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Abstract

We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza-

tion of the sum of three convex separable functions, which involves a smooth function with

Lipschitz continuous gradient, a linear composite nonsmooth function, and a nonsmooth

function. Compared with similar works, the parameters in PDFP are easier to choose

and are allowed in a relatively larger range. We will extend PDFP to solve two kinds

of separable multi-block minimization problems, arising in signal processing and imaging

science. This work shows the flexibility of applying PDFP algorithm to multi-block prob-

lems and illustrates how practical and fully splitting schemes can be derived, especially for

parallel implementation of large scale problems. The connections and comparisons to the

alternating direction method of multiplier (ADMM) are also present. We demonstrate how

different algorithms can be obtained by splitting the problems in different ways through the

classic example of sparsity regularized least square model with constraint. In particular,

for a class of linearly constrained problems, which are of great interest in the context of

multi-block ADMM, can be also solved by PDFP with a guarantee of convergence. Finally,

some experiments are provided to illustrate the performance of several schemes derived by

the PDFP algorithm.

Mathematics subject classification: 65K05, 46N10, 90C06, 90C25
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1. Introduction

In this paper, we are concerned with extending the primal-dual fixed point (PDFP) algo-

rithm proposed in [5] for solving two kinds of general multi-block problems (1.1) and (1.2) with

fully splitting schemes. Let Γ0(Rn) denote the collection of all proper lower semicontinuous

convex functions from Rn to (−∞,+∞]. The first kind of problems are formulated as

min
x∈Rn

f1(x) +
N∑
i=1

θi(Bix+ bi) + f3(x), (1.1)
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where θi ∈ Γ0(Rmi), Bi : Rn → Rmi a linear transform, bi ∈ Rmi , i = 1, · · · , N . f1, f3 ∈ Γ0(Rn)

and f1 is differentiable on Rn with 1/β-Lipschitz continuous gradient for some β ∈ (0,+∞]. If

f1 = 0, we can take β = +∞. Many problems in image processing and signal recovery with

multi-regularization terms can be formulated in the form of (1.1).

The second kind of problems under discussion are optimization problems with constraints,

given as follows.

min
x1,··· ,xN

N1∑
i=1

θi(Bixi + bi) +

N∑
i=N1+1

θi(xi) (1.2a)

st.
N∑
i=1

Aixi = a, (1.2b)

xi ∈ Ci, i = 1, · · · , N.

Here, θi ∈ Γ0(Rmi), Bi : Rni → Rmi a linear transform and bi ∈ Rmi for i = 1, · · · , N1.

Moreover, for i = N1 + 1, · · · , N , θi ∈ Γ0(Rni) is differentiable on Rni with 1/βi-Lipschitz

continuous gradient for some βi ∈ (0,+∞]. For i = 1, · · · , N , the constraint set Ci ⊂ Rni is

nonempty, closed and convex, Ai is a l × ni matrix, and a ∈ Rl.

Many problems can be formulated in the form (1.2), for example elliptic optimal control

problems [6]. In some applications, the problem (1.1) can be viewed as a decomposition on the

observed data, while the problem (1.2) is a mixture of the variables and data decomposition.

In particular, for some special cases, both problems (1.1) and (1.2) can be abstracted as

min
x1,x2,··· ,xN

N∑
i=1

θi(xi) (1.3a)

st.
N∑
i=1

Aixi = a, (1.3b)

xi ∈ Ci, i = 1, · · · , N,

by properly introducing auxiliary variables, or vice-visa, depending on the simplicity of the

functions θi involved. In the literature, many existing works have been devoted to solving (1.3),

for example, the variants of popular alternating direction method of multipliers (ADMM) [9,11,

12] for three or more block problems. It deserves to point out that Davis and Yin [10] proposed

a very interesting “primal-only” splitting scheme for solving an inclusion problem involving

three maximal monotone operators, which was also used for solving (1.3) by themselves.

Now, let us recall the primal-dual fixed point algorithm PDFP in [5] for solving the following

three-block problem

min
x∈Rn

f1(x) + f2(Bx+ b) + f3(x). (1.4)

In (1.4), f2 ∈ Γ0(Rm), B : Rn → Rm a linear transform, b ∈ Rm, f1 and f3 are the same ones

as given in (1.1). As usual, define the proximity operator proxf of f by (cf. [7])

proxf (x) = arg min
y∈Rn

f(y) +
1

2
∥x− y∥2.
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Then, our PDFP algorithm can be described as follows.

(PDFP)


xk+1/2 = proxγf3(x

k − γ∇f1(xk)− λBT vk), (1.5a)

vk+1 = (I − prox γ
λ f2)(Bx

k+1/2 + b+ vk), (1.5b)

xk+1 = proxγf3(x
k − γ∇f1(xk)− λBT vk+1), (1.5c)

where 0 < λ < 1/λmax(BB
T ) and 0 < γ < 2β. Compared with similar work in [8, 14], the

parameters in PDFP are easier to choose and are allowed in a larger range, as they can be

chosen independently according to the Lipschitz constant and the operator norm of BBT . In

this sense, our parameter rules are relatively more practical. In the numerical experiments, we

can set λ to be close to 1/λmax(BB
T ) and γ to be close to 2β for most of tests. Moreover, the

results of xk − γ∇f1(xk) and λBT vk+1 can be stored as two intermediate variables that can be

reused in (1.5a) and (1.5c) during the iterations. Nevertheless, PDFP has an extra step (1.5a)

and proxγf3 is computed twice. In practice, this step is often related to operations with low

cost such as ℓ1 shrinkage or straightforward projections. So the cost could be still ignorable in

practice.

The purpose of this paper is intended to extend PDFP to solve the above two kinds of

general multi-block problems (1.1) and (1.2) with fully splitting schemes. The key trick of

our treatment is the use of PDFP combined with feasible reformulation of the multi-block

problems in the form (1.4), so that we can derive many variants of iterative schemes with

different structures. One obvious advantage of the extended schemes is their simplicity and the

convenience for parallel implementation. Some of the algorithms derived in this paper already

exist in the literature and some of them are new and effective. The new schemes are compared

with the ADMM and we will show the connection and the difference later on. We mention in

passing that similar techniques are also adopted in [4, 8, 13, 16]. Compared with the schemes

developed in [8, 13, 16], if a scheme is established based on PDFP with f1 nonzero in (1.4), it

is more convenient for us to choose parameters in applications, as shown in [5]. However, if a

scheme is constructed based on PDFP by viewing f1 equal to 0, our PDFP requires to compute

the action of the operator proxγf3 twice, compared with the algorithms in [1, 8, 13, 14]. If the

calculation of proxγf3 is time-consuming, this will lead to additional computational cost.

The rest of the paper is organized as follows. In Section 2, we will show how PDFP can

be extended to solve (1.1), present the connections and differences with ADMM, and derive

different algorithms by using the constrained and sparse regularized image restoration model

as an illustrative example. In Section 3, PDFP is extended to solve (1.2), and we also show the

comparison with ADMM. In Section 4, the numerical performance and efficiency of the variants

of PDFP are demonstrated through constrained total variation computerized tomography (CT)

reconstruction and solving quadratic programming model.

2. PDFP for the Muti-block Problem (1.1)

2.1. Algorithm and its deduction

In this subsection, we formulate (1.1) as a special case of (1.4). Then the PDFP algorithm

can be applied and formulated in parallel form due to the separability of f2 on its variables.

Similar technique has also been used in [4, 8, 13, 16] and we present the details here for com-

pleteness.
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Rewrite the second term in (1.1) as

f2(Bx+ b) =
N∑
i=1

θi(Bix+ bi)

with the symbols

f2(y) =
N∑
i=1

θi(yi), y = Bx+ b,

B =


B1

B2

...

BN

 , b =


b1
b2
...

bN

 .

Thus, the problem (1.1) can be recast in the form of (1.4) and be resolved with PDFP. Since

f2 is separable in terms of its variables, the scheme (1.5) can be further expressed as

xk+1/2 = proxγf3

(
xk − γ∇f1(xk)− λ

N∑
j=1

BT
j v

k
j

)
, (2.1a)

vk+1
i = (I − prox γ

λ θi)(Bix
k+1/2 + bi + vki ), i = 1, · · · , N, (2.1b)

xk+1 = proxγf3

(
xk − γ∇f1(xk)− λ

N∑
j=1

BT
j v

k+1
j

)
. (2.1c)

The convergence condition of PDFP in [5] implies that the above algorithm is convergent

whenever 0 < λ < 1/
∑N

i=1 λmax(BiB
T
i ) and 0 < γ < 2β. The scheme (2.1) is naturally in a

parallel form, which may be useful for large scale problems. Also for some special cases, such

as f1 = 0, f3 = χC , one may even get simpler forms (see [5] for details).

2.2. Comparison to ADMM

There are many works on ADMM methods [9, 11, 12]. We will show the difference between

PDFP and ADMM for solving (1.1). Since our method for solving (1.1) is based on the PDFP

(1.5) for solving (1.4). We first show how the ADMM resolves the same problem. In fact,

we should first reformulate the problem in the form (1.3) by introducing auxiliary variables.

Then, we can use the ADMM to drive the scheme for solving (1.4). However, our PDFP is

developed based on a fixed point formulation the solution of (1.4) must satisfy. So the ideas of

constructing the two methods are quite different.

To show the difference of the two methods more clearly, we compare their schemes for

solving (1.1) with f3 = 0. PDFP for solving (1.1) have been given in (2.1) based on three

blocks algorithm (1.5). We can also use the similar technique to achieve the ADMM method

in this case: 
xk+1 = argmin

x∈Rn

f1(x) +
α

2

N∑
i=1

∥Bix+ (bi − yki + vki )∥2, (2.2a)

yk+1
i = prox 1

α θi(Bix
k+1 + bi + vki ), i = 1, · · · , N, (2.2b)

vk+1
i = vki + τ(Bix

k+1 + bi − yk+1
i ), i = 1, · · · , N. (2.2c)
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As a matter of fact, the scheme (2.2) follows from an application of the two block ADMM

for solving (1.1) with f3 = 0 and the convergence condition for (2.2) is still α > 0 and τ ∈
(0, (1 +

√
5)/2).

2.3. Application to constrained sparse regularization problems

In this subsection, we will consider how to get different algorithms by using the extension

of PDFP (2.1) for a specific problem. The problem that we are interested is the well-known

constrained sparse regularization model in inverse problems and imaging:

min
x∈C

1

2
∥Ax− a∥2 + µ∥Dx∥1, (2.3)

where ∥Ax− a∥2 is the smooth data-fidelity term, µ∥Dx∥1 is the regularization term to ensure

the solution is sparse under the transformD and µ is the regularization parameter. The problem

(2.3) is equivalent to

min
x∈Rn

1

2
∥Ax− a∥2 + µ∥Dx∥1 + χC(x), (2.4)

where

χC(x) =

{
0, x ∈ C,

+∞, x ̸∈ C.

First, applying PDFP (1.5) to the problem (1.4) with the three blocks given by f1(x) =
1
2∥Ax− a∥2, f2 = µ∥ · ∥1, B = D, b = 0, f3 = χC and noting proxγχC

= projC , we obtain

(Scheme 1)


xk+1/2 = projC

(
xk − γAT (Axk − a)− λDT vk

)
,

vk+1 = (I − prox γ
λµ∥·∥1

)(Dxk+1/2 + vk),

xk+1 = projC

(
xk − γAT (Axk − a)− λDT vk+1

)
,

(2.5)

where 0 < λ < 1/λmax(DD
T ) and 0 < γ < 2/λmax(A

TA). This is the original algorithm

proposed in [5], and the main computation is matrix-vector multiplication that is very suitable

for parallel computation.

The second scheme can be obtained by setting f1(x) =
1
2∥Ax− a∥2, θ1 = µ∥ · ∥1, B1 = D,

b1 = 0, θ2 = χC , B2 = I, b2 = 0, f3 = 0, leading to

(Scheme 2)



xk+1/2 = xk − γAT (Axk − a)− λDT vk1 − λvk2 ,

vk+1
1 = (I − prox γ

λµ∥·∥1
)(Dxk+1/2 + vk1 ),

vk+1
2 = (I − projC)(x

k+1/2 + vk2 ),

xk+1 = xk − γAT (Axk − a)− λDT vk+1
1 − λvk+1

2 ,

(2.6)

where 0 < λ ≤ 1/(λmax(DD
T ) + 1) and 0 < γ < 2/λmax(A

TA). This scheme (2.6) is the

form proposed in [4] by recasting the problem in two-block. We note that xk+1 may not be a

feasible solution during the iteration. In addition, an auxiliary variable v2 is introduced and

the permitted ranges of the parameter λ is also a little tighter compared with Scheme 1.

In the following, we present some schemes to use different properties of the objective func-

tions 1
2∥Ax− a∥2, which may involve the main computational cost in inverse problem applica-

tions. By setting f1(x) = 0, θ1 = µ∥ · ∥1, B1 = D, b1 = 0, θ2 = 1
2∥Ax − a∥2, B2 = I, b2 = 0,
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f3 = χC , we can use (2.1) to solve (2.3) and obtain

xk+1/2 = projC(x
k − λ(DT vk1 + vk2 )),

vk+1
1 = (I − prox γ

λµ∥·∥1
)(Dxk+1/2 + vk1 ),

vk+1
2 = (xk+1/2 + vk2 )−

(
I +

γ

λ
ATA

)−1
(
γ

λ
ATa+ xk+1/2 + vk2

)
,

xk+1 = projC

(
xk − λ(DT vk+1

1 + vk+1
2 )

)
,

(2.7)

where 0 < λ < 1/(λmax(DD
T ) + 1) and 0 < γ < +∞. This scheme can be practical when

the inverse of the matrix (I + γ
λA

TA) is easy to obtain, for examples, for some diagonalizable

matrix ATA.

When the inverse of the matrix (I+ γ
λA

TA) is not easy to compute, we can rewrite 1
2∥Ax−a∥

2

as 1
2∥ · ∥2 ◦ (Ax − a) and set f1(x) = 0, θ1 = µ∥ · ∥1, B1 = D, b1 = 0, θ2 = 1

2∥ · ∥2, B2 = A,

b2 = −a, f3 = χC . Then we have

(Scheme 3)



xk+1/2 = projC

(
xk − λ(DT vk1 +AT vk2 )

)
,

vk+1
1 = (I − prox γ

λµ∥·∥1
)(Dxk+1/2 + vk1 ),

vk+1
2 =

γ

γ + λ
(Axk+1/2 − a+ vk2 ),

xk+1 = projC

(
xk − λ(DT vk+1

1 +AT vk+1
2 )

)
,

(2.8)

where 0 < λ < 1/(λmax(DD
T ) + λmax(A

TA)) and 0 < γ < +∞.

If we partition A and a into N block rows, namely A = (AT
1 , A

T
2 , · · · , AT

N )T , a = (aT1 , a
T
2 ,

· · · , aTN )T , where Aj is a mj × n matrix and mj << n , aj ∈ Rmj , then

1

2
∥Ax− a∥2 =

1

2

N∑
j=1

∥Ajx− aj∥2.

Here Ai is different from the ones in (1.2)-(1.3), and they are only used in this subsection. It

is very easy to see that the scheme (2.8) can be written in a parallel form as

xk+1/2 = projC

(
xk − λ(DT vk1 +

N∑
j=1

AT
j v

k
2j)

)
,

vk+1
1 = (I − prox γ

λµ∥·∥1
)(Dxk+1/2 + vk1 ),

vk+1
2i =

γ

γ + λ
(Aix

k+1/2 − ai + vk2i), i = 1, · · · , N,

xk+1 = projC

(
xk − λ(DT vk+1

1 +
N∑
j=1

AT
j v

k+1
2j )

)
,

(2.9)

where 0 < λ < 1/(λmax(DD
T ) +

∑N
j=1 λmax(A

T
j Aj)) and 0 < γ < +∞. It is evident that all

vk+1
2i (1 ≤ i ≤ N) in the third substep of (2.9) can be computed in parallel.

The above schemes except (2.7) are fully explicit and involves only matrix-vector multiplica-

tion. In the following, we derive a semi-implicit scheme, which only involves the inverse of small

size matrix. By setting f1(x) = 0, θ1(x) = µ∥x∥1, B1 = D, b1 = 0, θi+1(x) =
1
2∥Aix − ai∥2,
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Bi+1 = I, bi+1 = 0, i = 1, · · · , N , f3 = χC , we obtain the following scheme by applying (2.1):

(Scheme 4)



xk+1/2 = projC(x
k − λ(DT vk1 +

N∑
j=1

vk2j)),

vk+1
1 = (I − prox γ

λµ∥·∥1
)(Dxk+1/2 + vk1 ),

vk+1
2i = (xk+1/2 + vk2i)− (I+

γ

λ
AT

i Ai)
−1
(γ
λ
AT

i ai + xk+1/2 + vk2i

)
,

i = 1, · · · , N,

xk+1 = projC

(
xk − λ

(
DT vk+1

1 +
N∑
j=1

vk+1
2j

))
,

(2.10)

where 0 < λ < 1/(λmax(DD
T ) +N) and 0 < γ < +∞. At first glance, the size of the inverse

in the third equation in (2.10) is the same with the third ones in (2.7). However, thanks to the

well known Sherman-Morrison-Woodbury formula, we know(
I +

γ

λ
AT

i Ai

)−1

= I − γ

λ
AT

i

(
I +

γ

λ
AiA

T
i

)−1

Ai. (2.11)

So we only need to invert a smaller size matrix I + γ
λAiA

T
i instead of I + γ

λA
T
i Ai. By using

(2.11), the third equation in (2.10) is equivalent to

vk+1
2i =

γ

λ
AT

i

(
I +

γ

λ
AiA

T
i

)−1

Ai

(
γ

λ
AT

i ai + xk+1/2 + vk2i

)
− γ

λ
AT

i ai. (2.12)

It is worth to point out that the quantities vk+1
1 and vk+1

2i (1 ≤ i ≤ N) can be evaluated in

parallel.

3. PDFP for Constrained Muti-block Problem (1.2)

3.1. Algorithms and its deduction

In this subsection, we will show how to extend PDFP to solve (1.2). (1.2) can be also seen

as a special case of (1.4) by using operator B and vector b, so we can solve it with PDFP. As

a matter of fact, by using the separability of f1, f2 and f3 about their variables, respectively,

we can get the primal-dual fixed point algorithm (3.2) for solving (1.2).

As a special case of indicator function χC on convex set C, for C = {0}, we define

χ0(x) =

{
0, x = 0,

+∞, x ̸= 0.

Then (1.2) is equivalent to

min
x1,··· ,xN

N∑
i=N1+1

θi(xi) +

(
N1∑
i=1

θi(Bixi + bi) + χ0(
N∑
i=1

Aixi − a)

)
+

N∑
i=1

χCi
(xi). (3.1)

Let

f1(x) = f1(x1, · · · , xN ) =

N∑
i=N1+1

θi(xi),

f3(x) = f3(x1, · · · , xN ) =
N∑
i=1

χCi
(xi).
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We also let

yi = Bixi + bi, i = 1, · · · , N1, yN1+1 =
N∑
i=1

Aixi − a,

y =


y1
...

yN1

yN1+1

 , x =



x1
...

xN1

...

xN


, b =


b1
...

bN1

−a

 ,

B =


B1

. . .

BN1

A1 · · · AN1 · · · AN

 ,

f2(y) = f2(y1, y2, · · · , yN1 , yN1+1) =

N1∑
i=1

θi(yi) + χ0(yN1+1).

Then we have

y = Bx+ b, f2(Bx+ b) =

N1∑
i=1

θi(Bixi + bi) + χ0

( N∑
i=1

Aixi − a

)
,

and problem (1.2) can be viewed as a special case of problem (1.4). Hence, we can use PDFP for

solving (1.2). Observing that f2 is separable about its variables y1, y2, · · · , yN1+1, f1 and f3 are

separable about their variables x1, x2, · · · , xN , prox γ
λχCi

= projCi
, prox γ

λχ0
(w) = proj0(w) =

0 for all w ∈ Rl, we have by (1.5) that



x
k+1/2
i = projCi

(
xki − λ(BT

i v
k
i +AT

i v
k
N1+1)

)
, i = 1, · · · , N1, (3.2a)

x
k+1/2
i = projCi

(
xki − γ∇θi(xki )− λAT

i v
k
N1+1

)
, i = N1 + 1, · · · , N, (3.2b)

vk+1
i = (I − prox γ

λ θi)
(
Bix

k+1/2
i + bi + vki

)
, i = 1, · · · , N1, (3.2c)

vk+1
N1+1 =

N∑
j=1

Ajx
k+1/2
j − a+ vkN1+1, (3.2d)

xk+1
i = projCi

(
xki − λ(BT

i v
k+1
i +AT

i v
k+1
N1+1)

)
, i = 1, · · · , N1, (3.2e)

xk+1
i = projCi

(
xki − γ∇θi(xki )− λAT

i v
k+1
N1+1

)
, i = N1 + 1, · · · , N. (3.2f)

The convergence condition of PDFP in [5] implies that the above algorithm is convergent

whenever 0 < λ < 1/(
∑N

i=1 λmax(AiA
T
i ) + max{λmax(BiB

T
i ), i = 1, 2, · · · , N1}) and 0 < γ <

2min{βi, i = N1 + 1, N1 + 2, · · · , N}. It is easy to see that (3.2a)-(3.2b), (3.2c)-(3.2d) and

(3.2e)-(3.2f) can be implemented in parallel, respectively. Also for some special cases, such as

N1 = 0 and N1 = N , one may even get simpler forms from (3.2). Let N1 = N , Bi = I and
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bi = 0 in (3.2), we then have

x
k+1/2
i = projCi

(
xki − λ(vki +AT

i v
k
N+1)

)
, i = 1, · · · , N, (3.3a)

vk+1
i = (I − prox γ

λ θi)
(
x
k+1/2
i + vki

)
, i = 1, · · · , N, (3.3b)

vk+1
N+1 =

N∑
j=1

Ajx
k+1/2
j − a+ vkN+1, (3.3c)

xk+1
i = projCi

(
xki − λ(vk+1

i +AT
i v

k+1
N+1)

)
, i = 1, · · · , N, (3.3d)

for solving (1.3), where 0 < λ < 1/(
∑N

i=1 λmax(AiA
T
i ) + 1) and 0 < γ < +∞. The scheme

of (3.2), including (3.3), can be implemented in parallel, and there is no requirement for the

subproblem solving if the proximity operator of θi have the closed-form representation.

For solving (1.3), we can also get many others algorithms, by viewing parts of θi as f1, parts

of θi as f2 ◦B and parts of θi as f3. Here we just give an example to show the idea. Let

f1(x) = 0, f2(y) = χ0(y),

B = (A1, A2, · · · , AN ), b = −a, y = Bx+ b,

f3(x) = f3(x1, x2, · · · , xN ) =
N∑
i=1

(θi(xi) + χCi(xi)).

Due to the separability of f3, PDFP (1.5) can be further expressed as

x
k+1/2
i = argmin

xi∈Ci

θi(xi) +
1

2γ
∥xi − (xki − λAT

i v
k)∥2, i = 1, · · · , N, (3.4a)

vk+1 = vk +

( N∑
j=1

Ajx
k+1/2
j − a

)
, (3.4b)

xk+1
i = argmin

xi∈Ci

θi(xi) +
1

2γ
∥xi − (xki − λAT

i v
k+1)∥2, i = 1, · · · , N, (3.4c)

where 0 < λ < 1/
∑N

i=1 λmax(AiA
T
i ) and 0 < γ < +∞. We can write the explicit solution of

(3.4a) and (3.4c) for some special θi and Ci, for example θi = ∥ · ∥1 and Ci are rectangular

domains. If Ci = Rni , for the schemes (3.4a) and (3.4c), we just need to work out the proximity

operator of θi. So the scheme is parallel and easy to implement for solving (1.3), which is the

basic problem considered in the context of ADMM.

We can write the problem (1.2) (or problem (1.1)) in the form (1.4) with many other ways,

and then derive new schemes to solve it in terms of PDFP (1.5). Since the discussion is routine,

we omit the details. What we have to emphasize is that our method for constructing algorithms

for solving problem (1.2) or (1.1) is very flexible.

3.2. Comparison to ADMM-like algorithms

In this subsection, we show the difference between the classic ADMM and PDFP for (1.3)

by solving the following typical problem:

minθ1(x1) + θ2(x2) + θ3(x3)

st. A1x1 +A2x2 +A3x3 = a,

x1 ∈ C1, x2 ∈ C2, x3 ∈ C3,

(3.5)
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where xi ∈ Rni , i = 1, 2, 3. For the ADMM method, the above problem is first transformed to

solve the following min-max problem:

min
x1∈C1,x2∈C2,x3∈C3

max
w

Lα(x1, x2, x3, w)

=
3∑

i=1

θi(xi)− ⟨w,
3∑

i=1

Aixi − a⟩+ α

2
∥

3∑
i=1

Aixi − a∥2. (3.6)

Let v = w/α. We then use the alternating direction method to solve problem (3.6), leading to

the following algorithm

xk+1
1 = argmin

x1∈C1

θ1(x1) +
α

2
∥A1x1 + (A2x

k
2 +A3x

k
3 − vk − a)∥2, (3.7a)

xk+1
2 = argmin

x2∈C2

θ2(x2) +
α

2
∥A2x2 + (A1x

k+1
1 +A3x

k
3 − vk − a)∥2, (3.7b)

xk+1
3 = argmin

x3∈C3

θ3(x3) +
α

2
∥A3x3 + (A1x

k+1
1 +A2x

k+1
2 − vk − a)∥2, (3.7c)

vk+1 = vk − τ(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − a). (3.7d)

In general, (3.7a)-(3.7c) need to solve subprograms whenever Ai ̸= I and the scheme is not a

parallel algorithm. In addition, if one of (3.7a)-(3.7b) is not easy to solve due to the constraints

Ci, we must introduce new auxiliary variables to get the solution. Though the treatment is

routine, the solution process will become rather complicated. More importantly, as showed

in [2], the scheme (3.7) is not necessarily convergent if there is no further assumption on (3.5).

Recently it is popular to propose some variants of ADMM to overcome this disadvantage, for

example, some prediction-correction methods were proposed in [11], and the Jacobian decom-

position of augmented Lagrangian method (ALM) with proximal terms was introduced in [12].

A very interesting “primal-only” splitting scheme are also be used for solving similar problems

in [10].

Now, we continue to show how to solve (3.5) in view of PDFP. By using indicator functions,

(3.5) is equivalent to

min
3∑

i=1

θi(xi) + χ0

( 3∑
i=1

Aixi − a

)
+

3∑
i=1

χCi(xi). (3.8)

Then we can use PDFP to solve (3.8) in various forms. For example, by setting N = 3 in (3.4),

we can get the following algorithm
x
k+1/2
i = argmin

xi∈Ci

θi(xi) +
1

2γ
∥xi − (xki − λAT

i v
k)∥2, i = 1, 2, 3, (3.9a)

vk+1 = vk + (A1x
k+1/2
1 +A2x

k+1/2
2 +A3x

k+1/2
3 − a), (3.9b)

xk+1
i = argmin

xi∈Ci

θi(xi) +
1

2γ
∥xi − (xki − λAT

i v
k+1)∥2, i = 1, 2, 3, (3.9c)

where 0 < λ < 1/
∑3

i=1 λmax(AiA
T
i ) and 0 < γ < +∞. compared with the scheme of (3.7),

the scheme of (3.9) is parallel and always convergent. Nevertheless, the computational cost

increases with the addition of a symmetric step, which may double the work of each step. To

avoid the disadvantage, we can also extend the scheme in [1,8,13,14] with the same treatment

given above.
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When the subproblems in (3.9a) are not easy to solve due to the constraints Ci, we can also

use (3.3) and get 

x
k+1/2
i = projCi

(
xki − λ(vki +AT

i v
k
4 )
)
, i = 1, 2, 3, (3.10a)

vk+1
i = (I − prox γ

λ θi)
(
x
k+1/2
i + vki

)
, i = 1, 2, 3, (3.10b)

vk+1
4 = vk4 +

(
A1x

k+1/2
1 +A2x

k+1/2
2 +A3x

k+1/2
3 − a

)
, (3.10c)

xk+1
i = projCi

(
xki − λ(vki +AT

i v
k+1
4 )

)
, i = 1, 2, 3, (3.10d)

where 0 < λ < 1/(
∑3

i=1 λmax(AiA
T
i ) + 1) and 0 < γ < +∞.

If θi are both differentiable with 1/βi-Lipschitz continuous gradient, respectively. We can

set N1 = 0 and N = 3 in (3.2), and then obtain the following scheme
x
k+1/2
i = projCi

(
xki − γ∇θi(xki )− λAT

i v
k
)
, i = 1, 2, 3, (3.11a)

vk+1 = vk +
(
A1x

k+1/2
1 +A2x

k+1/2
2 +A3x

k+1/2
3 − a

)
, (3.11b)

xk+1
i = projCi

(
xki − γ∇θi(xki )− λAT

i v
k+1
)
, i = 1, 2, 3, (3.11c)

where 0 < λ < 1/
∑3

i=1 λmax(AiA
T
i ) and 0 < γ < 2min{β1, β2, β3}.

4. Numerical Experiments

In this section, we will illustrate the application of PDFP for multi-block problems through

two examples, related to (1.1) and (1.2), respectively. The first one is the total variation

regularized computerized tomography (CT) reconstruction with constraints, and the second

one is on some quadratic programming or linear equation examples given in [2] as the counter

examples for the convergence of thee-block ADMM.

4.1. CT reconstruction

The standard CT reconstruction algorithm in clinical applications is the so-called Filtered

Back Projection (FBP) algorithm. In the presence of noise, this problem becomes difficult

since the inverse of Radon transform is unbounded and ill-posed. In the literature, the model

is constructed based on TV regularization (2.3), i.e.

min
x∈C

1

2
∥Ax− a∥2 + µ∥Dx∥1.

Here A is the Radon transform matrix, a is the measured projections vector, and D is the

discrete gradient operator. The size of A is generally huge and it is very difficult for us to

efficiently solve a linear system with A as the coefficient matrix. ∥Dx∥1 is the usual ℓ1 based

regularization in order to promote sparsity under the transform D and µ > 0 is the regulariza-

tion parameter. To be more precise, we use the isotropic total variation as the regularization

term, and assume that the solution should belong to [0,255], in other words, the constraint set is

defined as C = {x = (x1, x2, · · · , xn)T ∈ Rn|xi ∈ [0, 255], i = 1, 2, · · · , n}. We have shown in [4]

that it is useful to impose the above constraints in CT to improve the quality of reconstructed

images.
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In our numerical simulation, we still use the same example tested in [17], i.e., 50 uniformly

oriented projections are simulated for a 128×128 Shepp-Logan phantom image and then white

Gaussian noise of mean 0 and variance 1 is added to the data. For this example, we set

µ = 0.05 and work out λmax(AA
T ) = 1.5086. It is well known in total variation application

that λmax(DD
T ) = 8. So we set γ = 1.3, λ = 1/8 (0 < γ < 2/λmax(AA

T ) = 1.3257 and

0 < λ < 1/8 in PDFP according to Theorem 3.1 in [5] in Scheme 1 (cf. (2.5)). Correspondingly

we set γ = 1.3, λ = 1/9 in Scheme 2 (cf. (2.6)). Set γ = 20 and λ = 1/(8 + 1.5086) in Scheme

3 (cf. (2.8)). Set γ = 100, λ = 1/(8+N), N = 20 in Scheme 4 (cf. (2.10) and (2.12)). Here we

do not implement (2.7) since it needs to solve a large linear system, nor (2.9) as it is a parallel

form of Scheme 3.

0 10 20 30 40 50 60 70 80 90 100
4

4.5
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(c) (d)

Fig. 4.1. Evolution of four different PDFP algorithms in CT reconstruction. From left to right: (a)

log10(energy) versus 100 iterations; (b) PSNR versus 100 iterations; (c) log10(energy) versus 1500

iterations; (d) PSNR versus 1500 iterations.

From Figure 4.1, we can see that Scheme 1 and Scheme 2 have similar performance except

for the first steps. The final results of the four schemes are very close, and Scheme 3 and Scheme

4 can produce higher PSNR results than those from Scheme 1 and Scheme 2. The other point

to be emphasized is that, compared with Scheme 1 and Scheme 2, Scheme 3 and Scheme 4 can

get relatively better results with higher PSNR while use far less iteration steps, as shown in

Figure 4.2. In deriving Scheme 3 and Scheme 4, we view 1
2∥Ax−a∥

2 as a part of f2 ◦B in (1.4),

and thus f1 is taken to be zero, which leads to faster convergent algorithms. Compared with
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Scheme 1 Scheme 2 Scheme 3 Scheme 4

itn 1500 1500 183 45

time 35.33 34.76 4.29 23.53

PSNR 35.0997 35.1003 38.2467 36.6266

Fig. 4.2. The best recovery results for CT in 1500 iterations.

the numerical results from Scheme 3 and Scheme 4, we may find Scheme 4 requires much less

iteration numbers to obtain a solution of problem (2.3), since the preconditioning technique

is used implicitly. But it requires more computational cost due to linear systems solving in

sub-steps. Here, we simply use MATLAB command “\” for solving these systems. If they

can be solved more efficiently based on the structures of coefficient matrices, the efficiency of

Scheme 4 could be greatly improved. A clear advantage of Scheme 3 is that it mainly involves

matrix-vector multiplication operations, and it can also lead to a even better solution quickly

as shown in this example.

4.2. Application to non convergent examples for the direct extension of ADMM

As showed in [2], the direct extension scheme (3.7) is not necessarily convergent if there is no

further assumption on (3.5). Some non-convergent examples of ADMM are given in [2]. Now,

there have developed many algorithms overcoming the non-convergence of the classic ADMM

(cf. [9–12]). Since our PDFP is convergent for a general problem (1.2) according to the theory

in [5], here we are interested in studying the numerical performance of this method for solving

those non-convergent examples in [2].

The first example is solving linear equation1

1

1

x1 +

1

1

2

x2 +

1

2

2

x3 =

0

0

0

 . (4.1)

(4.1) is a special case of (3.5), where

A = (A1, A2, A3) =

1 1 1

1 1 2

1 2 2

 , a =

0

0

0

 .

It is easy to verify that A is nonsingular, and the true solution is x1 = 0, x2 = 0 and x3 = 0.

Moreover, the corresponding optimal Lagrange multipliers are all 0. Let θi = 0 and Ci = R,
i=1,2,3 in (3.11), (3.10) or (3.9), we can get the following scheme to solve it. Namely

x
k+1/2
i = xki − λAT

i v
k, i = 1, 2, 3, (4.2a)

vk+1 = vk +
(
A1x

k+1/2
1 +A2x

k+1/2
2 +A3x

k+1/2
3 − a

)
, (4.2b)

xk+1
i = xki − λAT

i v
k+1, i = 1, 2, 3, (4.2c)
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Fig. 4.3. The ℓ2 norms of errors versus iterations for PDFP within 2000 steps.

where 0 < λ ≤ 1/
∑3

i=1 λmax(A
T
i Ai). Substitute x

k+1/2
i with xk+1

i , and (4.2) implies
xk+1
i = xki − λAT

i

(
A1x

k
1 +A2x

k
2 +A3x

k
3 − a

)
− λAT

i v
k, i = 1, 2, 3, (4.3a)

vk+1 = vk +
(
A1x

k+1
1 +A2x

k+1
2 +A3x

k+1
3 − a

)
, (4.3b)

i.e.,

xk+1
i = xki − λAT

i

k∑
j=0

(
A1x

j
1 +A2x

j
2 +A3x

j
3 − a

)
− λAT

i v
0, i = 1, 2, 3. (4.4)

We set λ = 1/
∑3

i=1 λmax(A
T
i Ai) and the initial values of the elements of xi and v as 1.

The second example is solving

min 0.05x21 + 0.05x22 + 0.05x23 (4.5a)

st.

1

1

1

x1 +

1

1

2

x2 +

1

2

2

x3 =

0

0

0

 . (4.5b)

(4.5) is also a special case of (3.5). Let θi = 0.05x2i and Ci = R, i = 1, 2, 3 in (3.11), we can easily

get the algorithm for solving (4.5), where 0 < λ ≤ 1/
∑3

i=1 λmax(A
T
i Ai) and 0 < γ < 2/0.1 = 20.

According to the convergence rate theory about PDFP2O given in [3], this algorithm has linear

convergence rate, which is also confirmed by Figure 4.3(b) , since f1(x) = f1(x1, x2, x3) =∑3
i=1 0.05x

2
i is strongly convex and BBT = AAT is positive symmetric definite in (1.4) with

f3 = 0. Set γ = 1/0.1 = 10 and the others setting are the same as the first example.

The third example given in [2] is more sophisticated. It can be described as

min 0.5x21 (4.6a)

st.

1

1

1

x1 +

1

1

1

x2 +

1

1

2

x3 +

1

2

2

x4 =

0

0

0

 . (4.6b)

The feasible region of (4.6) is not a singleton, and the objective function is only related with

x1. The optimal solution of (4.6) is xi = 0, i = 1, 2, 3, 4. Similar to (3.11), let N1 = 0,

N = 4, θ1 = 0.5x21, θi = 0, i = 2, 3, 4, Ci = R, i = 1, 2, 3, 4 in (3.2), we can easily derive

the algorithm for solving (4.6), where 0 < λ ≤ 1/
∑4

i=1 λmax(A
T
i Ai) and 0 < γ < 2. We set

λ = 1/
∑4

i=1 λmax(A
T
i Ai) and γ = 1. The others setting are same as the first example.
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The errors with respect to the true solution within 2000 steps are given in Figure 4.3.

The convergence phenomenon are very interesting for the three examples. For Example 2,

the method converges without oscillation; but for the other two ones, the iteration solutions

converge with high oscillations. In what follows, we will give a rigorous explanation to reveal

the numerical insights. First of all, we have by a direct manipulation that the PDFP in these

examples can be expressed as(
vk+1

xk+1

)
=

(
I − λAAT A(I − γF )

−λAT (I − λATA) (I − λATA)(I − γF ))AT

)(
vk

xk

)
+

(
−a
λATa

)
, (4.7)

where F = diag(0, 0, 0), F = diag(1, 1, 1) and F = diag(1, 0, 0, 0) for these three examples,

respectively. For simplicity, we denote by T the iteration matrix in the above iteration method.

Therefore, the corresponding errors satisfy that

ek = Tke0,

where ek = [(vk − v∗)T , (xk − x∗)T ]T stands for the k-th iteration error to the true solution.

By direct calculations, we know the eigenvalues of T for Examples 1, 2, 3 for the given λ and

γ are (0.0284 + 0.1661i, 0.0284 - 0.1661i, 0.9908 + 0.0954i, 0.9908 - 0.0954i, 0.9808 + 0.1373i,

0.9808 - 0.1373i), (0, 0, 0, 0.0284, 0.9808, 0.9908) and (0, 0.0992 + 0.1427i, 0.0992 - 0.1427i,

0.9833 + 0.1273i, 0.9833 - 0.1273i, 0.9889 + 0.0881i, 0.9889 - 0.0881i), respectively. We can find

that the largest modulus of the eigenvalues of the iteration matrices for the three examples are

less than 1, so they are all convergent linearly. However, for Example 2, the eigenvalue with the

largest modulus is a real number, while the eigenvalues with the largest modulus are a pair of

conjugate complex numbers for the other two examples. Then, by the eigenbasis representation

of e0 and standard Power method calculation, we know that for Example 2, the ℓ2 norms of

errors converge in proportional to crk, where r is the largest eigenvalue of T; for the other two

examples, the ℓ2 norms of errors behave like crk| cos(kφ + ψ)|, with re±iφ denoting the two

conjugate complex eigenvalues of T with the largest modulus r and ψ a constant. Hence, we

can observe the phenomenon mentioned before.

5. Conclusion

We extend the ideas of a primal-dual fixed point algorithm PDFP to solve separable multi-

block minimization problems with or without linear constraints. The variants of PDFP are

fully splitting and therefore easy to implement. Moreover, the algorithms are parallel naturally,

so they are very suitable for solving large-scale problems from real-world models. Through

numerical experiments, we can see that treating smooth functions as parts of f2 ◦ B leads to

better convergence and partial inverse can be viewed as preconditioning for a good balance of

convergence speed and computational cost. The convergence condition on the parameter γ is an

arbitrary positive number, while the choice might heavily affect the convergent speed, which may

make parameter choosing a difficult problem in practice. Therefore the proper decomposition of

the smooth functions and non-smooth functions, and explicit or implicit schemes should depend

on the properties and computation balances in real applications. Moreover, for problems with

constraints that classic ADMM may fail to converge, PDFP algorithm can be also a choice with

the guarantee of theoretical convergence. Finally, we point out that this article only discusses

synchronous parallel realization of the proposed algorithms. Actually, it is possible and valuable
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to design the related asynchronous algorithms. We refer the reader to [15] and references therein

for details along this line.
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