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Abstract

Here we focus on the numerical simulation of the phase separation about macromolecule

microsphere composite (MMC) hydrogel. The model is based on time-dependent Ginzburg-

Landau (TDGL) equation with the reticular free energy. An unconditionally energy stable

difference scheme is proposed based on the convex splitting of the corresponding energy

functional. In the numerical experiments, we observe that simulating the whole process

of the phase separation requires a considerably long time. We also notice that the total

free energy changes significantly in initial stage and varies slightly in the following time.

Based on these properties, we apply the adaptive time stepping strategy to improve the

computational efficiency. It is found that the application of time step adaptivity can not

only resolve the dynamical changes of the solution accurately but also significantly save

CPU time for the long time simulation.
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1. Introduction

Hydrogels, which are polymer with 3-D crosslinked hydrophilic network structure, have in-

creasingly extensive applications in industrial and biomedical fields [9,10,26]. Therefore, hydro-

gels have recently received tremendous attention in scientific communities due to their enhanced

properties [1, 16]. Comparing with traditional hydrogels with poor mechanism, recently there

has been a lot of novel methods to improve the structure of hydrogels and thus significantly

enhancing their mechanical properties [9,10,12], e.g., topological (TP) gels [3,4], nanocomposite

(NC) hydrogels [8], double-network (DN) gels [4, 7], MMC hydrogels and so on [9, 10]. MMC

hydrogels, which were synthesized by Ting Huang in 2007 [9], have a unique well-defined mi-

crostructure and very high mechanical strength. MMC hydrogels are environmentally sensitive

and mainly possible to use in drug delivery and other biomedical applications [22]. Many works

in chemical structure and dynamics simulation have been done about TP gels, NC hydrogels,

and DN gels and much progress has been made [5,11,12,25]. But there are relatively less results

about MMC hydrogels [23,24]. Why the MMC hydrogels have such high mechanical strengths?
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What are relation between the structure and property? The structural factors: nanoparticle

size, grafting density, polymer chain length, chain conformation, entanglement, how to influent

the phase transition? These problems are very important. Now we have investigated the micro-

scopic structures in [24] and large deformation of the MMC hydrogels in [23]. The MMC-TDGL

model have been given to get the phase transition of the MMC hydrogels [26]. But it is very

large for the computational cost of the MMC-TDGL model. In the following we will introduce

the model in details.

Meanwhile, many computational methods have been developed and applied in modeling and

simulation of phase separation of hydrogels. They range from molecular scale (e.g., molecular

dynamics, Monte Carlo), microscale (e.g., Brownian dynamics, dissipative particle dynamics,

lattice Boltzmann, TDGL method, dynamic density functional theory method) to mesoscale

and macroscale (e.g., micromechanics, equivalent-continuum and self-similar approaches, finite

element method) [25]. These methods are foundation to simulate phase separation of hydrogels.

However, observing the whole process of phase separation is computationally expensive and

costs a large amount of time when these methods are used. Therefore, seeking for algorithms to

decrease computation cost is an urgent task. The adaptive time-stepping method is introduced

here. Adaptive time stepping method has been well studied for solving initial value problems

in ODEs. The review work [18, 19] summarizes several step control methods for local time

adaptivity based on linear feedback theory. A locally varying time step method is developed for

solving hyperbolic conservative PDEs where large time step is adopted on region with smooth

solution while small time step is taken in domain with nearly singular solution within same time

level [20]. In [17], the adaptive time-stepping technique has been developed based on energy

variation which is an important physical quantity in the molecular beam epitaxy growth model.

Following [17], we improve the choice of adaptive time step according to properties of TDGL

equation.

In this work, considering the MMC hydrogels have microstructure with network crosslinking

points, we exploit the TDGL method to simulate phase evolution of MMC hydrogels based on

reticular free energy deduced in [26], called as the MMC-TDGL model. TDGL method is an

accurate and robust method to simulate structural evolution of phase separation in polymer

blends and copolymers and many nice results have been gotten in numerical experiments [1,14,

25]. The main objective of this work is to develop an unconditional energy stable method for

the MMC-TDGL model and apply adaptive time step strategy to the algorithm. Our numerical

approach is based on the convex splitting of the discrete energy functional. The convex part is

discretized using implicit scheme, while the concave part is handled by using explicit scheme.

The mass conservation and energy law in discrete sense are proved theoretically. The unique

solvability is obtained by minimizing an equivalent convex discrete functional. A couple of

numerical experiments are implemented to observe the phase evolution of the model. And

also the effectiveness of the adaptive time step method is shown clearly by comparing the CPU

time. During the time period with rapid free energy decay, small adaptive time steps are chosen

adaptively, while large time steps are used when free energy varies slowly.

This paper is organized as follows. In Section 2, the MMC-TDGL equation is introduced in

detail with the reticular free energy. The model is derived based on the variational derivative

of the corresponding energy functional. In Section 3, the unconditional energy stable scheme is

proposed and some numerical analysis are given. In Section 5, some numerical experiments are

performed to observe the phase evolution of the model. In Section 6, based on observations,

we propose a suitable adaptive time-stepping strategy and show the effectiveness numerically.
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Some concluding remarks are made in the final section.

2. MMC-TDGL Equation

TDGL equation is a microscale method for simulating the structural evolution of phase-

separation in polymer blends and block copolymers. Here we consider a dimensionless energy

of the model, total Flory-Huggins-de Gennes free energy E can be defined as:

E[φ(x, t)] =

∫
Ω

[F (φ(x, t)) + kBTκ|∇φ(x, t)|2]dx, (2.1)

where κ is a constant, kB is Boltzmann constant and T is temperature constant [2]. φ(x, t) is

order parameter, by definition φ ∈ (0, 1). It is pointed out that for a binary polymer blend,

F (φ(x, t)) usually denotes the Flory-Huggins free energy. However, as mentioned before, MMC

hydrogels have network structure. Hence, in [26], it is proved that the reticular free energy

should be defined as follows.

F = kBT

(
φ

τ
ln(

αφ

τ
) +

φ

N
ln(

βφ

τ
) + (1− ρφ) ln(1− ρφ) + χρφ(1− ρφ)

)
, (2.2)

where the parameters τ , α, β, N , and ρ are constants [26]. χ is the enthalpic interaction

parameter between two polymer components. As derived in [26], it can be guaranteed that

(1− ρφ) > 0. The MMC-TDGL model can be written as follows [1, 14,25,26].

∂φ(x, t)

∂t
= ∇ · (M(φ)∇µ) , (2.3)

where the mobility M may depend on φ, µ is the chemical potential defined as

µ := δφE = F ′(φ)− 2kBTκ∆φ

with

F ′(φ) = kBT

(
1

τ
ln(

αφ

τ
) +

1

τ
+

1

N
ln(

βφ

τ
) +

1

N
− ρ ln(1− ρφ)− ρ+ χρ− 2χρ2φ

)
.

Below we consider the case of constant M .

Combining the above equations, we get the following model

∂φ

∂t
= ∇ · (∇MF ′(φ))− 2MkBTκ∆2φ . (2.4)

Multiplying (2.3) by µ and integrating over Ω, we get

dE

dt
=

∫
Ω

µφtdx =

∫
Ω

µ∇ · (M∇µ) dx.

The above equality holds because of the fact that E is independent of variable x according to

definition of E in (2.1). Then, considering periodic boundary condition for φ and by divergence

theorem, we easily get
dE

dt
= −

∫
Ω

M |∇µ|2dx ≤ 0. (2.5)

Therefore, we know that the total free energy of the whole system is decreasing over time.
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3. Unconditionally Energy Stable Scheme

We first discuss the properties of the energy functional (2.1) which will be divided into two

parts (refer to [6, 21]). Then we will present the semi-discrete scheme for the MMC-TDGL

model (2.1) and prove some properties theoretically.

Lemma 3.1. Suppose the solution φ of the equation (2.4) is periodic and sufficiently regular.

Define

Ec(φ) =

∫
Ω

kBT [
φ

τ
ln(

αφ

τ
) +

φ

N
ln(

βφ

τ
) + (1− ρφ) ln(1− ρφ) + κ|∇φ|2]dx; (3.1)

Ee(φ) =

∫
Ω

−kBTχρφ(1− ρφ)dx . (3.2)

Then Ec(φ) and Ee(φ) are both convex with respect to φ.

Proof. Let

ec(φ, φx, φy) = kBT (
φ

τ
ln(

αφ

τ
) +

φ

N
ln(

βφ

N
) + (1− ρφ) ln(1− ρφ) + κ|∇φ|2), (3.3)

ee(φ, φx, φy) = −kBTχρφ(1− ρφ). (3.4)

Then

Ec(φ) =

∫
Ω

ec(φ, φx, φy)dx, Ee(φ) =

∫
Ω

ee(φ, φx, φy)dx .

It is easy to get

∂2
φec(φ, φx, φy) = kBT

(
1

τφ
+

1

Nφ
+

ρ2

1− ρφ

)
> 0,

∂2
φx
ec(φ, φx, φy) = 2kBTκ ≥ 0,

∂2
φy
ec(φ, φx, φy) = 2kBTκ ≥ 0,

∂2
φee(φ, φx, φy) = 2kBTχρ

2 ≥ 0.

This indicates that ec(φ, φx, φy) and ee(φ, φx, φy) are both convex in all of its arguments, thus

we have the following inequality according to the definition of convex function:

ec(λu + (1− λ)v) ≤ λec(u) + (1− λ)ec(v), (3.5)

ee(λu + (1− λ)v) ≤ λee(u) + (1− λ)ee(v), (3.6)

where u = (φ, φx, φy)T , v = (ψ,ψx, ψy)T . Integrating both sides of (3.5) and (3.6) leads to

Ec(λφ+ (1− λ)ψ) ≤ λEc(φ) + (1− λ)Ec(ψ),

Ee(λφ+ (1− λ)ψ) ≤ λEe(φ) + (1− λ)Ee(ψ),

which proves that Ec and Ee are both convex. �

Lemma 3.2. Suppose φ is the solution of the equation (2.4) with periodic boundary conditions

and φ is sufficiently regular. Then it holds that

E(φ)− E(ψ) ≤ (δφEc(φ)− δφEe(φ), φ− ψ). (3.7)
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Proof. According to the previous lemma, we know that ec(u) is convex in all of its arguments

φ, φx, φy, then

ec(v)− ec(u) ≥ ∇uec(u) · (v − u), (3.8)

where u = (φ, φx, φy)T and v = (ψ,ψx, ψy)T . Integrating both sides of (3.8), we get

Ec(ψ)− Ec(φ) ≥
∫

Ω

[
∂φec(u)(ψ − φ) + ∂φx

ec(u)(ψx − φx) + ∂φy
ec(u)(ψy − φy)

]
dx

=

∫
Ω

δφEc(φ)(ψ − φ)dx = (δφEc(φ), ψ − φ). (3.9)

Similarly, for Ee(φ) we also get

Ee(ψ)− Ee(φ) ≥ (δφEe(φ), ψ − φ). (3.10)

Adding (3.9) and (3.10) yields

E(ψ)− E(φ) = (Ec(ψ)− Ee(ψ))− (Ec(φ)− Ee(φ))

≥ (δφEc(φ), ψ − φ) + (δφEe(ψ), φ− ψ)

= (δφE(φ)− δφE(ψ), ψ − φ).

This completes the proof of the lemma. �

Based on the convex splitting of the discrete energy, we now design the semi-discrete scheme

for the MMC-TDGL model

φn+1 − φn

∆t
= M∆µn, (3.11)

where the numerical chemical potential is designed as

µn = δφEc(φ
n+1)− δφEe(φn)

= kBT

(
1

τ
ln
αφn+1

τ
+

1

N
ln
βφn+1

τ
− ρ ln(1− ρφn+1)− 2κ∆hφ

n+1

)
− 2kBTχρ

2φn.

Theorem 3.1. Suppose that φn+1 and φn are periodic solutions to the scheme (3.11). The

following energy inequality holds for any ∆t > 0,

E(φn+1) ≤ E(φn),

which means the scheme (3.11) is unconditionally energy stable.

Proof. In (3.7), setting φ = φn+1, ψ = φn, we get

E(φn+1)− E(φn) ≤ (δφEc(φ
n+1)− δφEe(φn), φn+1 − φn)

= (µn,∆tM∆µn) = −∆tM‖∇µn‖2 ≤ 0.

This completes the proof of the theorem. �
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4. Full-Discrete Finite Difference Scheme

Suppose Ω = [0, Lx]× [0, Ly] ∈ R2. Denote the partition as xi = i∆x, i = 0, 1, · · · ,m with

∆x = Lx/m and yj = j∆y, j = 0, 1, · · · , n with ∆y = Ly/n. Define the function spaces

Cm×n =
{
φi,j ∈ R, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

}
,

Cm×n =
{
φi,j ∈ R, i = 0, 1, · · · ,m, j = 0, 1, · · · , n

}
.

The discrete inner product is defined as

(φ, ψ) =

m∑
i=1

n∑
j=1

φi,jψi,j∆x∆y, φ, ψ ∈ Cm×n, .

The discrete first order difference operators are defined as

dxfi,j =
fi+ 1

2 ,j
− fi− 1

2 ,j

∆x
, dyfi,j =

fi,j+ 1
2
− fi,j− 1

2

∆y
,

Dxφi+ 1
2 ,j

=
φi+1,j − φi,j

∆x
, Dyφi,j+ 1

2
=
φi,j+1 − φi,j

∆y
.

Some discrete norms for φ ∈ Cm×n are defined as ‖φ‖2 = (φ, φ),

‖∇hφ‖2 =

m−1∑
i=0

n−1∑
j=0

(Dxφi+ 1
2 ,j

)2∆x∆y +

m−1∑
i=0

n−1∑
j=0

(Dyφi,j+ 1
2
)2∆x∆y.

The standard 2D Laplacian operator ∆h is defined as

∆hφi,j =
φi+1,j − 2φi,j + φi−1,j

∆x2
+
φi,j+1 − 2φi,j + φi,j−1

∆y2
.

Define the discrete energy as

Eh(φ) =

m∑
i=1

n∑
j=1

F (φi,j)∆x∆y + kBTκ‖∇hφ‖2 . (4.1)

and the convex splitting parts

Eh,c(φ) =

m∑
i=1

n∑
j=1

kBT

(
φij
τ

ln(
αφij
τ

) +
φij
N

ln(
βφij
τ

) + (1− ρφij) ln(1− ρφij)

+ κ|∇hφij |2
)

∆x∆y,

Eh,e(φ) =

m∑
i=1

n∑
j=1

−kBTχρφij(1− ρφij)∆x∆y .

We propose the full-discrete finite difference scheme for the MMC-TDGL model (2.3) as:

φn+1
ij − φnij

∆t
= M∆hµ

n
ij , (4.2)
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where the numerical chemical potential as

µnij =kBT

(
1

τ
ln
αφn+1

ij

τ
+

1

N
ln
βφn+1

ij

τ
− ρ ln(1− ρφn+1

ij )− 2κ∆hφ
n+1
ij

)
− 2kBTχρ

2φnij .

Theorem 4.1. The discrete scheme (4.2) is mass conservation in discrete sense.

Proof. Summing both sides in (4.2) for i = 1, 2, · · · ,m, j = 1, 2, · · · , n, we get the mass

conservation as below

(φn+1 − φn, 1) = ∆t(M∆hµ
n
h, 1)

=−∆tM(∇hµnh,∇h1) = 0.

This proves the theorem. �

Theorem 4.2. The full-discrete scheme (4.2) is uniquely solvable for any time step size ∆t > 0.

Proof. Define the vector space

H := {φ ∈ Cm×n|(φ,1) = 0},

and the inner product over H

(φ1, φ2)H,L := (∇hψ1,∇hψ2) (4.3)

where ψi ∈ Cm×n is the unique solution to

L(ψi) = −∆hψi = φi, ψi periodic, (ψi,1) = 0.

It is easily to find that

(φ1, φ2)H,L = (φ1, L
−1(φ2)) = (L−1(φ1), φ2) .

Without loss of generality, we suppose φn ∈ H. By the mass conservation, the solution to the

system (3.11) must be in H. Consider the following functional

G(φ) =
1

2
(φ, φ)H,L − (φ, φn)H,L +MEh,c(φ)− (φ,MδφEh,e(φ

n)). (4.4)

By the property of the bilinear form (·, ·)H,L, the functional above can be written as

G(φ) =
1

2
(L−1(φ), φ)− (L−1(φ), φn) +MEh,c(φ)− (φ,MδφEh,e(φ

n)). (4.5)

It is obviously that the functional (4.5) is strictly convex with respect to φ ∈ H. The unique

minimizer φn+1 ∈ H of G is equivalent to solve the following system

δφG(φn+1) = L−1(φn+1 − φn) +MδφEh,c(φ
n+1)−MδφEh,e(φ

n)− C = 0, (4.6)

where C is a constant. Since L−1(φn+1−φn) has zero mean, it must holds thatMδφEh,c(φ
n+1)−

MδφEh,e(φ
n)− C has zero mean, which reads

C =
1

m · n
(
MδφEh,c(φ

n+1)−MδφEh,e(φ
n),1

)
.
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Applying the operator L to both sides of (4.6), we get

φn+1 − φn = M∆hµ
n
h + L(C).

Obviously, L(C) = 0. The uniqueness and solvability of the system (3.11) is equivalent to

minimizing the convex functional G in (4.4). �

Theorem 4.3. The full-discrete scheme (4.2) is unconditionally stable, which means that for

any time step ∆t > 0, it holds that

Eh(φn+1) ≤ Eh(φn).

Proof. The detailed proof of theorem (3.1) can be directly extended to the fully discrete

case (4.2). Finally the following inequality holds

Eh(φn+1)− Eh(φn) ≤ −∆tM‖µnh‖2 ≤ 0 . �

5. Numerical Experiments

In this section, we will present some numerical experiments. The scheme (4.2) leads to a

nonlinear system of the form NL(φn+1
h ) = 0. We use the Newton iterative method to solve it.

The initial guess for the Newton iteration at each time level is taken as the numerical solution

at the previous time level. In each Newton iterative step, we need to solve a linearized system

in the form

NL′(φn,νh )φn+1,ν+1
h = NL′(φn,νh )φn+1,ν

h −NL(φn+1,ν
h ),

where NL′ denotes the Jacobian matrix of NL. This linearized system involved in the Newton

iteration is solved using conjugate gradient method. The tolerances for the conjugate gradient

method and Newton iterative method are both set to be 10−6.

Example 5.1. The parameters in the model (2.4) are taken as M = 0.2, χ = 0.4, τ = 107,

N = 800 and ρ = 1.0 as in [26]. In this example, we set the temperature parameter as T = 1,

and the initial values φ are random numbers around 0.65.

In our computation, we set the mesh as m = n = 64. The time step is taken as a constant

∆t = 0.001. In Fig. 5.1, we present the phase solution contours at some selected time levels.

The phase separation can be observed obviously. At the early stage the hydrogel quickly forms

ordered structures from the disordered random data, then it develops slowly until it reaches

the steady state, which is agree with the published results in [26].

Example 5.2. We change the initial state φ as random numbers around 0.35. The parameters

are taken as the same as the previous ones in Example 5.1.

We show the phase solutions in Fig. 5.2. The similar phenomena is observed as in Fig. 5.1.

Initially, the phase has a disordered distribution, then it quickly becomes to an ordered state

until it gradually tends to a steady state with regular structure.

Example 5.3. In this example we test the effect caused by parameter temperature T . To do

so, we set T = 20 and T = 50 respectively. The other parameters are taken the same settings

as before. The initial values φ are the same as initial values given in Example 5.1.

We observed that variable T may cause the similar development of the solution, and they

end with the same steady state (ignore the periodic effect) as shown in Fig. 5.3.
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Fig. 5.1. Example 5.1: Phase solution contours at t = 0.1, 10, 50, 100, 500, 1000. Initial values φ are

random numbers around 0.65.
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Fig. 5.2. Example 5.2: Phase solution contours at t = 0.1, 10, 100, 500, 1000, 2000. Initial values φ are

random numbers around 0.35.
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Fig. 5.3. Example 5.3: Phase solution contours at t = 1000, T = 20(left), T = 50(right).

6. An Adaptive Time Stepping Strategy

In the computation, it is observed that the total free energy has a quick decrement in initial

stage and has a slow decay in later time, which implies the solution varies quickly in early

stage and then varies slowly with respect to time variable. Hence, it is necessary to apply an

adaptive time step strategy to the scheme (4.2), which can improve computational efficiency

while keeping the property of energy law like the numerical experiments reported in [3].

In Section 4, we have proved that the nonlinear scheme (4.2) is unconditionally energy stable,

which allows to employ large time step during numerical simulations [17–19]. For the sake of

accuracy, a very large time step is unacceptable except in the time intervals where solutions

change considerably little. In the following simulations, we will conduct numerical simulations

under different constant time steps, such as ∆t = 0.001, ∆t = 0.005, ∆t = 0.01 and ∆t = 0.05.

Here, the initial values are taken as same as the ones given in Example ??. In order to test

the numerical accuracy with respect to time variable, we take the numerical solution obtained

using ∆t = 10−4, m = n = 512 as ‘exact’ solution. We define the error in L2-norm as

‖eh(t)‖ =

√√√√ m∑
i=1

n∑
j=1

(φi,j(t)− φ(xi, yj , t))2∆x∆y, (6.1)

where φ(xi, yj , t) is the ‘exact’ solution at t. φi,j(t) is the numerical solution. We set the

temperature parameter as T = 1. In Figs. 6.1, we present the total free energy evolution

against time. It is seen that the total free energies under different constant time steps are all

decreasing over time, which indicates that numerical solutions under different constant time

steps are consistent with the property of energy stability analyzed in Section 4. Also, it is

observed that the energies with different constant time steps tend to almost the same state

though they have distinct dynamical processes. The obvious reason is that constant large time

step may cause poor accuracy during the early stage where the energy has a quick change.

To get more facts of the phenomena we do the same numerical experiments using different

temperature. In Figs. 6.2 we set T = 50 and present the energy development. The similar

phenomena as shown in Figs. 6.1 is observed. With larger temperature parameter, the constant
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Fig. 6.1. Total energy evolution over time with T = 1 under different constant time steps.
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Fig. 6.2. Total energy evolution over time at T = 50 under different constant time step.

time step seems to cause more deviate of the energy curve from the energy curve obtained by

‘exact’ solution.

Motivated by the facts shown in Figs. 6.1 and 6.2, we will apply an adaptive time step

strategy to the numerical scheme (4.2). We employ small time steps when the total free energy

decreases significantly, which mean solutions have a large variation, and we will choose large

time steps when total free energy has a slow change. Following [3], according to the choice

of the adaptive time step and the definition of total free energy in this equation, we improve

adaptive time step monitor:

∆t = max(∆tmin, λ(T, t)
∆tmax√

1 + γ|E′(t)|2
). (6.2)

Here γ is a constant parameter, E′(t) is the derivative of E(t) and λ(T, t) is introduced to

ensure accuracy and efficiency. If we carefully compare the energy curves shown in Figs. 6.1

and 6.2, we find that the bigger parameter T may cause more significant variation on the energy

curve. By rough estimate, for the same increment of E, the derivative |E′(t)|2 with T = 50 is

2500 times larger than the derivative of it with T = 1. So we hope to involve T in the monitor
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Fig. 6.3. Total free energy evolution development comparison.

defined in (6.2) to make it also dependent on T besides the energy derivative. In the following

simulation, we choose ∆tmin = 0.001,∆tmax = 0.1, γ = 1000. The multiplier λ(T, t) is designed

as:

λ(T, t) =



1 if 0 ≤ t ≤ 100

1.5 if 100 < t ≤ 200

2 if 200 < t ≤ 300

3 if 300 < t ≤ 400

4 if 400 < t ≤ 500

5 if t > 500 .

The CPU time consumed at some selected time levels using different time steps are shown in

Table 6.1. It is observed that the CPU time consumed using adaptive time steps is much less

Table 6.1: CPU time costs comparison.

CPU time t = 1 t = 10 t = 100 t = 500

constant ∆t = 0.05 47.8 388.6 3416.9 14341.4

constant ∆t = 0.01 149.6 905.6 4190.2 5987.2

constant ∆t = 0.005 151.8 948.5 2335.1 3920.5

constant ∆t = 0.001 184.5 419.7 2125.2 10485.2

adaptive ∆t 110.1 202.7 668.8 2809.4

than the one using constant time steps. From Figs. 6.3, we can see that the difference of total

free energy evolution is very small under constant time step ∆t = 0.001 and the adaptive time

step. During the initial stage, the adaptive time step produced by the monitor (6.2) is close to

∆t = 0.001, so we we get a good approximation. However, as the system evolves for some time,

the free energy changes little indicating that the change of φ is also very small. As a result,

the monitor function (6.2) determines a large time step which might be 100 times bigger than

0.001, while little error is caused.

In Table 6.2 we list the comparison of the errors in L2-norm obtained using different time

steps at some selected time levels. It is easily seen that larger constant time step lead to larger

errors which is consistent with the analysis given above. The L2-error with adaptive time

strategy is considerably small during the whole process of simulation, which indicates that the

adaptive method is not only efficient but also accurate.
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Table 6.2: Errors in L2-norm comparison using different time steps.

L2-error t = 1 t = 10 t = 100 t = 200

constant ∆t = 0.05 0.031 0.0286 0.0256 0.0376

constant ∆t = 0.01 0.0267 0.0152 0.0086 0.0083

constant ∆t = 0.005 0.0198 0.0058 0.0037 0.0056

adaptive ∆t 0.0095 0.0042 0.000987 0.000325

7. Concluding Remarks

In this paper, we proposed an unconditional energy stable finite difference scheme for the

TDGL model based on convex splitting method. The unconditional energy stability is proved

theoretically. The unique solvability is proved through an equivalent convex discrete function-

al. The numerical experiments are carried out to verify the theoretical results. In the future,

we will develop a robust adaptive time step monitor function which evolves less artificial pa-

rameters. It should be dependent on more essential properties of the system. The proposed

numerical method may be considered to be extended to the case with variable coefficients such

as κ(φ),M(φ), T (φ).
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