.

In what follows we will mainly use the inverse inequalities and the approximation property

in global form by summing up the above local inequalities over every j = 1, 2, . . . , N . The

conclusions are trivial and almost the same by dropping the subscripts, so omitted here.

3.3. Properties of the LDG spatial discretization

In this subsection we consider the LDG spatial discretizations. Let us start from the bilinear

functionals associated with the inner information

B(w, z) = Hint(w, v) +Kint(u, r), (3.9)

where w = (u, q) and z = (v, r) are any functions in H1(Th)×H1(Th). Integrating on each cell

Ij and then summing up for every j = 1, 2, . . . , N , after a simple manipulation we will derive

the following important identity

B(w, z) +B(z,w) =− c〈[[u]], [[v]]〉h − c
[
(1 + 2γ0)u

+
0 v

+
0 + (1 + 2γN )u−

Nv−N
]

+
√
d
[
(1− ρN )(u−

Nr−N + v−Nq−N )− ρ0(u
+
0 r

+
0 + v+0 q

+
0 )
]
. (3.10)

This process is straightforward, so omitted here. Similar results can be found in any literatures

about the LDG methods, for example [10].

Based on this identity, we establish the following lemmas.

Lemma 3.1. For any given positive constant ε, there holds the stability estimate

B(w,w) ≤ −1

2
‖u‖2Γh,γ + ε‖u‖2Γ,γ +

1

4ε
µP−1

e Cρ,γ‖q‖2, (3.11)

for any w = (u, q) ∈ H1(Th)×H1(Th), where Cρ,γ is a nonnegative constant depending on the

parameters {γ, ρ} := {γ0, γN , ρ0, ρN}, in the form

Cρ,γ =
(1− ρN )2

1 + 2γN
+

ρ20
1 + 2γ0

. (3.12)

Proof. The proof is straightforward. By taking z = w in (3.10) we get

B(w,w) = −1

2
‖u‖2Γh,γ +

√
d
[
(1 − ρN )u−

Nq−N − ρ0u
+
0 q

+
0

]
.
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Denote the last term on the right-hand side by Π. Then, an application of Cauchy-Schwartz

inequality and Young’s inequality yields

|Π| ≤
√

d

c

( |1− ρN |√
1 + 2γN

|q−N |
√
c(1 + 2γN )|u−

N |+ ρ0√
1 + 2γ0

|q+0 |
√
c(1 + 2γ0)|u+

0 |
)

≤
√

d

c

(
(1− ρN )2

1 + 2γN
|q−N |2 + ρ20

1 + 2γ0
|q+0 |2

)1/2

‖u‖Γ,γ

≤
√

dµCρ,γ

ch
‖q‖‖u‖Γ,γ ≤ ε‖u‖2Γ,γ +

1

4ε
µP−1

e Cρ,γ‖q‖2,

where we have used inverse inequality (3.6b) on elements I1 and IN at the third step. This

completes the proof of this lemma. �

Remark 3.1. From this lemma, the best parameters should be ρ0 = 0 and ρN = 1, as the

same as that in [7]. This done enables us to get rid of the affection of Cρ,γ and Pe, and leads

to the biggest numerical stability. However, at this moment we do not make any assumption

on these parameters. We are going to give a general estimate for arbitrary evaluation of these

parameters, and then determine the parameters to obtain the optimal error estimate.

Lemma 3.2. The bilinear functional B(w, z) is continuous in the finite element space. Namely,

for any w = (u, q) and z = (v, r) belonging to Vh × Vh, there holds

|B(w, z)| ≤ κ1c‖u‖‖v‖+ κ2

√
d‖u‖‖r‖+ κ3

√
d‖q‖‖v‖. (3.13)

Let κ = 1 +
√
2. The above bounding constants are given as

κ1 = {κ+max(γN , γ0)}µh−1, κ2 = {κ+max(ρ0, |1− ρN |)}µh−1, κ3 = κµh−1.

Proof. This is a simple application of the inverse properties (3.6) and Cauchy-Schwartz

inequality. More detailed proofs are given in the appendix.

Remark 3.2. Please keep in mind that the above constants κ1, κ2 and κ3 are at least in

O(h−1), in whatever case that they depend on the parameters {γ, ρ} or not.

For the linear functionals associated with the boundary conditions, we have the following

conclusion. To state it, we would like to introduce two notations

‖g‖2γ =
c(1 + γ0)

2

1 + 2γ0
g2a +

cγ2
N

1 + 2γN
g2b , ‖g‖2ρ = (1− ρ0)

2g2a + ρ2Ng2b , (3.14)

for the given boundary condition g = (ga, gb).

Lemma 3.3. For any test function (v, r) ∈ Vh × Vh, there holds

|Hbry(g; v)| ≤ ‖g‖γ‖v‖Γ,γ , |Kbry(g; r)| ≤
√
µdh−1‖g‖ρ‖r‖. (3.15)

Proof. The proof is straightforward. From (2.9c) and (2.9d), an application of Cauchy-

Schwartz inequality yields

|Hbry(g; v)| ≤
√
c(1 + γ0)|ga|√

1 + 2γ0

√
c(1 + 2γ0)|v+0 |+

√
cγN |gb|√
1 + 2γN

√
c(1 + 2γN)|v−N |

≤ ‖g‖γ‖v‖Γ,γ ,

|Kbry(g; r)| ≤
√
d
(
|1− ρ0||ga||r+0 |+ ρN |gb||r−N |

)

≤
√
d‖g‖ρ

√
|r+0 |2 + |r−N |2 ≤

√
µdh−1‖g‖ρ‖r‖,
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where we have used inverse property (3.6b) on the elements I1 and IN . Now we complete the

proof of this lemma. �

4. Error Estimate

In this section we are ready to obtain the optimal error estimate by virtue of the energy

analysis, along the same line as that in [21, 22]. The main difficulties in this paper come from

the error estimate with respect to the intermediate boundary conditions and the diffusion term

in equation (2.1). The analysis proceeds in several steps.

4.1. Error representation and the energy equation

Following [21], we introduce three reference functions, say, W (ℓ) = (U (ℓ), Q(ℓ)) for ℓ = 0, 1, 2,

associated with the TVDRK3 time discretization. In detail, letW (0) = W be the exact solution

of problem (2.1) and then define

W (1) = W (0) + τDtW
(0), (4.1a)

W (2) =
3

4
W (0) +

1

4
W (1) +

1

4
τDtW

(1). (4.1b)

Here and below Di
tw denotes the i-th order time derivative of w; the superscript will be omitted

if i = 1. For any indexes n and ℓ under consideration, the reference function at each stage time

is defined by W n,ℓ = W (ℓ)(x, tn). Due to equation (2.1) and the above definitions, it is easy

to see for any n and ℓ that

Qn,ℓ =
√
dUn,ℓ

x . (4.2)

At each stage time, we denote the error between the exact (reference) solution and the

numerical solution by en,ℓ = (en,ℓu , en,ℓq ) = (Un,ℓ −un,ℓ, Qn,ℓ − qn,ℓ). As the standard treatment

in the finite element analysis, we would like to divide the stage error in the form e = ξ − η,

where

η = (ηu, ηq) = (π−
h U − U, π+

h Q−Q); ξ = (ξu, ξq) = (π−
h U − u, π+

h Q− q), (4.3)

here we have dropped the supper-scripts n and ℓ for simplicity. At this moment we would like

to postpone the estimate to the projection error η, and focus our sprits on how to estimate the

error in the finite element space, say, ξ ∈ Vh × Vh.

To this end, we need to set up the error equations about ξ. This process is based on the

following lemma, when the exact solution is sufficiently smooth.

Lemma 4.1. Assume the exact solution of problem (2.1) be sufficiently smooth. Then the

following variational forms

(Eℓ+1U
n, v)h = τH(Gn,ℓ;W n,ℓ, v) + (ζn,ℓ, v)h, (4.4a)

(Qn,ℓ, r)h = K(Gn,ℓ;Un,ℓ, r), (4.4b)

hold for any function (v, r) ∈ Vh × Vh. Here Gn,ℓ = (U
(ℓ)
a (tn), U

(ℓ)
b (tn)) is called the reference

boundary condition, since it is given in the same form as (4.1).

Here ζn,0 = ζn,1 = 0 is used only for notation’s convenience, and ζn,2 is the local truncation

error in each step of TVDRK3 time-marching. Further, there exists a bounding constant C > 0

independent of n, h and τ , such that

‖ζn,2‖ ≤ Cτ
7
2 ‖D4

tU‖L2(tn,tn+1;L2). (4.5)



292 H.J. WANG AND Q. ZHANG

We will give the proof in the appendix and now continue to derive the error equations.

Subtracting those variational forms in Lemma 4.1 from those in the LDGRK3 scheme (2.10),

in the same order, we will obtain the following error equations

(Eℓ+1ξ
n
u , v)h = (Eℓ+1η

n
u + ζn,ℓ, v)h + τHbry(θ

n,ℓ; v) + τHint(ξ
n,ℓ, v)− τHint(η

n,ℓ, v), (4.6a)

(ξn,ℓq , r)h = (ηn,ℓq , r)h + Kbry(θ
n,ℓ; r) +Kint(ξ

n,ℓ
u , r) −Kint(η

n,ℓ
u , r), (4.6b)

for any function (v, r) ∈ Vh ×Vh. Here θ
n,ℓ = Gn,ℓ−gn,ℓ = (θn,ℓa , θn,ℓb ) reflects the error due to

the boundary condition treatment.

For convenience, we would like to write error equation (4.6) in a compact form. Multiplying

τ on (4.6b) and adding the results into (4.6a) yields the equivalent form

(Eℓ+1ξ
n
u , v)h + τ(ξn,ℓq , r)h = τB(ξn,ℓ, z) +Qn,ℓ(z), (4.7)

where z = (v, r) ∈ Vh×Vh. The functional Qn,ℓ(·) collects up the local residuals in the nth-step

of TVDRK3 time-marching, defined in the form

Qn,ℓ(z) = (Eℓ+1η
n
u + ζn,ℓ, v)h + τ(ηn,ℓq , r)h − τB(ηn,ℓ, z)

+ τHbry(θ
n,ℓ; v) + τKbry(θ

n,ℓ; r). (4.8)

These error equalities are fundamental and important in the energy analysis. In fact, we are

able to make full use of these error equations to arrive at the energy equation.

Define three parameters β0 = β1 = 1 and β2 = 4, throughout this paper. First we take

the test functions z = βℓξ
n,ℓ in (4.7) for ℓ = 0, 1, 2, respectively. Then, sum up the above

equalities. After a simple manipulation as that in [21], we can obtain the following energy

evolution equation

3‖ξn+1
u ‖2 − 3‖ξnu‖2 = −

2∑

ℓ=0

βℓ‖ξn,ℓq ‖2τ +

2∑

ℓ=0

βℓB(ξn,ℓ, ξn,ℓ)τ +

2∑

ℓ=0

βℓQn,ℓ(ξn,ℓ)

+ ‖D2ξ
n
u‖2 + 3(D3ξ

n
u ,D1ξ

n
u )h + 3(D3ξ

n
u ,D2ξ

n
u )h + 3‖D3ξ

n
u‖2, (4.9)

where we have used relation (3.4) and expressed Eℓ+1ξ
n
u in terms of Dℓξ

n
u . Each line on the

right-hand side is denoted by Rn
1 and Rn

2 , respectively. In the next two subsections, we will

devote to estimating them one by one.

For notation’s convenience, in what follows we will use ε to represent a small positive

constant, and use the notation C (or with subscript) to represent a generic positive constant

which depends solely on the regularity of the exact solution and is independent of c, d, h, τ, n

and ε. They may have different values in each occurrence.

4.2. Estimate to Rn
1

In this subsection we are going to estimate Rn
1 , the first line on the right-hand side of energy

equation (4.9). Each term involved there is denoted by Rn
11,Rn

12 and Rn
13, one by one.

The first term Rn
11 is a good term to ensure the numerical stability, and does not need any

treatment. Hence we only estimate the last two terms. The second term Rn
12 is easy to bound

by using Lemma 3.1, in the form

Rn
12 ≤

2∑

ℓ=0

βℓ

{
−1

2
‖ξn,ℓu ‖2Γh,γ + ε‖ξn,ℓu ‖2Γ,γ +

µP−1
e Cρ,γ

4ε
‖ξn,ℓq ‖2

}
τ. (4.10)
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The estimate to the last term Rn
13 depends strongly on the properties of the residual functional

Qn,ℓ(·), which is stated in the next lemma in general form.

Lemma 4.2. For any function z = (v, r) ∈ Vh × Vh, we have

|Qn,ℓ(z)| ≤ Gn,ℓ
1 ‖v‖+Gn,ℓ

2 ‖v‖Γ,γ +Gn,ℓ
3 ‖r‖, (4.11)

where the bounding constants are given as following

Gn,ℓ
1 = ‖Eℓ+1η

n
u + ζn,ℓ‖, (4.12a)

Gn,ℓ
2 = ‖θn,ℓ‖γτ +

√
cγ2

0

1 + 2γ0
|(ηn,ℓu )+0 |τ +

√
d

c(1 + 2γN)
|(ηn,ℓq )−N |τ, (4.12b)

Gn,ℓ
3 =

√
µdh−1‖θn,ℓ‖ρτ + ρ0

√
µdh−1|(ηn,ℓu )+0 |τ + ‖ηn,ℓq ‖τ. (4.12c)

The proof is trivial by using the inverse property and Cauchy-Schwartz inequality, so we

omit it here and put it in the appendix. Then a direct application of Lemma 4.2, together with

Young’s inequality, yield the estimate

|Rn
13| ≤

2∑

ℓ=0

βℓ

{
Gn,ℓ

1 ‖ξn,ℓu ‖+Gn,ℓ
2 ‖ξn,ℓu ‖Γ,γ +Gn,ℓ

3 ‖ξn,ℓq ‖
}

≤ ετ

2∑

ℓ=0

βℓ

(
‖ξn,ℓu ‖2 + ‖ξn,ℓu ‖2Γ,γ + ‖ξn,ℓq ‖2

)
+

1

4ετ

2∑

ℓ=0

βℓ

∑

ς=1,2,3

|Gn,ℓ
ς |2. (4.13)

Now we obtain the estimate to Rn
1 by simple collection, and end this subsection.

4.3. Estimate to Rn
2

In this subsection we will estimate Rn
2 , the second line on the right-hand side of energy

equation (4.9). The analysis line strongly depend on the nice relations among four impor-

tant functions Dℓξ
n for ℓ = 0, 1, 2, 3; here D0ξ

n = ξn. Noticing (3.4) and (4.7), after some

manipulations we can yield the following variation forms

(D1ξ
n
u , v)h + τ(D0ξ

n
q , r)h = τB(D0ξ

n, z) + D0Qn(z), (4.14a)

(D2ξ
n
u , v)h +

τ

2
(D1ξ

n
q , r)h =

1

2
τB(D1ξ

n, z) +
1

2
D1Qn(z), (4.14b)

(D3ξ
n
u , v)h +

τ

3
(D2ξ

n
q , r)h =

1

3
τB(D2ξ

n, z) +
1

3
D2Qn(z), (4.14c)

for any test function z = (v, r) ∈ Vh×Vh. Here the linear functional DℓQn(·) is defined in form

by replacing the function wn,ℓ in (3.3) with the functional Qn,ℓ(·).
Along the almost same line as that in Lemma 4.2, it is easy to get the conclusion about the

residual functionals DℓQn(·) which is stated in the next lemma.

Lemma 4.3. For any z = (v, r) in Vh × Vh, we have that

|DℓQn(z)| ≤ Sn,ℓ
1 ‖v‖+ Sn,ℓ

2 ‖v‖Γ,γ + Sn,ℓ
3 ‖r‖, ℓ = 0, 1, 2, (4.15)
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where the bounding constants are given as following

Sn,ℓ
1 = ‖(ℓ+ 1)Dℓ+1η

n
u + Dℓζ

n‖, (4.16a)

Sn,ℓ
2 = ‖Dℓθ

n‖γτ +

√
cγ2

0

1 + 2γ0
|(Dℓη

n
u)

+
0 |τ +

√
d

c(1 + 2γN )
|(Dℓη

n
q )

−
N |τ, (4.16b)

Sn,ℓ
3 =

√
µdh−1‖Dℓθ

n‖ρτ + ρ0
√
µdh−1|(Dℓη

n
u)

+
0 |τ + ‖Dℓη

n
q ‖τ. (4.16c)

Remark 4.1. Obviously Sn,0
i = Gn,0

i for i = 1, 2, 3, since D0Qn(z) = Qn(z).

Based on variation forms (4.14) and Lemma 4.3, we can establish two series of important

relations which are stated in the next lemmas.

Lemma 4.4. There exists a bounding constant K1 > 0 such that

‖Dℓ+1ξ
n
u‖2 ≤ K1

{
c2κ2

1τ
2‖Dℓξ

n
u‖2 + dκ2

3τ
2‖Dℓξ

n
q ‖2 + |Sn,ℓ

1 |2 + cκ1|Sn,ℓ
2 |2

}
. (4.17)

Lemma 4.5. There exists a bounding constant K2 > 0 such that

‖Dℓξ
n
q ‖2 ≤ K2

{
dκ2

2‖Dℓξ
n
u‖2 + τ−2|Sn,ℓ

3 |2
}
. (4.18)

The proofs are straightforward, so omitted here. However, we give them in the appendix

for the completeness of this paper. It is worthy to mention that Lemma 4.4 is very helpful to

control the error on the intermediate stage time by those on the integer time level, although in

a little rough way.

Let us now come back to estimate Rn
2 , in which each including term is denoted by Rn

2ς for

ς = 1, 2, 3, 4, one by one. The main technique used here is very similar as that in [21, 22].

As an important trick, we would like to estimate the sum of Rn
21 and Rn

22, but not estimate

each term alone. By taking the test function z = 2D2ξ
n in (4.14b) and z = 3D1ξ

n in (4.14c),

respectively, and combining them together, we can get the following identity

Rn
21 +Rn

22 = − ‖D2ξ
n
u‖2 + 2‖D2ξ

n
u‖2 + 3(D3ξ

n
u ,D1ξ

n
u )h

= − ‖D2ξ
n
u‖2 + τ [B(D1ξ

n,D2ξ
n) +B(D2ξ

n,D1ξ
n)]

+ [D1Qn(D2ξ
n) + D2Qn(D1ξ

n)]− 2τ(D1ξ
n
q ,D2ξ

n
q )h

≡ − ‖D2ξ
n
u‖2 + V1 + V2 + V3. (4.19)

Here the first term, −‖D2ξ
n
u‖2, provides the additional numerical stability due to the explicit

TVDRK3 time-marching. By making full use of this fact, we can control those terms including

notation D2 by this numerical stability under suitable temporal-spatial condition, with the help

of inverse property (3.6) and Lemma 4.5.

Below we are going to estimate the last three terms on the right-hand side of (4.19), one by

one. Noticing the anti-symmetric construction of V1, we can get rid of the integration on each

element, with the help of (3.10), and get the identity

V1 = − c〈[[D2ξ
n
u ]], [[D1ξ

n
u ]]〉hτ

− c
[
(1 + 2γ0)(D2ξ

n
u )

+
0 (D1ξ

n
u )

+
0 + (1 + 2γN )(D2ξ

n
u )

−
N (D1ξ

n
u )

−
N

]
τ

+
√
d
[
(1 − ρN )(D1ξ

n
u )

−
N (D2ξ

n
q )

−
N − ρ0(D1ξ

n
u )

+
0 (D2ξ

n
q )

+
0

]
τ

+
√
d
[
(1 − ρN )(D2ξ

n
u )

−
N (D1ξ

n
q )

−
N − ρ0(D2ξ

n
u )

+
0 (D1ξ

n
q )

+
0

]
τ.
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Then we use Cauchy-Schwartz inequality to bound each above term. For example, the third

line here is not greater than

√
d

[
(1− ρN )2

c(1 + 2γN)
|(D2ξ

n
q )

−
N |2 + ρ20

c(1 + 2γ0)
|(D2ξ

n
q )

+
0 |2
] 1

2

‖D1ξ
n
u‖Γ,γτ ,

thus is bounded by
√
µP−1

e Cρ,γ‖D2ξ
n
q ‖‖D1ξ

n
u‖Γ,γτ , due to inverse property (3.6b) for D2ξ

n
q ,

and the definitions of Pe and Cρ,γ . This process yields the final estimate

V1 ≤ τ‖[[D2ξ
n
u ]]‖Γint

h
‖[[D1ξ

n
u ]]‖Γint

h
+ τ‖D2ξ

n
u‖Γ,γ‖D1ξ

n
u‖Γ,γ

+ τ

√
µP−1

e Cρ,γ

[
‖D1ξ

n
u‖Γ,γ‖D2ξ

n
q ‖+ ‖D2ξ

n
u‖Γ,γ‖D1ξ

n
q ‖
]
.

Keeping in mind that the additional numerical stability in (4.19), we are allowed to make the

coefficients of those terms containing D1 small enough, without worrying about the coefficients

of those terms involving D2. Hence, we apply Young’s inequality to each above term and yield

V1 ≤ ετ‖D1ξ
n
q ‖2 + ετ‖[[D1ξ

n
u ]]‖2Γint

h

+ 2ετ‖D1ξ
n
u‖2Γ,γ +

τ

4ε
‖[[D2ξ

n
u ]]‖2Γint

h

+
τ

4ε
‖D2ξ

n
u‖2Γ,γ

+
µP−1

e Cρ,γτ

4ε
‖D2ξ

n
q ‖2 +

µP−1
e Cρ,γτ

4ε
‖D2ξ

n
u‖2Γ,γ , (4.20)

where ε is a small positive constant. Similarly, we can estimate the rest terms by simple

applications of Young’s inequality, and get that

V2 ≤ ετ
∑

ℓ=1,2

{
‖Dℓξ

n
u‖2 + ‖Dℓξ

n
u‖2Γ,γ + ‖Dℓξ

n
q ‖2
}
+

1

4ετ

∑

ℓ=1,2

∑

ς=1,2,3

|Sn,ℓ
ς |2, (4.21)

V3 ≤ ετ‖D1ξ
n
q ‖2 +

1

ε
τ‖D2ξ

n
q ‖2, (4.22)

where we have used Lemma 4.3 for (4.21). Till now we complete the estimate to every terms

in the sum of Rn
21 +Rn

22.

It is very easy to estimate the last two terms Rn
23 and Rn

24. By taking the test function

z = 3D2ξ
n in (4.14c), we will get Rn

23 = −τ‖D2ξ
n
q ‖2 + τB(D2ξ

n,D2ξ
n) + D2Qn(D2ξ

n). Using

Lemmas 3.1 and 4.3, as well as Young’s inequality, we get the estimate

Rn
23 ≤ − τ‖D2ξ

n
q ‖2 −

τ

2
‖D2ξ

n
u‖2Γh,γ + 2ετ(‖D2ξ

n
u‖2 + ‖D2ξ

n
u‖2Γ,γ + ‖D2ξ

n
q ‖2)

+
µP−1

e Cρ,γτ

4ε
‖D2ξ

n
q ‖2 +

1

4ετ

∑

ς=1,2,3

|Sn,2
ς |2. (4.23)

Along the similar line, using Lemma 4.4 we can yield

Rn
24 ≤ 3K1

{
c2κ2

1τ
2‖D2ξ

n
u‖2 + dκ2

3τ
2‖D2ξ

n
q ‖2 + |Sn,2

1 |2 + cκ1|Sn,2
2 |2

}
. (4.24)

Now we can obtain the estimate to Rn
2 by collecting the inequalities (4.19)–(4.24), and end this

subsection.

4.4. A general estimate

In this subsection we are ready to get the error estimate at the successive time level. To do

that, we first substitute the involving conclusions into (4.9). Then we leave alone those terms
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involving ε−1‖D2ξ
n
u‖2Γh,γ and ε−1‖D2ξ

n
q ‖2, and amplify the other terms by virtue of triangular

inequalities.

During this process, the main technique is how to deal with the two L2-norm errors at the

intermediate time stage ‖ξn,1u ‖ and ‖ξn,2u ‖ in (4.13). To do that, let us start from the simple

inequalities

‖ξn,1u ‖2 ≤ 2‖ξnu‖2 + 2‖D1ξ
n
u‖2, ‖ξn,2u ‖2 ≤ 3‖ξnu‖2 +

3

4
‖D1ξ

n
u‖2 +

3

4
‖D2ξ

n
u‖2. (4.25)

Further, we bound ‖D1ξ
n
u‖2 by using Lemmas 4.4 and 4.5, in the form

‖D1ξ
n
u‖2 ≤ K1(c

2κ2
1 +K2d

2κ2
2κ

2
3)‖ξnu‖2τ2 + C

{
|Sn,0

1 |2 + cκ1|Sn,0
2 |2 + dκ2

3|Sn,0
3 |2

}
, (4.26)

where the bounding constant C > 0 is independent of n, h and τ . Also we can bound the term

‖D2ξ
n
u‖2 along the similar line, however, we do nothing to this term in this paper.

After a complete collection, we will finally obtain the estimate

3‖ξn+1
u ‖2 − 3‖ξnu‖2 ≤ −Sn + T n

1 + T n
2 + T n

3 + T n
4 + T n

5 , (4.27)

where Sn and T n
i are used for different consideration.

In details, Sn represents the total numerical stability provided by the LDG spatial dis-

cretization and the TVDRK3 time-marching, in the form

Sn =
1

2

2∑

ℓ=0

βℓ‖ξn,ℓu ‖2Γh,γτ +

2∑

ℓ=0

βℓ‖ξn,ℓq ‖2τ + ‖D2ξ
n
u‖2. (4.28a)

The next three terms in (4.27) reflect the so-called ”anti-dissipation”, in the form

T n
1 =

∑

ℓ=0,1,2

C0ε‖ξn,ℓu ‖2Γh,γτ +
∑

ℓ=0,1,2

C0

{
ε+ ε−1µP−1

e Cρ,γ + dκ2
3τ
}
‖ξn,ℓq ‖2τ, (4.28b)

T n
2 = C0ε

−1(1 + µP−1
e Cρ,γ)‖D2ξ

n
q ‖2τ, (4.28c)

T n
3 = C0ε

−1(1 + µP−1
e Cρ,γ)‖D2ξ

n
u‖2Γh,γτ + C0(ετ + c2κ2

1τ
2)‖D2ξ

n
u‖2, (4.28d)

where ε is arbitrary small positive constant; assuming 0 < ε < 1 hereafter. The next term T n
4

reflects the error accumulation, in the form

T n
4 = C0ε(1 +K1c

2κ2
1τ

2 +K1K2d
2κ2

2κ
2
3τ

2)‖ξnu‖2τ. (4.28e)

Further, the last term T n
5 represents the local error in each TVDRK3 time-marching,

T n
5 =

1

4ετ

2∑

ℓ=0

∑

ς=1,2,3

βℓ|Gn,ℓ
ς |2 + 1

2ετ

2∑

ℓ=0

∑

ς=1,2,3

|Sn,ℓ
ς |2

+ C
{
|Sn,2

1 |2 + cκ1|Sn,2
2 |2

}
+ Cε

{
|Sn,0

1 |2 + cκ1|Sn,0
2 |2 + dκ2

3|Sn,0
3 |2

}
τ. (4.28f)

Note that, all above bounding constants in (4.28), C0 and C, are positive and independent of

n, h, τ and ε. Here C0 is used to emphasize a fixed constant that determines the temporal-spatial

condition.

If the exact solution was taken as U = Q = 0, which implies η ≡ 0, then the above

error estimate (4.27) actually becomes the stability analysis. The statement will be given in
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the remark at the end of this section. Given this fact, it is a natural demand that the sum

of T n
1 , T n

2 and T n
3 should be controlled mainly by the numerical stability Sn under suitable

temporal-spatial restrictions.

To this end, we firstly take the parameter ε small enough, for example, ε = (4C0)
−1. Let

us fix ε throughout this paper, and assume the following assumptions:

(A1) µP−1
e Cρ,γ ≤ (4C0)

−2, (4.29a)

(A2) dκ2
3τ ≤ (4C0)

−1, and dκ2
2τ ≤ K−1

2 (16C2
0 + 1)−1, (4.29b)

(A3) cκ1τ ≤ 1

2
min

(
(16C2

0 + 1)−1, 1/
√
C0

)
. (4.29c)

The reasonability of above assumptions will be verified in the next subsection, if we have taken

suitable parameters {γ, ρ} and the time step τ under temporal-spatial restriction (2.11) with

suitable CFL numbers λc and λd.

Due to assumptions (A1) and (A2), it is easy to bound the term T n
1 by the first two terms

in Sn. Next, it follows from Lemma 4.5 and assumption (A2) that

T n
2 ≤ K2(16C

2
0 + 1)

4

{
dκ2

2τ‖D2ξ
n
u‖2 + τ−1|Sn,2

3 |2
}
≤ 1

4
‖D2ξ

n
u‖2 + Cτ−1|Sn,2

3 |2.

From inverse property (3.6b) and simple inequality [[v]]2 ≤ 2(v+)2 + 2(v−)2, it is followed that

‖v‖2Γh,γ ≤ {2 + 2max(γ0, γN )} cµh−1‖v‖2 ≤ 2cκ1‖v‖2 for any v ∈ Vh. Thus we have

T n
3 ≤

{
16C2

0 + 1

2
cκ1τ +

τ

4
+ C0c

2κ2
1τ

2

}
‖D2ξ

n
u‖2 ≤ 3

4
‖D2ξ

n
u‖2,

if τ ≤ 1, due to assumption (A3). Consequently, we have

T n
1 + T n

2 + T n
3 ≤ Sn + Cτ−1|Sn,2

3 |2. (4.30)

Further, it is easy to get that T n
4 ≤ C‖ξnu‖2τ under the assumptions (A2) and (A3). Till

now the following inequality (4.27) is simplified in the form

3‖ξn+1
u ‖2 − 3‖ξnu‖2 ≤ C‖ξnu‖2τ + CEn, (4.31)

under the assumptions (A1)–(A3), where

En =
∑

ℓ=0,1,2

∑

ς=1,2,3

Zn,ℓ
ς , (4.32)

is resulted from the expansion of T n
5 and the term τ−1|Sn,2

3 |2 in (4.30), with

Zn,ℓ
1 = τ−1‖Eℓ+1η

n
u + ζn,ℓ‖2 + ‖ηn,ℓq ‖2τ, (4.33a)

Zn,ℓ
2 =

{
cγ2

0

1 + 2γ0
+

ρ20µd

h

}
|(ηn,ℓu )+0 |2τ +

d

c(1 + 2γN)
|(ηn,ℓq )−N |2τ, (4.33b)

Zn,ℓ
3 = ‖θn,ℓ‖2γτ +

µd

h
‖θn,ℓ‖2ρτ. (4.33c)

Using the discrete Gronwall’s inequality and triangle inequality, we obtain the general error

estimate under the assumptions (A1)–(A3), that

‖emu ‖2 ≤ C

(
‖ξ0u‖2 + ‖ηmu ‖2 +

m−1∑

n=0

En

)
≤ C

(
‖ηmu ‖2 +

m−1∑

n=0

En

)
, (4.34)

for arbitrary m satisfying mτ ≤ T since ξ0u = 0, where the bounding constant C > 0 depends

solely on the final time T .
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4.5. Setting of parameters and boundary treatment

In this subsection we want to get the optimal estimate to each term in the local truncation

error En, which is a sufficient condition to obtain the optimal error estimates from (4.34).

During this process, we would like to determine the nice parameter setting and find out the

nice treatment on the boundary condition.

We start our discussion from estimating the first including term Zn,ℓ
1 . To this end, we would

like to assume the exact solution of problem (2.1) is smooth enough, for example,

Dℓ
tU ∈ L∞(0, T ;Hk+2), (ℓ = 0, 1, 2), and D4

tU ∈ L2(0, T ;L2). (4.35)

Then it follows from (3.8) and the linearity of projections π±
h that the stage projection errors

satisfy

‖ηn,ℓu ‖+ ‖ηn,ℓq ‖ ≤ Chk+1, ‖Dℓ+1η
n
u‖+ ‖Dℓ+1η

n
q ‖ ≤ Chk+1τ, (4.36)

where the bounding constant C > 0 depends solely on the smoothness of the exact solution,

independent of n, h and τ . Further, by noticing (4.5) we can assert that

Zn,ℓ
1 ≤ Ch2k+2τ + C‖D4

tU‖2L2(tn,tn+1;L2)τ
6. (4.37)

The second term Zn,ℓ
2 is related to the approximation error at the boundary from interior

direction. Due to (3.8), there would exist a half order reduction in space for general smooth

solution in Sobolev space. Therefore, in order to obtain the optimal error estimate, it is natural

to take the involving coefficients in (4.33b) to be of the order at least O(h).

In this paper we would like to take the parameters independent of h, namely,

γ0 = 0, ρ0 = 0, (4.38a)

which make the coefficient of the first term to be zero. Given the symmetric property of this

scheme (transforming the space variable x into −x), we know that 1 − ρN plays the same

function as ρ0. Hence we would like to take 1− ρN = 0 due to (4.38a), namely,

ρN = 1. (4.38b)

Since the parameter γN lies in the denominator in (4.33b), there is no way to make the coefficient

of the second term to be zero unless d = 0. However, by noticing the definition Pe, we would

like to take γN = O(P−1
e ) to ensure that the coefficient of the second term is of the order O(h),

for whatever case that the problem is convection-dominated or not. In this paper we just take

γN = P−1
e . (4.38c)

As a consequence, we arrive at the estimate to the term Zn,ℓ
2 in the form

Zn,ℓ
2 ≤ Ch2k+2τ, (4.39)

where the bounding constant C is independent of n, h, τ and Pe. Similarly, noticing the defini-

tion of ‖ · ‖γ and ‖ · ‖ρ, we have the estimate to Zn,ℓ
3 such as

Zn,ℓ
3 ≤ C(1 + P−1

e + cP−1
e )

{
(θn,ℓa )2 + (θn,ℓb )2

}
τ, (4.40)

where the bounding constant C is independent of n, h, τ and Pe. The estimate (4.40) depends

on the Péclet mesh number Pe and the detailed boundary treatment. For different cases, we

have the following discussions.
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Case 1: The considered problem is convection-dominated, say P−1
e = O(1). Noticing (4.40),

we can obtain the optimal error estimate if we have coped with the boundary condition to

ensure that θn,ℓa = θn,ℓb = O(τ3).

This aim is easy to implement in this case. The simplest consideration is to vanish those

boundary errors at each intermediate time stage. To this end, we take the intermediate bound-

ary condition as

gn,ℓ = Gn,ℓ, ℓ = 0, 1, 2, (4.41)

where Gn,ℓ have been given in Lemma 4.1, with the same form as (4.1). In this paper we call

this type of boundary treatment as ”reference boundary condition”.

Also there are other ways to satisfy the requirement. For example, the boundary condition

is taken as the numerical solution of the explicit TVDRK3 time marching. In this paper we call

this treatment as the Runge-Kutta boundary condtion. The detailed implementation is given

in (5.2).

Case 2: The problem is not convection-dominated, say P−1
e = O(h−1). In order to obtain the

optimal error estimate we have to take the boundary error smaller than that in Case 1. For

instance, the boundary error must be not over than O(h1/2τ3). Consequently, the reference

boundary condition (4.41) still works well.

From the view point of (4.40), the Runge-Kutta boundary condition seems not good to

obtain the optimal error estimate, since the numerical solution given by the explicit TVDRK3

time-marching (5.2) has the error of only O(τ3) at each time stage. But the numerical experi-

ments shows it also works well; see Table 5.3 and Table 5.4 in section 5.

Given the above discussions, we would like to adopt in this paper the reference boundary

condition (4.41) as a uniform method. Then it follows from inequalities (4.34) and (4.36) the

optimal error estimate

‖enu‖2 ≤ C(h2k+2 + τ6), (4.42)

for whatever case that the considered problem is convection-dominated or not, where the bound-

ing constant C is independent of n, h, τ and the Péclet mesh number Pe.

Before making the final conclusion, we have to verify the reasonability of assumptions (A1)–

(A3). Since the parameters {γ, ρ} are taken as (4.38), there holds Cρ,γ = 0, and thus assump-

tion (A1) holds obviously. Moreover, κ1 = (κ + P−1
e )µh−1 and κ2 = κ3 = κµh−1. As a

consequence, assumptions (A2) and (A3) hold true if the time step τ satisfies the temporal-

spatial restriction (2.11) with suitable CFL numbers, for example

λc ≤
αc

2κµ
, λd ≤ min

(αc

2µ
,

αd

(κµ)2

)
. (4.43)

Here κ is defined in Lemma 3.2, µ is the inverse constant, and

αc = min
( 1

2
√
C0

,
1

2(16C2
0 + 1)

)
, αd = min

( 1

4C0
,

1

K2(16C2
0 + 1)

)
. (4.44)

Till now we have obtained the optimal error estimate in L2-norm, which is stated in the

following theorem.

Theorem 4.1. Let u be the numerical solution of LDGRK3 method (2.10) with the parameter

setting (4.38) and the reference boundary condition (4.41). The finite element space Vh is the

piecewise polynomials with degree k ≥ 1 on the regular triangulations of Ω = (a, b), and the

time step τ satisfies (2.11) with the suitable CFL numbers (4.43).
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Let U be the exact solution of problem (2.1) and satisfy the smoothness assumption (4.35),

then there holds the following error estimate

max
nτ≤T

‖U(tn)− un‖ ≤ C(hk+1 + τ3), (4.45)

where the bounding constant C > 0 is independent of h and τ .

Before ending this section, we would like to give a remark on the numerical stability for the

LDGRK3 method (2.10). As we have mentioned before, by taking U = 0, along the same line

we can derive the following stability result

‖um‖2 ≤ C
[
‖u0‖2 +

m−1∑

n=0

∑

ℓ=0,1,2

(
‖gn,ℓ‖2γ +

µd

h
‖gn,ℓ‖2ρ

)
τ
]
, (4.46)

for arbitrary m satisfying mτ ≤ T , where the bounding constant C > 0 is independent of

n, h and τ ; maybe depend on the final time T . Noting the factor h−1 in the right-hand side,

this conclusion is not good in the viewpoint of stability. However, it works well to achieve our

purpose in the optimal error estimate.

5. Numerical Experiments

The purpose of this section is to validate numerically the optimal error estimate, and inves-

tigate the effective of the reference boundary condition at the same time.

In all numerical tests we will compare with three types of boundary condition treatments.

The first one is the exact boundary condition, which is the natural treatment at the first glance.

It is equal to the given boundary condition at the stage time level of TVDRK3 time-marching.

Namely, denote Ubry(t) = (Ua(t), Ub(t)), and define

gn
ex = Ubry(t

n), gn,1
ex = Ubry(t

n + τ), gn,2
ex = Ubry(t

n +
τ

2
). (5.1)

The second one is the reference boundary condition (4.41), as we have discussed in this paper.

The last one is the Runge-Kutta boundary condition, denoted by g
n,ℓ
RK. It is equal to the

approximation solution for the ordinary differential equation with respect to g,

g′(t) = U′
bry(t), t > 0, g(0) = Ubry(0), (5.2)

by using the explicit TVDRK3 time-marching. Similar treatment has been used in [4,22]. The

reference boundary condition discussed in this paper can be looked upon as the local treatment

of the third method.

We will adopt the LDGRK3 scheme to solve this problem on both uniform and nonuniform

meshes. The uniform mesh has the mesh size h = (b − a)/N , where N is the number of used

cells. The nonuniform mesh is given by randomly perturbing each node in the uniform mesh

by up 10%. Denote hmin = min1≤j≤N hj . In the LDGRK3 method, we take γ0 = ρ0 = 0,

γN = P−1
e and ρN = 1. The time step is chosen as

τ = min(λchmin/c, λdh
2
min/d), (5.3)

with the CFL numbers λc and λd which will be given in each computation.
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Table 5.1: errors and convergence orders for LDGRK3 method with three different boundary treatments

on uniform meshes. Here c = 1, d = 10−8 and k = 2.

N L∞- error L∞- order L2- error L2- order

10 3.7540E-05 5.8993E-06

20 9.7366E-06 1.9470 9.3152E-07 2.6629

40 2.0560E-06 2.2436 1.3316E-07 2.8064

exact b.c. 80 4.1970E-07 2.2924 1.8771E-08 2.8266

160 1.1722E-07 1.8402 3.4284E-09 2.4530

320 2.5382E-08 2.2073 5.1301E-10 2.7405

10 1.6166E-05 4.7938E-06

20 2.0221E-06 2.9990 5.9863E-07 3.0014

40 2.5280E-07 2.9998 7.4845E-08 2.9997

rk b.c. 80 3.1602E-08 2.9999 9.3565E-09 2.9999

160 3.9504E-09 3.0000 1.1695E-09 3.0001

320 4.9625E-10 2.9929 1.4600E-10 3.0019

10 1.6652E-05 4.7751E-06

20 2.0828E-06 2.9991 5.9657E-07 3.0008

40 2.6039E-07 2.9998 7.4556E-08 3.0003

reference b.c. 80 3.2551E-08 2.9999 9.3186E-09 3.0001

160 4.0690E-09 3.0000 1.1648E-09 3.0001

320 5.0954E-10 2.9974 1.4560E-10 2.9999

Let U(x, t) = e−dt sin(x− ct) be the exact solution of problem (2.1), in the interval (a, b) =

(0, 1). The initial solution and Dirichlet boundary condition are given by this exact solution.

We will verify our error estimate for whatever case the problem is convection-dominated or not.

We firstly consider a convection-dominated case, namely, c = 1 and d = 10−8. In this

case, we use piecewise quadratic polynomials (k = 2), and compute till the final time T = 10.

The time step is determined by (5.3) with CFL numbers λc = 0.18 and λd = 0.01. Note that

τ = O(h), since d is too small. The errors and convergence orders in L∞-norm and L2-norm,

under different boundary condition treatments, are listed in Table 5.1 and Table 5.2, for the

uniform mesh and the nonuniform mesh, respectively. The convergence order in this paper is

computed by

orderN =
log(errorN

2
)− log(errorN )

log(hN
2
)− log(hN )

, (5.4)

where errorN and hN represent respectively the error (in L∞-norm or L2-norm) at the final

time T and the maximum cell size when the used mesh number is equal to N .

Then we consider the problem (2.1) with c = d = 0.1, which is not convection-dominated.

In this case, we use piecewise polynomials with degree k = 5, and compute till the final time

T = 0.1. The time step is determined by (5.3) with the CFL numbers λc = 0.05 and λd = 0.001.

In this case τ = O(h2). The errors and convergence orders in L∞-norm and L2-norm, under

different boundary condition treatments, are listed in Table 5.3 and Table 5.4, for the uniform

mesh and the nonuniform mesh, respectively. The convergence order is also given by (5.4).

We can see from four tables that, the convergence orders drop seriously if we take the

exact boundary condition (5.1) in both cases, on either uniform or nonuniform meshes. While

when we take the reference boundary condition (4.41), we can observe the optimal error order
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Table 5.2: errors and convergence orders for LDGRK3 method with different boundary treatments on

nonuniform meshes (10%). Here c = 1, d = 10−8 and k = 2.

N hmax hmin L∞- error L∞- order L2- error L2- order

10 0.1144 0.0864 3.7551E-05 6.1522E-06

20 0.0575 0.0453 6.1040E-06 2.6438 7.5830E-07 3.0466

40 0.0295 0.0206 1.1966E-06 2.4387 1.0034E-07 3.0268

exact b.c. 80 0.0146 0.0107 2.5144E-07 2.2094 1.3671E-08 2.8231

160 0.0074 0.0053 6.6970E-08 1.9567 2.1120E-09 2.7623

320 0.0037 0.0025 1.3540E-08 2.3026 3.0277E-10 2.7978

10 0.1139 0.0876 2.2135E-05 5.0125E-06

20 0.0580 0.0428 3.1130E-06 2.9067 6.3791E-07 3.0547

40 0.0285 0.0212 3.7857E-07 2.9624 7.8833E-08 2.9399

rk b.c. 80 0.0146 0.0103 5.0881E-08 3.0105 1.0025E-08 3.0935

160 0.0074 0.0052 6.5816E-09 3.0272 1.2539E-09 3.0770

320 0.0037 0.0025 8.4695E-10 2.9546 1.5641E-10 2.9995

10 0.1061 0.0935 1.8904E-05 4.8622E-06

20 0.0592 0.0417 3.2979E-06 2.9919 6.3072E-07 3.4997

40 0.0291 0.0212 3.9673E-07 2.9830 8.0280E-08 2.9035

reference b.c. 80 0.0147 0.0106 4.9945E-08 3.0407 9.9044E-09 3.0703

160 0.0074 0.0050 6.6016E-09 2.9331 1.2526E-09 2.9971

320 0.0037 0.0025 8.3870E-10 3.0201 1.5552E-10 3.0538

Table 5.3: errors and convergence orders for LDGRK3 method with different boundary treatments on

uniform meshes. Here c = d = 0.1 and k = 5.

N L∞-error L∞-order L2-error L2-order

10 1.4273E-11 1.1144E-12

20 8.9531E-13 3.9948 4.7547E-14 4.5508

40 5.5906E-14 4.0013 2.0929E-15 4.5058

exact b.c. 80 3.4915E-15 4.0011 9.2448E-17 4.5007

160 2.1813E-16 4.0006 4.0850E-18 4.5002

320 1.3631E-17 4.0003 1.8052E-19 4.5001

10 2.2384E-12 3.5532E-13

20 3.6918E-14 5.9220 5.6248E-15 5.9812

40 5.9214E-16 5.9623 8.8213E-17 5.9947

rk b.c. 80 9.3721E-18 5.9814 1.3798E-18 5.9985

160 1.4741E-19 5.9905 2.1569E-20 5.9993

320 2.3435E-21 5.9751 3.3984E-22 5.9880

10 2.2383E-12 3.5532E-13

20 3.6918E-14 5.9220 5.6248E-15 5.9812

40 5.9213E-16 5.9623 8.8213E-17 5.9947

reference b.c. 80 9.3719E-18 5.9814 1.3798E-18 5.9985

160 1.4741E-19 5.9905 2.1569E-20 5.9993

320 2.3434E-21 5.9750 3.3984E-22 5.9880
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Table 5.4: errors and convergence orders for LDGRK3 method with different boundary treatments on

nonuniform meshes (10%). Here c = 0.1, d = 0.1 and k = 5.

N hmax hmin L∞- error L∞- order L2- error L2- order

10 0.1100 0.0914 5.2961E-12 5.7904E-13

20 0.0577 0.0435 2.4842E-13 4.7418 1.5987E-14 5.5632

40 0.0288 0.0213 1.3864E-14 4.1634 5.6041E-16 4.8343

exact b.c. 80 0.0144 0.0103 7.8514E-16 4.1422 2.4317E-17 4.5264

160 0.0072 0.0052 4.4945E-17 4.1267 9.0798E-19 4.7432

320 0.0037 0.0026 2.9339E-18 4.0993 4.2871E-20 4.5859

10 0.1100 0.0914 3.2615E-12 4.0124E-13

20 0.0577 0.0435 7.2242E-14 5.9047 7.2305E-15 6.2244

40 0.0288 0.0213 1.0096E-15 6.1610 1.0988E-16 6.0401

rk b.c. 80 0.0144 0.0103 1.7120E-17 5.8820 1.6457E-18 6.0611

160 0.0072 0.0052 2.7979E-19 5.9352 2.6090E-20 5.9785

320 0.0037 0.0026 5.8409E-21 5.8117 4.2248E-22 6.1933

10 0.1100 0.0914 3.2615E-12 4.0124E-13

20 0.0577 0.0435 7.2242E-14 5.9047 7.2305E-15 6.2244

40 0.0288 0.0213 1.0096E-15 6.1610 1.0988E-16 6.0401

reference b.c. 80 0.0144 0.0103 1.7120E-17 5.8820 1.6457E-18 6.0611

160 0.0072 0.0052 2.7979E-19 5.9352 2.6090E-20 5.9785

320 0.0037 0.0026 5.8409E-21 5.8117 4.2248E-22 6.1933

without the reduction of accuracy. This verifies that (4.41) is a good way to deal with Dirichlet

boundary condition uniformly for convection-diffusion equation and ensure the optimal-order

accuracy, as we stated in Theorem 4.1.

An interesting fact is that (5.2) still provides satisfying simulations, although we do not

prove this setting in this paper. In fact, the reference boundary condition (4.41) is just a local

implementation of Runge-Kutta boundary condition (5.2), by resetting the initial solution at

each step as the exact solution.

6. Concluding Remarks

In this paper we discuss a fully-discrete LDGRK3 scheme for the convection-diffusion prob-

lems with Dirichlet boundary conditions, where the numerical solution is updated by the explicit

TVDRK3 algorithm. We adopt energy technique and obtain the optimal error estimate in L2-

norm. In the analysis process, we re-establish the special numerical flux similar as that in [7],

and present a good setting for boundary conditions at each intermediate stage time. This spe-

cial and simple treatment is suitable for whatever case that the problem is convection-dominant

or not. In the further work, we will develop the above analysis to other boundary conditions

and to the multidimensional problems. Also we will consider the nonlinear convection-diffusion

equations.
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7. Appendix

Proof of Lemma 3.2. We only need to use the Cauchy-Schwartz inequality and inverse

properties (3.6) to prove

|Hint(w, v)| ≤
{
1 +

√
2 + max(γN , γ0)

}
cµh−1‖u‖‖v‖+

√
d(1 +

√
2)µh−1‖q‖‖v‖, (7.1a)

|Kint(u, r)| ≤
√
d
{
1 +

√
2 + max(ρ0, |1− ρN |)

}
µh−1‖u‖‖r‖. (7.1b)

We take (7.1a) as an example. By definition (2.9a), we can get

|Hint(w, v)| ≤ |(cu, vx)h|+ |〈cu−, [[v]]〉h|+ |c(1 + γN )u−
Nv−N |+ |cγ0u+

0 v
+
0 |

+ |(
√
dq, vx)h|+ |〈

√
dq+, [[v]]〉h|+ |

√
d(q−Nv−N − q+0 v

+
0 )|.

As a typical term, the first line on the right-hand side is bounded as follows:

|(cu, vx)h| ≤ c‖u‖‖vx‖ ≤ cµh−1‖u‖‖v‖,

|〈cu−, [[v]]〉h|+ |cu−
Nv−N | ≤ c

(N−1∑

j=1

|u−
j |2 + |u−

N |2
) 1

2
(
2

N−1∑

j=1

((v−j )
2 + (v+j )

2) + (v−N )2
) 1

2

≤
√
2cµh−1‖u‖‖v‖,

|cγNu−
Nv−N |+ |cγ0u+

0 v
+
0 | ≤ cmax(γN , γ0)|((u−

N )2 + (u+
0 )

2)
1
2 ((v−N )2 + (v+0 )

2)
1
2

≤ max(γN , γ0)cµh
−1‖u‖‖v‖.

Similar estimate holds for the second line. Then we get (7.1a). It completes the proof of this

lemma. �

Proof of Lemma 4.1. Let us start from the proof for equality (4.4a) for ℓ = 2. Here and

below we would like to drop the arguments (x, t) for notation’s simplicity. By the definition of

the reference functions of U (0), U (1) and U (2), we derive

1

3
U (0) +

2

3
U (2) +

2

3
τDtU

(2) = U (0) + τDtU
(0) +

τ2

2
D2

tU
(0) +

τ3

6
D3

tU
(0), (7.2)

by simple manipulation. By virtue of the Taylor’s expansion in time, hence we get

U(x, t+ τ) =
1

3
U (0) +

2

3
U (2) +

2

3
τDtU

(2) +
1

6

∫ t+τ

t

(t+ τ − s)3D4
tU(x, s) ds, (7.3)

where the last term on the right-hand side is denoted by ζ(x, t). By Cauchy-Schwartz inequality

and Fubini’s Theorem, we have the estimate

‖ζ(x, t)‖2 =

∫

I

(
1

6

∫ t+τ

t

(t+ τ − s)3D4
tU(x, s) ds

)2

dx

≤ τ7

252

∫

I

∫ t+τ

t

|D4
tU(x, s)|2 dsdx

≤ τ7

252

∫ t+τ

t

∫

I

|D4
tU(x, s)|2 dxds ≤ C‖D4

tU‖2L2(t,t+τ ;L2)τ
7, (7.4)

since D4
tU ∈ L2(0, T ;L2). Let t = tn and denote ζn,2 = ζ(x, tn). This yields (4.5).
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Then we take time t = tn in (7.3) and multiply the test function v on both sides of this

equality. A simple integration by parts yields the first equality in (4.4) for ℓ = 2, due to the

sufficient regularity of the considered model problem (2.1).

Other equalities can be obtained by the considered convection-diffusion problem (2.1) and

the definitions of reference functions, along the same line as above. This completes the proof

of this lemma. �

Proof of Lemma 4.2. This lemma can be proved by noticing the identities

B(η, z) = Hint(η, v) +Kint(ηu, r) =
√
dη−q,Nv−N − γ0cη

+
u,0v

+
0 − ρ0

√
dη+u,0r

+
0 , (7.5)

by the property of the projection error presented in subsection 3.2. Here and below we drop

the script n, ℓ for simplicity. This gives us that

|B(η, z)| ≤
√
d|η−q,N |

√
c(1 + 2γN)

√
c(1 + 2γN)|v−N |+

√
cγ0|η+u,0|√
(1 + 2γ0)

√
c(1 + 2γ0)|v+0 |+

√
dρ0|η+u,0||r+0 |

≤



√

cγ2
0

1 + 2γ0
|η+u,0|+

√
d

c(1 + 2γN)
|η−q,N |


 ‖v‖Γ,γ +

√
µdh−1ρ0|η+u,0|‖r‖,

where we have used the inverse property (3.6b) at the last step. By Lemma 3.3

|Hbry(θ; v) +Kbry(θ; r)| ≤ ‖θ‖γ‖v‖Γ,γ +
√
µdh−1‖θ‖ρ‖r‖.

And by Cauchy-Schwartz inequality we can easily obtain

|(Eℓ+1η
n
u + ζn,ℓ, v)h + τ(ηn,ℓq , r)h| ≤ ‖Eℓ+1η

n
u + ζn,ℓ‖‖v‖+ τ‖ηn,ℓq ‖‖r‖.

Finally, we can prove this lemma by substituting the above results into the expression of Q(·).

Proof of Lemma 4.4. In this proof we would like to drop the script n for simplicity. By

taking the test function z = (Dℓ+1ξu, 0) in (4.14), we have, for ℓ = 0, 1, 2, that

(ℓ+ 1)‖Dℓ+1ξu‖2 = τB(Dℓξ, z) + DℓQ(z)

≤
{
κ1cτ‖Dℓξu‖+ κ3

√
dτ‖Dℓξq‖+ Sn,ℓ

1

}
‖Dℓ+1ξu‖+ Sn,ℓ

2 ‖Dℓ+1ξu‖Γ,γ , (7.6)

where we have used Lemmas 3.2 and 4.3. For the last term on the right-hand side, we use the

inverse property

‖p‖Γ,γ ≤
√
cµγh−1‖p‖, ∀p ∈ Vh, (7.7)

due to the definition of norm ‖ · ‖Γ,γ and the inverse property (3.6b), and then get

Sn,ℓ
2 ‖Dℓ+1ξu‖Γ,γ ≤ ε‖Dℓ+1ξu‖2 +

1

4ε
cµγh

−1|Sn,ℓ
2 |2, (7.8)

for arbitrary positive ε, where µγ = max(1 + 2γ0, 1 + 2γN )µ ≤ Cκ1h. The parameter κ1 has

been defined in Lemma 3.2.

Using the Young’s inequality again for the first term on the right-hand side of (7.6) and

letting ε small enough, we can complete the proof of this lemma. �
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Proof of Lemma 4.5. As the above proof, in the below we will drop the script n for simplicity.

By taking the test function z = (0,Dℓξq) in (4.14), we get

‖Dℓξq‖2 = B(Dℓξ, z) +
1

τ
DℓQ(z)

≤ κ2

√
d‖Dℓξu‖‖Dℓξq‖+

1

τ
|Sn,ℓ

3 |‖Dℓξq‖

≤ 2ε‖Dℓξq‖2 +
1

4ε
dκ2

2‖Dℓξu‖2 +
1

4ετ2
|Sn,ℓ

3 |2, (7.9)

owing to Lemmas 3.2 and 4.3. Finally, by choosing ε property, we get the desired result (4.18)

in this lemma. �
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[7] P. Castillo, B. Cockburn, D. Schötzau and C. Schwab, Optimal a priori error estimates for the

hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math.

Comp., 71 (2002), 455-478.

[8] B. Cockburn, An introduction to the discontinuous Galerkin method for convection-dominated

problems, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn,

C. Johnson, C. -W. Shu and E. Tadmor (Editor: A. Quarteroni), Lecture Notes in Math. 1697,

Springer, Berlin, 1998, 151-268.
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