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Abstract

We analyze finite volume schemes of arbitrary order r for the one-dimensional singu-

larly perturbed convection-diffusion problem on the Shishkin mesh. We show that the error

under the energy norm decays as (N−1ln(N + 1))r, where 2N is the number of subinter-

vals of the primal partition. Furthermore, at the nodal points, the error in function value

approximation super-converges with order (N−1ln(N + 1))2r, while at the Gauss points,

the derivative error super-converges with order (N−1ln(N + 1))r+1. All the above conver-

gence and superconvergence properties are independent of the perturbation parameter ǫ.

Numerical results are presented to support our theoretical findings.

Mathematics subject classification: 65N30, 65N12, 65N06.
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1. Introduction

We are interested in numerical solutions of singularly perturbed problems (SPP), whose

approximation schemes are difficult to construct due to the effect of boundary layers. The

subject has attracted much attention in scientific computing community (see, e.g., [2, 18, 19,

22, 24, 25, 29, 31, 32]). However, most theoretical studies in the literature have been focused on

finite element methods (FEM) including discontinuous Galerkin (DG) methods.

On the other hand, the finite volume method (FVM) also has wide range of applications due

to its local conservation of numerical fluxes (a property not shared by FEM), the capability of

handling domains with complex geometries (a property shared by FEM), and other advantages,

see, e.g., [3–6, 9, 12–14, 20, 21, 26, 30, 35]. Recently, FV schemes of arbitrary order have been

constructed and analyzed for the two-point boundary value problem [7]. In this paper, we extend

our study along this line to singularly perturbed problems. Note that traditional numerical

methods on quasi-uniform meshes for SPP may be unstable and fail to give expected results.
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Therefore, we construct our FV schemes on the Shishkin type meshes ( [24]), which are well-

known to be effective for the finite element approximation of SPP. Moreover, following [7], we

use the Gauss points of the primal mesh to construct control volumes. Note that this idea of

control volumes construction was used in some low-order FV schemes, see e.g. [17, 21, 27].

The special feature in the analysis for SPP is to establish ǫ-independent error bounds.

Therefore, the proof of the inf-sup condition is much more involved and special care must be

taken. Similar to the finite element method, the FVM bilinear form for convection-diffusion

problems is not uniformly continuous with respect to the singular perturbation parameter ǫ

(see Section 3). To overcome this difficulty, we prove a weak continuity instead. With the

inf-sup condition and weak continuity in hands, we prove that the approximation error under

the energy norm has a near optimal order (N−1ln(N + 1))r.

We further investigate superconvergence properties of our finite volume schemes. Note that

superconvergence properties of other numerical methods for SPP have been studied before,

e.g., see [31] for finite element methods, [8, 33] for streamline diffusion finite element methods

(SDFEM), and [28, 29] for DG methods. In this work, we establish a superconvergence rate of

(N−1ln(N+1))r+1 for our FVM under a discrete energy norm, similar to the result in [31] for the

counterpart finite element method. As a direct consequence, a near optimal convergence rate in

the L2 norm is obtained. Finally, we prove nodal points superconvergence rate (N−1ln(N+1))2r,

which is similar to the one for SDFEM in [8]. We should point out that all aforementioned error

bounds are independent of the singular perturbation parameter ǫ. Moreover, our numerical data

indicate that the logarithmic factors appeared in the estimates are not removable, and hance,

our error bounds are sharp.

The outline of the rest of this paper is as follows. In Section 2, we present our FV schemes for

the one-dimensional singularly perturbed convection-diffusion problem on the Shishkin mesh.

In Section 3, we prove the inf-sup condition and a weak continuity and use them to establish the

optimal convergence rate under the energy norm. In Section 4, we analyze superconvergence

properties. Numerical results supporting our theoretical findings are provided in Section 5.

In the rest of this paper, “A . B” means that A can be bounded by B multiplied by a

constant which is independent of ǫ and N . “A ∼ B” stands for “A . B” and “B . A”.

2. FV Schemes for Convection-Diffusion Problems

In this section, we introduce a family of finite volume schemes of arbitrary order to approx-

imate the following convection-diffusion model problem.

− ǫu′′(x) + p(x)u′(x) + q(x)u(x) = f(x), ∀x ∈ Ω = (0, 1), (2.1a)

u(0) = u(1) = 0, (2.1b)

where 0 < ǫ≪ 1 is a small positive parameter and

p(x) ≥ p0 > 0, q(x) ≥ q0 > 0, ∀x ∈ Ω̄.

There is no essential loss of generality to consider the following problem

− ǫa(x)u′′(x) + u′(x) + b(x)u(x) = f(x), ∀x ∈ Ω = (0, 1), (2.2a)

u(0) = u(1) = 0 (2.2b)
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with

a(x) ≥ a0 > 0, b(x) ≥ b0 > 0, ∀x ∈ Ω̄.

In fact, the above two equations are equivalent, since we can obtain (2.2) from (2.1) by

multiplying (2.1) with 1
p(x) .

By the regularity analysis ( [18], Chapter 8), the exact solution u can be decomposed into

u = ū+ uǫ,

where the regular part ū and the singular part uǫ satisfy:

‖ū(k)‖L∞ . 1, |u(k)ǫ (x)| . ǫ−ke−β(1−x)/ǫ, ∀x ∈ (0, 1), k ≥ 0. (2.3)

Note that the exact solution u exhibits a boundary layer at x = 1.

We present our method under the framework of the Petrov-Galerkin method. We begin with

the construction of the primary partition P and its corresponding trial space. Here a Shishkin

type mesh is used as our primary partition P by introducing

λ = min
(1

2
,
ǫ

β
(r + 2) ln(N + 1)

)

,

and then dividing the intervals (0, 1− λ) and (1− λ, 1) into N equal-size subintervals. Hence,

the element length in (1 − λ, 1) is hi = h = λ/N , whereas in (0, 1 − λ) is hi = h = (1 − λ)/N .

In this article, we shall only consider the case when

ǫ

β
(r + 2) ln(N + 1) ≤ 1

2
,

for otherwise, r and N would be large enough to catch the boundary layer or the problem is

regular. In either case, the traditional analysis would apply.

Let 0 = x0 < x1 < . . . < x2N = 1 be 2N + 1 distinct points on the interval Ω̄. For all

positive integer k, let Zk = {1, 2, . . . , k}. Then

P =
{

τi|τi = (xi−1, xi), i ∈ Z2N

}

,

constitutes a partition of Ω̄.

The corresponding trial space is chosen as the Lagrange finite element of rth order, r ≥ 1,

defined by

U r
P =

{

v ∈ C(Ω) : v|τ ∈ Pr, ∀τ ∈ P , v|∂Ω = 0
}

,

where Pr is the set of all polynomials of degree no more than r. Obviously, dimU r
P = 2Nr− 1.

We next present the dual partition P ′ and its corresponding test space. Let G1, . . . , Gr be r

Gauss points, i.e., zeros of the Legendre polynomial of rth degree, on the interval [−1, 1]. The

Gauss points on each interval τi, i ∈ Z2N are defined as the affine transformations of Gj to τi,

that is :

gi,j =
1

2

(

xi + xi−1 + hiGj

)

, j ∈ Zr.

With these Gauss points, we construct the dual partition

P ′ = {τ ′1,0, τ ′2N,r} ∪ {τ ′i,j : τ ′i,j = [gi,j , gi,j+1], (i, j) ∈ Z2N × Zri},

where

τ ′1,0 = [0, g1,1], τ ′2N,r = [g2N,r, 1],
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and

ri =

{

r if i ∈ Z2N−1,

r − 1 if i = 2N,
gi,r+1 = gi+1,1, ∀i ∈ Z2N−1.

The test space VP′ consists of the piecewise constant functions with respect to the partition

P ′, which vanish on the intervals τ ′1,0 ∪ τ ′2N,r. In other words,

VP′ = Span {ψi,j : (i, j) ∈ Z2N × Zri} ,

where ψi,j = χ[gi,j ,gi,j+1] is the characteristic function on the interval τ ′i,j . Such a construction

guarantees that dim VP′ = 2Nr − 1 = dimU r
P .

We are ready to present our finite volume scheme. Integrating (2.2) on each control volume

[gi,j , gi,j+1], (i, j) ∈ Z2N × Zri yields

∫ gi,j+1

gi,j

−ǫa(x)u′′(x) + u′(x) + b(x)u(x)dx =

∫ gi,j+1

gi,j

f(x)dx. (2.4)

Let wP′ ∈ VP′ , wP′ can be represented as

wP′ =
2N
∑

i=1

ri
∑

j=1

wi,jψi,j ,

where w′
i,js are constants. Multiplying (2.4) with wi,j and then summing up for all i, j, we

obtain

2N
∑

i=1

ri
∑

j=1

wi,j

(∫ gi,j+1

gi,j

−ǫa(x)u′′(x) + u′(x) + b(x)u(x)dx

)

=

∫ 1

0

f(x)wP′ (x)dx,

or equivalently,

2N
∑

i=1

r
∑

j=1

(

ǫ[wi,j ]a(gi,j)u
′(gi,j) + wi,j

∫ gi,j+1

gi,j

(

(ǫa′(x) + 1)u′(x) + b(x)u(x)
)

dx

)

=

∫ 1

0

f(x)wP′(x)dx,

where [wi,j ] = wi,j − wi,j−1 is the jump of w at the point gi,j , (i, j) ∈ Z2N × Zr with w1,0 =

0, w2N,r = 0 and wi,0 = wi−1,r, 2 ≤ i ≤ 2N .

We define the FVM bilinear form for all v ∈ H1
0 (Ω), wP′ ∈ VP′ by

aP(v, wP′ ) =

2N
∑

i=1

r
∑

j=1

ǫ[wi,j ]a(gi,j)v
′(gi,j) (2.5)

+
2N
∑

i=1

ri
∑

j=1

wi,j

(

∫ gi,j+1

gi,j

(

(ǫa′(x) + 1)v′(x) + b(x)v(x)
)

dx

)

.

The finite volume method for solving the equation (2.2) reads as : Find uP ∈ U r
P such that

aP(uP , wP′) = (f, wP′), ∀wP′ ∈ VP′ . (2.6)
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3. Convergence

This section is devoted to the error estimate under the energy norm. An error bound

of (N−1ln(N + 1))r under the energy norm will be established. Our analysis is under the

framework of Petrov-Galerkin method, which requires the establishment of the inf-sup condition

and continuity of the bilinear form (2.5).

3.1. Inf-sup condition

We use the natural energy norm

‖v‖2ǫ = |v|2ǫ + (v, v), |v|2ǫ = ǫ(v′, v′), (3.1)

for all v ∈ H1
0 (Ω), and a discrete energy norm following [31]

‖v‖2ǫ,G = |v|2ǫ,G + (v, v), |v|2ǫ,G = ǫ
2N
∑

i=1

r
∑

j=1

Ai,jv
′(gi,j)

2, (3.2)

where Ai,js are weights for the r-point Gaussian quadrature on the interval τi. Since the r-point

Gaussian quadrature is exact for polynomials of degree 2r − 1, then

‖v‖ǫ = ‖v‖ǫ,G, ∀v ∈ U r
P .

For all wP′ =
∑2N

i=1

∑ri
j=1 wijψi,j ∈ VP′ , we define an ǫ-dependent semi-norm by

|wP′ |2P′,ǫ = ǫ

2N
∑

i=1

r
∑

j=1

h−1
i [wi,j ]

2, (3.3)

and a norm by

‖wP′‖2P′,ǫ = |wP′ |2P′,ǫ +

2N
∑

i=1

ri
∑

j=1

hiw
2
i,j . (3.4)

To discuss the relationship of the norms between the trial and test spaces, we recall the linear

mapping from the trial space to the test space introduced in [7]. Let ΠP : U r
P → VP′ be the

mapping defined for all wP ∈ U r
P by

ΠPwP := wP′ =

2N
∑

i=1

ri
∑

j=1

wi,jψi,j ,

where the coefficients wi,j are determined by the constraints

[wi,j ] = Ai,jw
′
P(gi,j), (i, j) ∈ Z2N × Zri .

It is shown in [7] that

[w2N,r] = A2N,rw
′
P(g2N,r).

Consequently,

|wP |21,τi ∼
r
∑

j=1

h−1
i [wi,j ]

2, ∀wP ∈ U r
P , ∀i ∈ Z2N . (3.5)

We next show that a similar equivalence holds for the ǫ-dependent energy norm.
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Lemma 3.1. For all wP ∈ U r
P , there holds

‖wP‖ǫ ∼ ‖ΠPwP‖P′,ǫ.

Proof. By (3.5) and the definitions of ‖ · ‖P′,ǫ and ‖ · ‖ǫ, we only need to prove

‖wP‖20 ∼
2N
∑

i=1

ri
∑

j=1

hiw
2
i,j . (3.6)

Noticing that for all wP ∈ U r
P

wP(x) =

∫ x

xi−1

w′
P (t)dt+ wP(xi−1), ∀x ∈ τi, i ∈ Z2N ,

then

‖wP‖20,τi . hiw
2
P (xi−1) + h2i |wP |21,τi .

Similarly, we have

hiw
2
P (xi−1) . ‖wP‖20,τi + h2i |wP |21,τi .

By the inverse inequality,

hiw
2
P(xi−1) + h2i |wP |21,τi . ‖wP‖20,τi + h2i |wP |21,τi . ‖wP‖20,τi.

Consequently,

‖wP‖20,τi ∼ hiw
2
P(xi−1) + h2i |wP |21,τi , ∀i ∈ Z2N . (3.7)

Note that

wP(xi−1) =

∫ xi−1

0

w′
P(x)dx =

i−1
∑

k=1

r
∑

j=1

[wk,j ] = wi−1,r = wi,0.

Then by (3.5) and (3.7), we have

‖wP‖20,τi ∽ hiw
2
i,0 + h2i

r
∑

j=1

h−1
i [wi,j ]

2 . hi

r
∑

j=0

w2
i,j .

On the other hand,

hi

r
∑

j=0

w2
i,j . hiw

2
i,0 + hi

r
∑

j=1

j
∑

k=1

[wi,k]
2

. hiw
2
i,0 + h2i |wP |21,τi . |wP |20,τi .

In summary, we have

‖wP‖20,τi ∼ hi

r
∑

j=0

w2
i,j , ∀i ∈ Z2N .

Summing up the above equivalence for all i gives (3.6). The conclusion follows immediately. 2

With all these preparations, we are now ready to present the inf-sup property of aP(·, ·).
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Theorem 3.1. Assume that the mesh size h is sufficiently small, then

inf
vP∈Ur

P

sup
wP′∈VP′

aP(vP , wP′)

‖vP‖ǫ‖wP′‖P′,ǫ
≥ β0, (3.8)

where β0 > 0 is a constant independent of ǫ and N .

Proof. Recall the bilinear form (2.5), for all vP ∈ U r
P , we have

aP(vP ,ΠPvP) = J1 + J2 + J3,

with

J1 = ǫ

2N
∑

i=1

r
∑

j=1

[vi,j ]a(gi,j)v
′
P(gi,j),

J2 =

2N
∑

i=1

ri
∑

j=1

vi,j

∫ gi,j+1

gi,j

(ǫa′(x) + 1)v′P(x)dx,

J3 =
2N
∑

i=1

ri
∑

j=1

vi,j

∫ gi,j+1

gi,j

b(x)vP (x)dx.

Obviously,

J1 ≥ a0ǫ

2N
∑

i=1

r
∑

j=1

Ai,j(v
′
P (gi,j))

2 = a0|vP |2ǫ .

We now estimate J2. By Young’s inequality and (3.6), we have

2N
∑

i=1

ri
∑

j=1

vi,j

∫ gi,j+1

gi,j

ǫa′(x)v′P (x)dx

≤ a0
2
|vP |2ǫ + cǫ

2N
∑

i=1

ri
∑

j=1

hiv
2
i,j ≤

a0
2
|vP |2ǫ + c1ǫ‖vP‖20,

where c, c1 are constants independent of ǫ and N . Note that

2N
∑

i=1

ri
∑

j=1

vi,j

∫ gi,j+1

gi,j

v′P(x)dx = −
2N
∑

i=1

r
∑

j=1

[vi,j ]vP (gi,j) =

∫ 1

0

v′PvP = 0.

Then we have

J2 ≥ −a0
2
|vP |2ǫ − c1ǫ‖vP‖20.

As for J3, we let V (x) =
∫ x

0
b(s)vP (s)ds, x ∈ Ω and

Ei =

∫ xi

xi−1

v′P(x)V (x)dx −
r
∑

j=1

Ai,jv
′
P (gi,j)V (gi,j),

be the error of Gauss quadrature on the interval τi, i ∈ Z2N . Then

J3 = −
2N
∑

i=1

r
∑

j=1

[vi,j ]V (gi,j) = −
∫ 1

0

v′P(x)V (x)dx +

2N
∑

i=1

Ei

=

∫ 1

0

b(x)v2P (x)dx +

2N
∑

i=1

Ei.
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It follows from [10] (p.98, (2.7.12)) that there exists a ξi ∈ τi, i ∈ Z2N such that

Ei =
h2r+1
i (r!)4

(2r + 1)[(2r)!]3
(v′PV )(2r)(ξi)

= crh
2r+1
i

(

b(ξi)(v
(r)
P (ξi))

2 +

r−2
∑

k=0

(

2r

k

)

(v′P )
(k)(ξi)V

(2r−k)(ξi)

)

.

By the inverse inequality, for all k ∈ Zr−2

∣

∣

∣
(v′P )

(k)(ξi)V
(2r−k)(ξi)

∣

∣

∣

≤ cr,b
∑

j+k≤2r−1

|vP |j,∞,τi |vP |k,∞,τi ≤ c′r,b
∑

j+k≤2r−1

h
−(j+k+1)
i ‖vP‖20,τi ,

where cr,b and c′r,b are constants dependent on r, b. Then

Ei ≥ −chi‖vP‖20,τi , ∀i ∈ Z2N .

Therefore, when h is sufficiently small, we have

J3 =

∫ 1

0

b(x)v2P (x)dx +
2N
∑

i=1

Ei ≥
b0
2
‖vP‖20.

Consequently,

aP(vP ,ΠPvP) = J1 + J2 + J3 ≥ α0

2
‖vP‖2ǫ .

By Lemma 3.1, there holds for any vP ∈ U r
P ,

sup
wP′∈VP′

aP(vP , wP′)

‖wP′‖P′,ǫ
≥ aP(vP ,ΠPvP )

‖ΠPvP‖P′,ǫ
≥ β0‖vP‖ǫ,

with β0 independent of ǫ and N . The inf-sup property (3.8) follows. 2

3.2. On the continuity

Under the framework of Petrov-Galerkin method, the convectional continuity of aP(·, ·)
means that for all v ∈ U r

P , wP′ ∈ VP′ ,

aP(v, wP′) . ‖v‖ǫ‖wP′‖P′,ǫ, (3.9)

where the hidden constant should be independent of the small parameter ǫ. However, due

to the existence of the term u′ in (2.2), for convection-diffusion problems, (3.9) may not hold

uniformly with respect to ǫ. Therefore in the following, we show the continuity property (3.12)

which is slightly weaker than (3.9) but is sufficient for the establishment of our optimal error

estimate.

We begin with a special interpolation. Let li,j , (i, j) ∈ Z2N ×Zr−1 be derivative zeros of the

Legendre polynomial of degree r on the interval τi, i ∈ Z2N , then li,j , together with li,0 = xi−1

and li,r = xi, are called the Lobatto points of degree r + 1 on the interval τi. Let uI be a
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polynomial of degree r that interpolates u at those r + 1 Lobatto points. Following the basic

idea in [31], we choose the special interpolation of solution u as Iǫu = ūI + uǫ,Iǫ , where

uǫ,Iǫ =







uǫ,I , 1− λ ≤ x ≤ 1,

lλ, 1− λ− h̄ ≤ x ≤ 1− λ,

0, 0 ≤ x ≤ 1− λ− h̄,

with

lλ(x) =

{

uǫ(1− λ)x−1+λ+h̄
h̄

, 1− λ− h̄ ≤ x ≤ 1− λ,

0, x ∈ (0, 1− λ− h) ∪ (1 − λ, 1).

A direct calculation shows that

‖lλ‖20 = h̄uǫ(1− λ)2/3 .
1

N2r+5
,

‖lλ‖21 = uǫ(1 − λ)2/h̄ .
1

N2r+3
.

We next present some approximate properties of Iǫu. We omit the proof of Lemma 3.2 since

the arguments are similar to those in [31]. The only difference is : here λ = ǫ
β (r + 2)ln(N + 1)

instead of λ = ǫ
β (r + 1.5)ln(N + 1) in [31].

Lemma 3.2. Let uǫ satisfy the regularity (2.3). Then

‖uǫ − uǫ,I‖0,(1−λ,1) .
√
ǫ

(

ln(N + 1)

N

)r+1

, ‖uǫ‖0,(0,1−λ) .

√
ǫ

N r+2
; (3.10a)

|uǫ − uǫ,I |ǫ,G,(1−λ,1) .

(

ln(N + 1)

N

)r+1

, |uǫ|ǫ,G,(0,1−λ) .
1

N r+2
. (3.10b)

Moreover, we can show the following properties.

Lemma 3.3. Let uǫ satisfy the regularity (2.3). Then

2N
∑

i=N+1

r
∑

j=1

hi
ǫ
((uǫ − uǫ,I)(gi,j))

2 .

(

ln(N + 1)

N

)2(r+1)

, (3.11a)

N
∑

i=1

r
∑

j=1

hi
ǫ
(uǫ(gi,j))

2 .
1

N2(r+2)
. (3.11b)

Proof. Let

T1 =

2N
∑

i=N+1

r
∑

j=1

hi
ǫ
((uǫ − uǫ,I)(gi,j))

2, T2 =

N
∑

i=1

r
∑

j=1

hi
ǫ
(uǫ(gi,j))

2.

From the standard approximation theory and (2.3), we have

T1 . ǫ−1
2N
∑

i=N+1

h
2(r+1)
i hi|uǫ|2r+1,∞,τi

. ǫ−1
2N
∑

i=N+1

(
hi
ǫ
)2(r+1)hie

−2β(1−xi)/ǫ .

(

ln(N + 1)

N

)2(r+1)

.



Finite Volume Superconvergence Approximation for One-Dimensional Singularly Perturbed Problems 497

Here we have used the fact that

hie
−2β(1−xi)/ǫ = hie

−2β(1−xi−1)/ǫe2βhi/ǫ

= (N + 1)
2(r+2)

N hie
−2β(1−xi−1)/ǫ .

∫ xi

xi−1

e−2β(1−x)/ǫ.

On the other hand, by the regularity (2.3),

T2 . ǫ−1
N
∑

i=1

r
∑

j=1

Ai,je
−2β(1−gi,j)/ǫ

. ‖e−β(1−x)/ǫ‖2(0,1−τ) .
1

N2(r+2)
.

Here we have used the remainder for Gaussian quadrature

∫ xi

xi−1

e−2β(1−x)/ǫ −
r
∑

j=1

Ai,je
−2β(1−gi,j)/ǫ

=
h2r+1
i (r!)4

(2r + 1)[(2r)!]3

(

2β

ǫ

)2r

e−2β(1−ξi)/ǫ > 0, ∀i ∈ ZN , ξi ∈ τi.

The proof is completed. 2

We are ready to present our weak continuity of aP(·, ·).

Theorem 3.2. Let u be the solution of (2.2) and satisfy the regularity (2.3). Let U r
P be the

C0 finite element space with piecewise polynomials of degree r on the Shishkin mesh. Then

aP(u − Iǫu,wP′) .

(

( ln(N + 1)

N

)r+1
+

1

N r

)

‖wP′‖P′,ǫ. (3.12)

Moreover, if ū ∈ U r
P , then

aP(u − Iǫu,wP′) .

(

ln(N + 1)

N

)r+1

‖wP′‖P′,ǫ. (3.13)

Proof. We first estimate the approximation for the regular part. If ū /∈ U r
P , we have, from

(2.5) and Cauchy-Schwartz inequality

aP(ū − ūI , wP′) .





2N
∑

i=1

r
∑

j=1

ǫhi(ū− ūI)
′(gi,j)

2 + ‖ū− ūI‖21





1
2

‖wP′‖P′,ǫ

.
1

N r
‖wP′‖P′,ǫ.

Here in the last step, we have used the fact that [34] (p.146, (1.2))

|(u− uI)
′(gi,j)| . hr+1|u|r+2,∞,ω′

i,j
, (3.14)

with ω′
i,j = (gi,j−1, gi,j+1). Furthermore, if ū ∈ U r

P , we have ū = ūI , which yields

aP(ū− ūI , wP′) = 0.
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We next consider the approximation for the singular part. Let

K1 = aP(uǫ − uǫ,I , wP′)(1−λ,1), K2 = aP(uǫ, wP′)(0,1−λ).

In light of (3.10) and Lemma 3.3, we derive

K1 .

(

‖uǫ − uǫ,I‖2ǫ,G,(1−λ,1) +

2N
∑

i=N+1

r
∑

j=1

hi
ǫ
(uǫ − uǫ,I)

2(gi,j)

)
1
2

‖wP′‖P′,ǫ

.

(

ln(N + 1)

N

)r+1

‖wP′‖P′,ǫ.

Similarly, we derive the following estimate for K2.

K2 .

(

‖uǫ‖2ǫ,G,(0,1−λ) +

N
∑

i=1

r
∑

j=1

hi
ǫ
(uǫ(gi,j))

2

)
1
2

‖wP′‖P′,ǫ .
1

N r+2
‖wP′‖P′,ǫ.

Recall the bounds of lλ, we obtain

aP(lλ, wP′) . ‖wP′‖P′,ǫ

(

‖lλ‖2ǫ + ‖lλ‖21
)

1
2

.
1

N r+1
‖wP′‖P′,ǫ.

Note that

aP(uǫ − uǫ,Iǫ , wP′) = K1 +K2 + aP(lλ, wP′).

Then

|aP(uǫ − uǫ,Iǫ , wP′)| .
(

ln(N + 1)

N

)r+1

‖wP′‖P′,ǫ.

Combining aP(ū− ūI , wP′) with aP(uǫ − uǫ,Iǫ , wP′), we obtain (3.12) and (3.13). 2

3.3. Estimates under the energy norm

In this section, we shall use the inf-sup property (3.8) and the weak continuity (3.12) (or

(3.13)) to prove that our finite volume scheme (2.6) has optimal convergence rate under the

energy norm.

Lemma 3.4. Let u satisfy regularity (2.3). Then

‖u− Iǫu‖ǫ .
(

ln(N + 1)

N

)r

. (3.15)

Proof. By the approximation theory, there holds

‖ū− ūI‖2ǫ .

(

ǫ

N2r
+

1

N2(r+1)

)

‖ū‖2r+1 .
1

N2r
.

We next estimate ‖uǫ − uǫ,Iǫ‖ǫ. By (2.3) and (3.10a),

‖uǫ − uǫ,I‖2ǫ,(1−λ,1) .

2N
∑

i=N+1

ǫh2ri |uǫ|2r+1,τi + ‖uǫ − uǫ,I‖20,(1−λ,1)

.
(

ǫ−1‖e−β(1−x)/ǫ‖20,(1−λ,1) + ǫ
)

(

ln(N + 1)

N

)2(r+1)

.

(

ln(N + 1)

N

)2r

,

‖uǫ‖2ǫ,(0,1−λ) . ǫ−1‖e−β(1−x)/ǫ‖20,(0,1−λ) + ‖uǫ‖20,(0,1−λ) .
1

N2(r+2)
.
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Recall the bounds of lλ, we derive

‖lλ‖2ǫ = ǫ|lλ|21 + ‖lλ‖20 .
1

N2r+2
.

Consequently,

‖uǫ − uǫ,Iǫ‖2ǫ . ‖uǫ − uǫ,I‖2ǫ,(1−λ,1) + ‖uǫ‖2ǫ,(0,1−λ) + ‖lλ‖2ǫ .
(

ln(N + 1)

N

)2r

.

Therefore

‖u− Iǫu‖2ǫ . ‖ū− ūI‖2ǫ + ‖uǫ − uǫ,Iǫ‖2ǫ .

(

ln(N + 1)

N

)2r

.

The inequality (3.15) follows by taking the square roots. 2

Theorem 3.3. Let u and uP be the solutions of (2.2) and (2.6), respectively. If u satisfies the

regularity (2.3), then

‖u− uP‖ǫ .
(

ln(N + 1)

N

)r

. (3.16)

Proof. By the inf-sup property (3.8) and the weak continuity (3.12) (or (3.13)),

‖uP − Iǫu‖ǫ . sup
w

P′∈V
P′

aP(uP − Iǫu,wP′)

‖wP′‖P′,ǫ

= sup
wP′∈VP′

aP(u− Iǫu,wP′)

‖wP′‖P′,ǫ
.

(

ln(N + 1)

N

)r

.

In light of (3.15), we obtain (3.16) immediately. 2

Remark 3.1. For reaction-diffusion equations, i.e., the term of first order derivative pu′ in

(2.1) disappears, the bilinear form aP(·, ·) is uniformly continuous with respect to ǫ. Namely,

(3.9) holds. Therefore, we directly have from (3.8) and (3.9)

‖u− uP‖ǫ . inf
vP∈Ur

P

‖u− vP‖ǫ . ‖u− Iǫu‖ǫ .
(

ln(N + 1)

N

)r

.

4. Superconvergence

In this section, we present the superconvergence properties of the FVM solution. We begin

with a study of superconvergence properties of uP′ at Gauss points.

Theorem 4.1. Let u be the solution of (2.2) and satisfy the regularity (2.3), and uP the

solution of (2.6). Then

‖u− uP‖ǫ,G .

(

ln(N + 1)

N

)r+1

+
1

N r
. (4.1)

Furthermore, if ū ∈ U r
P , then

‖u− uP‖ǫ,G .

(

ln(N + 1)

N

)r+1

. (4.2)
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Proof. We first consider the term ‖u− Iǫu‖ǫ,G. By (3.10b) and the bounds for lλ, we have

‖uǫ − uǫ,Iǫ‖ǫ,G ≤ ‖uǫ − uǫ,I‖ǫ,G,(1−λ,1) + ‖uǫ‖ǫ,G,(0,1−λ) + ‖lλ‖ǫ,G

.

(

ln(N + 1)

N

)r+1

.

For the regular part of the solution, we use similar arguments as in Lemma 3.2 to derive

‖ū− ūI‖ǫ,G .

(

2N
∑

i=1

hih
2(r+1)
i ‖ū‖2r+2,∞,τi + ‖ū− ūI‖20

)

1
2

.
1

N r+1
.

Therefore,

‖u− Iǫu‖ǫ,G ≤ ‖uǫ − uǫ,Iǫ‖ǫ,G + ‖ū− ūI‖ǫ,G .

(

ln(N + 1)

N

)r+1

. (4.3)

On the other hand, since

‖Iǫu− uP‖ǫ,G ∼ ‖Iǫu− uP‖ǫ.

By the inf-sup property (3.8), we have

‖uP − Iǫu‖ǫ,G . sup
wP′∈VP′

aP(u − Iǫu,wP′)

‖wP′‖P′,ǫ
.

In light of (4.3) and the estimates in Theorem 3.2, the desired results follow from the triangular

inequality. 2

Since ‖ · ‖0 ≤ ‖ · ‖ǫ,G, as a direct consequence of the above theorem, we automatically

establish a near optimal convergence rate in the L2 norm, that is:

‖u− uP‖0 .

(

ln(N + 1)

N

)r+1

+
1

N r
, (4.4)

and if ū ∈ U r
P , then

‖u− uP‖0 .

(

ln(N + 1)

N

)r+1

. (4.5)

To discuss superconvergence properties of uP at nodal points, we need the following as-

sumption
2r + 1

β
ǫ ln ǫ−1 ≤ h

3
. (4.6)

Note that (4.6) do not constitute a loss of generality since we are interested in singularly

perturbed problems and hence ǫ≪ 1 which makes the assumption very reasonable and it holds

even for very large N .

For any x ∈ Ω, let G(x, ·) be the Green function associated with x for the problem (2.2).

Then

v(x) = A(v,G(x, ·)), ∀v ∈ H1
0 (Ω),

where the Galerkin bilinear form A(·, ·) is defined for all v, w ∈ H1
0 (Ω) by

A(v, w) =

∫ 1

0

ǫa(y)v′(y)w′(y)dy +

∫ 1

0

((ǫa′(y) + 1)v′(y) + b(y)v(y))w(y)dy.



Finite Volume Superconvergence Approximation for One-Dimensional Singularly Perturbed Problems 501

It is shown in [8] that G(x, ·) satisfies the following regularity properties.

|G(s)(x, y)| . (1 + ǫ−se−βy/ǫ), ∀y ∈ (0, x), (4.7a)

|G(s)(x, y)| . (1 + ǫ−se−β(y−x)/ǫ), ∀y ∈ (x, 1), (4.7b)

for any s ≥ 0.

The next theorem provides an error estimate under the L∞ norm, which plays a critical role

in the superconvergence analysis at nodal points.

Theorem 4.2. If ū ∈ U r
P , there holds

‖u− uP‖0,∞ .
√

ln(N + 1)

(

ln(N + 1)

N

)r+ 1
2

. (4.8)

Proof. For any x ∈ τi ⊂ (0, 1− λ), by the inverse inequality,

|(Iǫu− uP)(x)| . h̄−
1
2 ‖Iǫu− uP‖0,τi . h̄−

1
2 ‖Iǫu− uP‖ǫ,G.

For all x ∈ (1− λ, 1), we have from Cauchy-Schwartz inequality,

|(uP − Iǫu)(x)| =
∣

∣

∣

∣

∫ 1

x

(uP − Iǫu)
′(t)dt

∣

∣

∣

∣

≤
√

λ

ǫ
‖Iǫu− uP‖ǫ,G.

In light of (4.2) and (4.3), we have

‖Iǫu− uP‖ǫ,G .

(

ln(N + 1)

N

)r+1

,

which implies

‖Iǫu− uP‖0,∞ .
√

ln(N + 1)

(

ln(N + 1)

N

)r+ 1
2

.

On the other hand, a direct calculation yields

‖u− Iǫu‖0,∞ .

(

ln(N + 1)

N

)r+1

.

The desired result (4.8) follows. 2

Remark 4.1. In the above theorem, we do not derive an optimal convergence rate for the L∞

norm, which is of order r + 1. However, the error bound obtained in Theorem 4.2 is sufficient

in our following superconvergence analysis.

With all the preparations , we are ready to present superconvergence properties of uP at

nodal points.

Theorem 4.3. Let u be the solution of (2.2) and satisfy the regularity (2.3), and uP the

solution of (2.6). Assume ū ∈ U r
P and the assumption (4.6) holds. Then

|(u− uP)(xi)| .
(

ln(N + 1)

N

)2r

, ∀i ∈ Z2N , (4.9)

where the hidden constant independent of ǫ and N .
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Proof. Let e = u− uP and

V2(x) =

∫ x

0

(

(ǫa′(y) + 1)e′(y) + b(y)e(y)
)

dy, ∀x ∈ [0, 1].

It is shown in [7] that

e(xi) = A(e,G(xi, ·)) = E1 + E2, ∀i ∈ Z2N ,

where

E1 =

2N
∑

k=1

h2r+1
k (r!)4

(2r + 1)[(2r)!]3

[

(

(ǫa(y)e′(y)− V2(y)
)∂G

∂y
(xi, y)

](2r) ∣
∣

∣

∣

y=ξk

,

E2 =

2N
∑

k=1

h2r+1
k (r!)4

(2r + 1)[(2r)!]3

[

∂G

∂y
(xi, y)

](2r) ∣
∣

∣

∣

y=ηk

,

and ξk, ηk ∈ τk, k ∈ Z2N . When the mesh size h̄ is sufficiently small, it is shown in [15] that

ξk − xk → hk

2 . Then

ξk ≥ h1
3
, ∀k ∈ Z2N ,

ξk − xi ≥ ξk − xk ≥ hk
3
, ∀k ≥ i.

By the regularity (4.7), for all j ∈ Z2r+1

|G(j)(xi, ξk)| . max(1 + ǫ−je−βξk/ǫ, 1 + ǫ−je−β(ξk−xi)/ǫ)

. max(1 + ǫ−je−βh1/3ǫ, 1 + ǫ−je−βhk/3ǫ), ∀k ∈ Z2N .

In light of (4.6), we have

|G(j)(xi, ξk)| .
{

1, k ∈ ZN ,

ǫ−je−βhk/3ǫ, N + 1 ≤ k ≤ 2N.
(4.10)

We left with the estimate for E1 and E2. We only provide details for E1, since the argument

for E2 is similar (and simpler). We divide E1 into two parts, outside boundary layer ER
1 and

in boundary layer EB
1 . Note that e(j) = u(j) for j > r, we have, from the Leibnitz formula of

derivative and (4.10)

|ER
1 | .

N
∑

k=1

h2r+1
k

( r
∑

j=0

|e(j)(ξk)|+
2r+1
∑

j=r+1

|u(j)(ξk)|
)

.

By the regularity (2.3), there holds for all j ≤ 2r + 1

|u(j)ǫ (ξk)| . ǫ−je−β(1−ξk)/ǫ . ǫ−je−βh̄/3ǫ . 1.

Therefore,

|u(j)(ξk)| ≤ |ū(j)(ξk)|+ |u(j)ǫ (ξk)| . 1.

By the inverse inequality, for all j ∈ Zr ,

|e(j)(ξk)| ≤ ‖Iǫu− uP‖j,∞,τk + |(Iǫu− u)(j)(ξk)|
. h−j

k ‖Iǫu− uP‖0,∞,τk + 1.
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Consequently,

|ER
1 | . h̄r‖Iǫu− uP‖0,∞ + h̄2r .

(

ln(N + 1)

N

)2r

.

Similarly, by (4.8) and (4.10), there goes

|EB
1 | .

2N
∑

k=N+1

( r
∑

j=0

(hk
ǫ

)2r+1−j

hjk|e|j,∞,τk +

2r+1
∑

j=r+1

(hk
ǫ

)2r+1−j

hjk|u|j,∞,τk

)

.

(

ln(N + 1)

N

)2r

,

where in the last step, we have used

hk|u|j,∞,τk . ǫ−jhke
−β(1−xk)/ǫ . ǫ−j

∫ xk

xk−1

e−β(1−x)/ǫ, ∀j,

and (see [1])

|e|j,∞,τk . h−j
k ‖e‖0,∞,τk + hr+1−j

k |u|r+1,∞,τk , ∀j ∈ Zr.

Then

|E1| = |ER
1 + EB

1 | .
(

ln(N + 1)

N

)2r

.

By the same arguments, we obtain

|E2| .
(

ln(N + 1)

N

)2r

.

The desired result then follows. 2

As a direct consequence of (4.9), we have

ENode =

(

1

2N

2N
∑

i=1

[(u− uP)(xi)]
2

)

1
2

.

(

ln(N + 1)

N

)2r

. (4.11)

5. Numerical Results

In this section, we present numerical examples to support our theoretical findings.

We consider (2.2) with a = 1, b = 0 and f(x) = x. The exact solution is

u(x) = x
(x

2
+ ǫ
)

−
(1

2
+ ǫ
)(e(x−1)/ǫ − e−1/ǫ

1− e−1/ǫ

)

.

Note that the regular part of ū = x(x2+ǫ) is included in the trial space U r
P , r ≥ 2 and the solution

has a boundary layer at x = 1. The transition point is 1−λ with λ = ǫ(r+2)ln(N+1). We solve

this problem by the FV scheme (2.6) with r = 3 and r = 4, respectively. In our experiments,

the underlying meshes are obtained by dividing each interval (0, 1−λ) and (1−λ, 1) into N = 2j

subintervals, j ∈ Z8 when r = 3 and j ∈ Z7 when r = 4.
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Table 5.1: r = 3.

ǫ = 10−4
ǫ = 10−6

ǫ = 10−8

N |u− uP |ǫ |u− uP |ǫ,G |u− uP |ǫ |u− uP |ǫ,G |u− uP |ǫ |u− uP |ǫ,G

2 2.2496e-2 8.8874e-3 2.2492e-2 8.8891e-3 2.2492e-2 8.8891e-3

4 1.0257e-2 2.9156e-3 1.0256e-2 2.9157e-3 1.0256e-2 2.9157e-3

8 3.6471e-3 7.2206e-4 3.6464e-3 7.2199e-4 3.6464e-3 7.2199e-4

16 1.0415e-3 1.3485e-4 1.0413e-3 1.3483e-4 1.0412e-3 1.3483e-4

32 2.5206e-4 2.0279e-5 2.5201e-4 2.0275e-5 2.5201e-4 2.0275e-5

64 5.4267e-5 2.6134e-6 5.4256e-5 2.6129e-6 5.4257e-5 2.6129e-6

128 1.0751e-5 3.0171e-7 1.0749e-5 3.0165e-7 1.0750e-5 3.0164e-7

256 2.0038e-6 3.2115e-8 2.0034e-6 3.2108e-8 2.0018e-6 3.2129e-8

ǫ = 10−4
ǫ = 10−6

ǫ = 10−8

N ENode |u− uP |L,0 ENode |u− uP |L,0 ENode |u− uP |L,0

2 2.5258e-3 2.2876e-3 2.5446e-3 2.3051e-3 2.5448e-3 2.3053e-3

4 2.0226e-4 2.0821e-4 2.0817e-4 2.1305e-4 2.0823e-4 2.1310e-4

8 1.0534e-5 1.8735e-5 1.1693e-5 1.9288e-5 1.1705e-5 1.9294e-5

16 3.8286e-7 1.8008e-6 5.2587e-7 1.8282e-6 5.2786e-7 1.8286e-6

32 1.2225e-8 1.4958e-7 2.0675e-8 1.5019e-7 2.0944e-8 1.5022e-7

64 4.6799e-10 1.0544e-8 7.2865e-10 1.0552e-8 7.6140e-10 1.0574e-8

128 1.6716e-11 6.5709e-10 2.2371e-11 6.5715e-10 2.5781e-11 6.2314e-10

256 5.4219e-13 3.7374e-11 5.8826e-13 3.7002e-11 8.2462e-13 3.0372e-11

We list approximate errors under various (semi-)norms for different values of ǫ = 10−4, 10−6,

10−8 in Table 5.1 (r = 3) and Table 5.2 (r = 4), respectively. Here |u − uP |L,0 denotes an

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

 ε=10−8

ε=10−6

ε=10−4

(log(N+1)/N)r

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

ε=10−8

ε=10−6

ε=10−4

(log(N+1)/N)r+1

Fig. 5.1. r = 3, left: |u− uP |ǫ, right: |u− uP |ǫ,G.
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Table 5.2: r = 4.

ǫ = 10−4
ǫ = 10−6

ǫ = 10−8

N |u− uP |ǫ |u− uP |ǫ,G |u− uP |ǫ |u− uP |ǫ,G |u− uP |ǫ |u− uP |ǫ,G

2 6.7982e-3 2.4927e-3 6.7970e-3 2.4929e-3 6.7970e-3 2.4929e-3

4 2.4190e-3 6.3720e-4 2.4185e-3 6.3714e-4 2.4185e-3 6.3714e-4

8 6.1782e-4 1.1318e-4 6.1764e-4 1.1316e-4 6.1764e-4 1.1316e-4

16 1.1738e-4 1.4022e-5 1.1736e-4 1.4020e-5 1.1736e-4 1.4021e-5

32 1.7806e-5 1.3193e-6 1.7802e-5 1.3191e-6 1.7802e-5 1.3192e-6

64 2.3032e-6 1.0209e-7 2.3029e-6 1.0206e-7 2.3028e-6 1.0107e-7

128 2.6627e-7 6.8753e-9 2.6622e-7 6.8870e-9 2.6618e-7 6.7534e-9

ǫ = 10−4
ǫ = 10−6

ǫ = 10−8

N ENode |u− uP |L,0 ENode |u− uP |L,0 ENode |u− uP |L,0

2 4.5443e-4 6.4598e-4 4.6189e-4 6.5525e-4 4.6194e-4 6.5535e-4

4 1.9649e-5 3.5114e-5 2.0987e-5 3.6545e-5 2.1001e-5 3.6559e-5

8 4.7100e-7 2.2593e-6 6.0737e-7 2.3259e-6 6.0899e-7 2.3268e-6

16 6.5383e-8 1.5142e-7 1.3277e-8 1.5256e-7 1.3418e-8 1.5257e-7

32 1.003e-10 7.9120e-9 2.4278e-10 7.9218e-9 2.5306e-10 7.8985e-9

64 1.0478e-12 3.3470e-10 3.7264e-12 3.3453e-10 4.3764e-12 3.4772e-10

128 1.6966e-14 1.2164e-11 4.4426e-14 1.2497e-11 5.6245e-14 1.2562e-11

average value of the approximation error at the Lobatto points,

|u− uP |L,0 =





1

2Nr

2N
∑

i=1

r
∑

j=1

[u(li,j)− uP(li,j)]
2
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
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Fig. 5.2. r = 3, left: ENode, right: ‖u− uP‖L,0.
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Fig. 5.3. r = 4, left: |u− uP |ǫ, right: |u− uP |ǫ,G.
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Fig. 5.4. r = 4, left: ENode, right: ‖u− uP‖L,0.

We may view it as a discrete L2 norm.

We plot in Figs. 5.1 - 5.4 the convergence curves in various (semi-)norms for different values

of ǫ = 10−4, 10−6, 10−8 in cases r = 3 and r = 4, respectively.

We observe from Figs. 5.1 and 5.3, a near optimal convergence rate
(

ln(N + 1)/N
)r

for

|u− uP |ǫ as predicted in Theorem 3.3. We also observe that the error |u− uP |ǫ,G decays with
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an order
(

ln(N + 1)/N
)r+1

. This confirms the superconvergence results in Theorem 4.1.

The average nodal error ENode is plotted in Figs. 5.2 and 5.4. They clearly indicate a rate

of
(

ln(N + 1)/N
)2r

, which is predicated in Theorem 4.3. Moreover, numerical results show

that the logarithmic factor does exist and is not removable. In this sense, the error bound

given in Theorem 4.3 is sharp.

We also observe from Figs. 5.2 and 5.4, a rate of
(

ln(N + 1)/N
)r+2

for |u − uP |L,0. The

error bound here is similar to the counterpart in [7]. This implies that the superconvergence

phenomenon at the Lobatto points exists for singularly perturbed problems as well, although

its theoretical analysis is lacking at this moment.
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