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Abstract

It is well-known that artificial boundary conditions are crucial for the efficient and ac-

curate computations of wavefields on unbounded domains. In this paper, we investigate

stability analysis for the wave equation coupled with the first and the second order ab-

sorbing boundary conditions. The computational scheme is also developed. The approach

allows the absorbing boundary conditions to be naturally imposed, which makes it easier

for us to construct high order schemes for the absorbing boundary conditions. A third-

order Lagrange finite element method with mass lumping is applied to obtain the spatial

discretization of the wave equation. The resulting scheme is stable and is very efficient

since no matrix inversion is needed at each time step. Moreover, we have shown both ab-

stract and explicit conditional stability results for the fully-discrete schemes. The results

are helpful for designing computational parameters in computations. Numerical compu-

tations are illustrated to show the efficiency and accuracy of our method. In particular,

essentially no boundary reflection is seen at the artificial boundaries.
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1. Introduction

Modeling the propagation of seismic waves is a useful step in the interpretation of wave

phenomena in complex media. It is also an essential step for inverse problem in seismic ex-

ploration. Several kinds of techniques for wave modeling have been developed. These include

the finite volume method ([13, 49]), the finite difference method ([2, 20, 32, 43, 52, 53]), the

spectral method ([6, 30, 31]), the spectral element method ([28, 29]), the finite element method

([17, 18, 33]) and the discontinuous Galerkin methods ([9, 10, 12, 14, 15]).

The finite difference method is a popular numerical technique because it is relatively easy to

implement and has high computational efficiency. The wave modeling with the finite difference
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method in seismology was realized early in 70s ([2]). Since then, various finite difference schemes

for wave modeling are proposed. For example, Dablain [20] proposed the high-order difference

schemes. Virieux [43] investigated the stagger-grid difference scheme which has some advantages

in physical aspects. Sei [36] generalized a family of high order finite difference schemes for

the computation of elastic waves. Zhang et al. [52] proposed a new high accuracy locally

one-dimensional scheme for the wave equation. The spectral element method was introduced

firstly in computational fluid dynamic ([35]). It have been successfully applied to seismic wave

simulation ([28, 29]). However, its computational mesh is usually quadrilateral grid in 2D case

or hexahedral in 3D case.

The finite element method (FEM) especially the triangular element has a distinctive advan-

tage of being able to handle problems with complex domains. Thus, the FEM has a potential

and room for development in seismic wave simulations. However, the high order FEM is still

not widely used in the simulation of seismic waves and the main reason is that it requires the

inversion of the mass matrix at each extrapolation time step. This implies that the FEM has

very low computational efficiency especially when many extrapolation time steps are required.

The advantage of FEM is its good adaptability to various velocity models with high complexity.

Finite elements with simplices fit better the polygonal shaped domains and sharp contrasts in

velocity models. The FEM requires the solution of a large sparse linear system of equations,

which makes the method costly. This cost can be avoided by mass lumping ([54]), a technique

that replaces the large linear system by a diagonal matrix. For the low order methods such

as the linear Lagrange element, the mass lumping can be implemented by using the quadratic

rules for numerical integration. But it is not obvious how mass lumping is implemented for

high order methods such as the quadratic Lagrange element. As high order accuracy is desired

in wave simulation, we will adopt the third-order Lagrange element in our computations which

preserves the accuracy and at the same time allows mass lumping ([17, 18]).

In numerical simulation of wave propagation, the imposition of artificial boundary introduces

spurious reflections which will devastate the accuracy of numerical solutions. Although the

problem can be overcome by increasing the size of the computational domain, it is not always

feasible because it increases the amount of computations. In order to eliminate the boundary

reflections, absorbing boundary conditions are desirable in wave modeling. There are several

kinds of absorbing boundary conditions (ABCs) (see e.g., [5, 7, 14–16, 22, 25, 26, 37]). Smith [37]

proposed a nonreflection plane boundary, which is easily implemented for finite difference and

finite element calculations. Clayton and Engquist [16] proposed the ABCs based on the paraxial

approximations of the acoustic or elastic equations. Another approach is to add damping layer

to the boundaries ([7]). The waves entering this damping layer will be absorbed. The perfectly

matched layer (PML) method is based on the use of an absorbing layer especially designed

to absorb without reflection waves ([5]). These ABCs have been widely used in the finite

difference method. Chung (et al., [14, 15]) considered the ABCs in wave simulation with

the optimal discontinuous Galerkin methods. In this paper, we focus on stability analysis for

implementing the ABCs with the high order Lagrange finite element. The computational scheme

is also developed. The ABCs based on the factorization of wave equation are reviewed and the

variational framework, which imposes the ABCs weakly, is derived. The spatial discretization of

the weak form of wave equation including the embedded boundary conditions has high spatial

accuracy. Moreover, we obtain and prove new abstract and explicit stability conditions for the

proposed computational scheme.
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2. Theory

2.1. Weak formulation with Dirichlet boundary condition

In this subsection, we will briefly state the variational form of the wave equation with the

Dirichlet boundary condition to introduce our notations. We consider the following 2-D acoustic

wave problem

1

c(x, z)2
∂2u

∂t2
−

∂2u

∂x2
−

∂2u

∂z2
= 0, (x, z) ∈ Ω, t > 0, (2.1)

u(x, z, 0) = g1(x, z),
∂u(x, z, 0)

∂t
= g2(x, z), (x, z) ∈ Ω, (2.2)

u(x, z, t)|∂Ω = 0, t > 0, (2.3)

where Ω denotes a bounded polygonal subset of R2 with boundary ∂Ω.

In the above system u(x, z, t) is the unknown wavefield and c(x, z) is the given velocity of

the medium. Let Vh be an approximation subspace spanned by the Lagrange finite element

functions. To get the weak formulation of the acoustic wave equation, we multiply (2.1) by a

test function v(x, z) ∈ Vh and integrate over the domain Ω and apply the Green’s first identity

∫∫

Ω

ϕ(
∂2φ

∂x2
+

∂2φ

∂z2
)dxdz = −

∫∫

Ω

∇ϕ · ∇φdxdz +

∮

∂Ω

ϕ
∂φ

∂n
ds, (2.4)

where ϕ and φ are the continuously differentiable functions, n is the outward pointing unit

normal of domain boundary, ∇ is the gradient operator. As a result, we have

d2

dt2

∫∫

Ω

1

c2(x, z)
u(x, z, t)v(x, z)dxdz

+

∫∫

Ω

∇u(x, z, t) · ∇v(x, z)dxdz −

∫

∂Ω

∂u(x, z, t)

∂n
v(x, z)ds = 0, ∀v ∈ Vh. (2.5)

Considering the Dirichlet condition or v|∂Ω = 0, we have the weak formulation

d2

dt2

∫∫

Ω

1

c2(x, z)
u(x, z, t)v(x, z)dxdz

+

∫∫

Ω

∇u(x, z, t) · ∇v(x, z)dxdz = 0, ∀v ∈ Vh. (2.6)

Let wi be the corresponding Lagrange basis of Vh. Thus we can express uh =
∑

αi(t)wi. We

define U(t) to be the vector consists of the coefficients αi. Then (2.6) is equivalent to the

following ordinary differential system

M
d2U(t)

dt2
+KU(t) = 0, (2.7)

where the mass matrix M and the stiffness matrix K are given respectively by

Mij =

∫∫

Ω

1

c2(x, z)
wi(x, z)wj(x, z)dxdz, (2.8)

Kij =

∫∫

Ω

∇wi(x, z) · ∇wj(x, z)dxdz. (2.9)
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In computations, we need to select a suitable finite element space. In the case of P1 Lagrange

element, the following trapezoidal quadrature rule is used

∫∫

∆A1A2A3

f(x, z)dxdz =
1

3
|∆A1A2A3|

[

f(A1) + f(A2) + f(A3)
]

, (2.10)

where f(x, z) is a given function, and |∆A1A2A3| denotes the area of the triangle ∆A1A2A3

shown in Fig. 2.1. For the linear element, the approximate mass matrix is diagonal. However,

for high order elements, such as P2 element which shown in Fig. 2.1(a), the approximate

mass matrix is not diagonal. As the mass matrix must be inverted at each time step, the

mass lumping technique is required to improve computational efficiency. Here, we adopt the

third-order Lagrange element of [17]. It extends P2 to P̃2 by P̃2 = P2 ⊕ λ1λ2λ3, where λ1λ2λ3

is the bubble function, and λ1, λ2, λ3 are the baycentric coordinates with respect to vertices

A1, A2, A3 of the triangle ∆A1A2A3. Here ⊕ denotes direct sum. Obviously, the space P̃2

satisfies P2 ⊂ P̃2 ⊂ P3 and ensures the H1 conforming nature of Vh on the element boundary.

Then by using the following quadrature formula

∫∫

∆A1A2A3

f(x, z)dxdz = |∆A1A2A3|
( 1

20
[f(A1) + f(A2) + f(A3)]

+
2

15
[f(M1) + f(M2) + f(M3)] +

9

20
f(G)

)

, (2.11)

the mass matrix keeps diagonal. This quadrature formula is exact in P3 and the weights in it

are strictly positive. The seven interpolation nodes used on the triangle ∆A1A2A3 are shown

in Fig. 2.1 (b). For the boundary integrals, for instances the boundary integral along the edge

A1A2, the following Simpson rule ([1])

∫

A1A2

f(x, z)ds =
1

6
|A1A2|

(

f(A1) + 4f(M3) + f(A2)
)

, (x, z) ∈ A1A2, (2.12)

is used which has local truncation error with third-order accuracy in space and keeps the mass

lumping feature. Here |A1A2| is the length of edge A1A2. The theoretical analysis for P̃2 such

as the convergence and error estimates can be found in [17].

2.2. Absorbing boundary conditions derived from wave operator decomposition

Absorbing boundary conditions make a numerical computation of the solution in the bounded

domain behave as the computational boundary were not present. The development of stable

and effective ABCs is an important issue in numerical modeling. Substantial work has been

performed on such problems (see, e.g., [5, 7, 16, 19, 22, 25, 26]). Here we derive ABCs based on

the idea of wave operator decomposition ([47]). The method of wave operator decomposition

has been extended and applied to wave equation migration/inversion in [48, 51]. The obtained

ABCs are essentially the Clayton and Engquist’s ABCs when the leading terms are kept in

decomposition.

As shown is Fig. 2.2, the computational domain Ω is a rectangle, and ∂Ω consists of four

parts named Γ1, Γ2, Γ3 and Γ4. Assume the positive direction of x and z is right and down

respectively. We factorize the 1-D wave equation in the following form

(1

c

∂

∂t
−

∂

∂x

)(1

c

∂

∂t
+

∂

∂x

)

u = 0. (2.13)
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Fig. 2.1. Two nodes distribution for the third-order Lagrange element. (a) Six interpolation nodes on

a triangular element. This element makes the approximate mass matrix be not diagonal; (b) Seven

interpolation nodes on a triangular element. The nodes consist of three vertices A1, A2 and A3, three

midpoints M1, M2 and M3 and the centroid G. The element makes the approximate mass matrix be

diagonal.

A

B

D

C

Γ1

Γ2

Γ3

Γ4

Fig. 2.2. Domain Ω for wave simulation. Its boundary ∂Ω consists of four sides denoted by Γ1, Γ2, Γ3

and Γ4 respectively. The positive directions of x and z point to right and down respectively.

Then we define the rightgoing wave R and leftgoing wave L by

R =
(1

c

∂

∂t
−

∂

∂x

)

u, (2.14)

L =
(1

c

∂

∂t
+

∂

∂x

)

u, (2.15)

respectively. One wants outgoing wave motions should pass through the boundary without

being reflected. Therefore the outgoing waves R and L should satisfy

1

c

∂R

∂t
+

∂R

∂x
= 0, x ∈ Γ3, (2.16)

1

c

∂L

∂t
−

∂L

∂x
= 0, x ∈ Γ1, (2.17)

respectively. They are the first-order ABCs for the left boundary Γ1 and right boundary Γ3

respectively. Similarly defining the downgoing wave D and upgoing wave U , we can obtain the
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first-order ABCs for the bottom boundary Γ2 and the top boundary Γ1:

1

c

∂D

∂t
+

∂D

∂z
= 0, x ∈ Γ2, (2.18)

1

c

∂U

∂t
−

∂U

∂z
= 0, x ∈ Γ4. (2.19)

We point out that the downgoing and upgoing wave equations (2.18)-(2.19) are the simplified

forms of the following coupled equations ([47])

1

c

∂D

∂t
+

∂D

∂z
= −

∂c

2c∂z
(D + U), x ∈ Γ2, (2.20)

1

c

∂U

∂t
−

∂U

∂z
=

∂c

2c∂z
(D + U), x ∈ Γ4. (2.21)

We remark that for simplicity we only consider the completely decoupled form of downgoing

wave and upcoming wave. From the physical point of view, that is to say, we don’t consider

the effects of multiple waves and true-amplitude preserving. The general coupled expression of

the 3D wave operator decomposition can be found in the reference [47].

The high order one-wave equations or ABCs can also be obtained by some ways ([25, 26,

46]). The nth order ABC for Γ3 is

(1

c

∂

∂t
+

∂

∂x

)n

u = 0, x ∈ Γ3, (2.22)

where u denotes any one-way wave for simplicity. Setting n = 2 and noting that u is also the

solution of wave equation (2.1), we obtain the second-order ABC for Γ1

∂2u

∂t2
− c

∂2u

∂x∂t
−

c2

2

∂2u

∂z2
= 0, (x, z) ∈ Γ1. (2.23)

Similarly, we can obtain the second-order ABCs for Γ3, Γ2 and Γ4 respectively:

∂2u

∂t2
+ c

∂2u

∂x∂t
−

c2

2

∂2u

∂z2
= 0, (x, z) ∈ Γ3, (2.24)

∂2u

∂t2
+ c

∂2u

∂z∂t
−

c2

2

∂2u

∂x2
= 0, (x, z) ∈ Γ2, (2.25)

∂2u

∂t2
− c

∂2u

∂z∂t
−

c2

2

∂2u

∂x2
= 0, (x, z) ∈ Γ4. (2.26)

In order to consider the absorbing effects, we consider the reflection coefficient which is

defined as the ratio of the reflected wavefield to an incident plane wave. Insert into (2.22) a linear

combination of an incoming wave ei(x cos θ+z sin θ−ct) and an outgoing wave ei(−x cos θ+z sin θ−ct)

to get the reflection coefficient

|Rn| =
(1− cos θ

1 + cos θ

)n

, (2.27)

where θ is the angle of incidence. Based on the theory of wave reflection ([3]), if one wants to

annihilate waves moving with angle α, the version corresponding to (2.27) becomes

|Rn| =
(cosα− cos θ

cosα+ cos θ

)n

. (2.28)

The magnitude of the reflection coefficient is plotted as a function of incidence angles θ in Fig.

2.3 for four different absorbtion directions: 0◦, 15◦, 30◦ and 45◦. The solid line indicates the
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first-order ABCs (n = 1) and the dotted line the second-order ABCs (n = 2). Fig. 2.3(a) and

2.3(b) show that the magnitude of the reflection coefficients of first-order ABCs is small for

0◦ and 15◦ absorbtion directions, while it becomes large in Fig. 2.3(c) and 2.3(d) for 30◦ and

45◦ absorbtion directions. For the second-order ABCs, the reflection magnitude is even small

for the 45◦ absorbtion direction. Obviously, the effectively absorbing angle of the second-order

ABCs is lager than that of the first-order ABCs.
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Fig. 2.3. A comparison of reflection coefficient magnitude between the first-order (solid) and second-

order (dotted) ABCs for four different absorption directions: (a) 0◦, (b) 15◦, (c) 30◦ and (d) 45◦.

2.3. Wavefield extrapolation schemes with absorbing boundary conditions

In this subsection, we will derive the variational form and the discretization schemes for the

wave equation which imposes the absorbing boundary conditions naturally. Since v|∂Ω 6= 0, the

third term of LHS in (2.5) is not zero. Notice that the first-order ABCs (2.16)-(2.19) can be

written as

∂u

∂n
+

1

c

∂u

∂t
= 0, (x, z) ∈ ∂Ω. (2.29)

Substituting (2.29) in (2.5) yields the weak formulation (2.30) for the first-order ABCs: find

uh ∈ Vh such that

d2

dt2

∫∫

Ω

1

c2
uhvhdxdz +

∫∫

Ω

∇uh · ∇vhdxdz +

∫

∂Ω

1

c
uhvhds = 0, ∀vh ∈ Vh. (2.30)
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We note that the ABCs are naturally incorporated into the weak formulation by the term
∫

∂Ω

1

c
uhvhds. Using the central difference scheme for the time derivative, the discretization

scheme of (2.30) for wavefield extrapolation can be written as

(2M + L∆t)Un+1 + (2∆t2K − 4M)Un + (2M − L∆t)Un−1 = 0, (2.31)

where Un(t) = U(n∆t), and L is the matrix given by

Lij =

∫

∂Ω

1

c
wiwjds. (2.32)

We note that L is a symmetric positive-definite matrix.

For the second-order ABCs, first taking time derivative on both sides of (2.5), we obtain

d3

dt3

∫∫

Ω

1

c2
uvdxdz +

d

dt

∫∫

Ω

∇u · ∇vdxdz −

∫

∂Ω

∂2u

∂n∂t
vds = 0. (2.33)

Then we compute the boundary integral in (2.33) in the following way

−

∫

∂Ω

∂2u

∂n∂t
vds = −

∫

Γ1

∂2u

∂n∂t
vds−

∫

Γ2

∂2u

∂n∂t
vds−

∫

Γ3

∂2u

∂n∂t
vds−

∫

Γ4

∂2u

∂n∂t
vds

= −

∫

Γ1

( c

2

∂2u

∂z2
−

1

c

∂2u

∂2t

)

vdz −

∫

Γ2

( c

2

∂2u

∂x2
−

1

c

∂2u

∂2t

)

vdx

−

∫

Γ3

( c

2

∂2u

∂z2
−

1

c

∂2u

∂2t

)

vdz −

∫

Γ4

( c

2

∂2u

∂x2
−

1

c

∂2u

∂2t

)

vdx

=
d2

dt2

∫

∂Ω

1

c
uvds+

c

2

[
∫

Γ1

∂u

∂z

∂v

∂z
dz +

∫

Γ3

∂u

∂z

∂v

∂z
dz

+

∫

Γ2

∂u

∂x

∂v

∂x
dx+

∫

Γ4

∂u

∂x

∂v

∂x
dx

]

=
d2

dt2

∫

∂Ω

1

c
uvds+

c

2

[
∫

Γ1+Γ3

∂u

∂z

∂v

∂z
dz +

∫

Γ2+Γ4

∂u

∂x

∂v

∂x
dx

]

. (2.34)

Substituting the above result in (2.33), we obtain the variational form

d3

dt3

∫∫

Ω

1

c2
uvdxdz +

d

dt

∫∫

Ω

∇u · ∇vdxdz

+
d2

dt2

∫

∂Ω

1

c
uvds+

c

2

∫

Γ1+Γ3

∂u

∂z

∂v

∂z
dz +

c

2

∫

Γ2+Γ4

∂u

∂x

∂v

∂x
dx = 0. (2.35)

Thus the variational form with the second-order ABCs reads: find uh ∈ Vh such that

d3

dt3

∫∫

Ω

1

c2
uhvhdxdz +

d

dt

∫∫

Ω

∇uh · ∇vhdxdz

+
d2

dt2

∫

∂Ω

1

c
uhvhds+

c

2

∫

Γ1+Γ3

∂uh

∂z

∂vh
∂z

dz +
c

2

∫

Γ2+Γ4

∂uh

∂x

∂vh
∂x

dx = 0. (2.36)

Now we propose to approximate the derivatives with respect to time t in (2.36) with the
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following expressions

d3u

dt3
=

un+2 + 2un−1 − 2un+1 − un−2

2△t3
+O(△t2), (2.37)

d2u

dt2
=

un+2 − 2un + un−2

4△t2
+O(△t2), (2.38)

du

dt
=

un+1 − un−1

2△t
+O(△t2). (2.39)

Then the wavefield extrapolation scheme with the second-order ABCs (2.36) can be written as

(2M + L∆t)Un+2 + (2K∆t2 − 4M)Un+1 + (4∆t3J − 2L∆t)Un

+(4M − 2K∆t2)Un−1 + (L∆t− 2M)Un−2 = 0, (2.40)

where L is given by (2.32) and J is the matrix given by

(J)ij =
c

2

∫

Γ1+Γ3

∂wi

∂z

∂wj

∂z
dz +

c

2

∫

Γ2+Γ4

∂wi

∂x

∂wj

∂x
dx. (2.41)

One notes that J is the symmetric positive semi-definite matrix.

3. Stability Conditions

3.1. General formulation

New stability conditions for the fully-discrete schemes (2.31) and (2.40) with the first-order

and second-order ABCs respectively are derived here. First, we consider the wavefield extrap-

olation using (2.7) for the Dirichlet boundary condition. Its discretization scheme is

Un+1 − 2Un + Un−1

∆t2
+M−1KUn = 0. (3.1)

The difference equations both for the Dirichlet condition and the first-order ABCs can be

written as

B2U
n+1 +B1U

n +B0U
n−1 = 0, (3.2)

where B0, B1 and B2 are linear combinations of M , K and L. For the case with the Dirichlet

condition, we have

B2 = I, B1 = ∆t2M−1K − 2, B0 = I, (3.3)

where I is the identity matrix, while for the case with the first-order ABCs, we have

B2 = 2M −∆tL, B1 = 2∆t2K − 4M, B0 = 2M +∆tL. (3.4)

Eq. (3.2) has the characteristic polynomial

Q2(r) ≡ det{B2r
2 +B1r +B0}, (3.5)

and when we apply the appropriate transform r = 1+z
1−z

which maps the interior of the circle

|r| = 1 into the half-plane Rez < 0, we obtain the eigenproblem

P2(z)s ≡
(

A2z
2 +A1z +A0

)

s = 0, (3.6)
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where

A2 = B2 −B1 +B0, A1 = 2(B2 −B0), A0 = B2 +B1 +B0. (3.7)

For the case with the Dirichlet condition, the matrices in (3.6) are defined as

A2 = 4I −∆t2M−1K, A1 = 0, A0 = ∆t2M−1K, (3.8)

and for the case with the first-order ABCs, the matrices in (3.6) are defined as

A2 = 8M − 2∆t2K, A1 = 4∆tL, A0 = 2∆t2K. (3.9)

Since A0 and A1 are clearly positive semi-definite in both (3.8) and (3.9), A2 being positive

definite is sufficient to guarantee stability. Thus we have the result that a sufficient condition for

stability is ∆t < 2
√

1/λ, where λ is the eigenvalue of M−1K. After taking minimization over

all eigenvalues, we obtain the stability condition for the scheme with the Dirichlet condition

and first-order ABCs

∆t < min
{

2

√

1

λ

}

, (3.10)

where λ is the eigenvalue of M−1K.

For the case with the second-order ABCs, its difference matrix equation can be written as

B4U
n+2 +B3U

n+1 +B2U
n +B1U

n−1 +B0U
n−2 = 0, (3.11)

where
B4 = 2M +∆tL, B3 = 2∆t2K − 4M,

B2 = 4∆t3J − 2∆tL, B1 = 4M − 2∆t2K, B0 = ∆tL− 2M.
(3.12)

Similarly, we obtain the corresponding eigenproblem

P4(z)s ≡
(

A4z
4 +A3z

3 +A2z
2 +A1z

1 +A0z
0
)

s = 0, (3.13)

where
A4 = B4 −B3 +B2 −B1 +B0 = 4∆t3J,

A3 = 4B4 − 2B3 + 2B1 − 4B0 = 24M − 8∆t2K,

A2 = 6B4 − 2B2 + 6B0 = 16∆tL− 8∆t3J,

A1 = 4B4 + 2B3 − 2B1 − 4B0 = 8∆t2K,

A0 = B4 +B3 +B2 +B1 +B0 = 0.

(3.14)

Necessary conditions for stability are that the matrices Ai(i = 0, 1, 2, 3, 4) are positive semi-

definitive, which yields ∆t <
√

3/λ from A3 and ∆t <
√

2/µ from A2, where µ is the eigenvalue

of matrix L−1J . Therefore, the necessary stability condition for the scheme with the second-

order ABCs is

∆t < min
{

√

3

λ
,

√

2

µ

}

(3.15)

where λ and µ are the eigenvalues of matrices M−1K and L−1J respectively. Combing the

results above, we have the following theorem:
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Theorem 3.1. The necessary stability condition is

∆t < min
{

2

√

1

λ

}

, (3.16)

for the Dirichlet condition and first-order ABCs, and is

∆t < min
{

√

3

λ
,

√

2

µ

}

, (3.17)

for the second-order ABCs, where λ and µ are the eigenvalues of matrices M−1K and L−1J

respectively.

3.2. Explicit expressions

Usually, the resulting stiffness matrix or mass matrix from the finite element spatial dis-

cretization is large. Estimating the ∆t from (3.16) or (3.17) by calculating eigenvalue λ or µ is

not easy for large-scale matrix. In this subsection, we will derive the explicit expressions based

on the mesh information which are easy to be applied in computations. The condition number

of the stiffness matrix resulting from the finite element discretization is an important problem.

Actually this problem has been a constant research topic for many decades, for example, see

[4, 21, 23, 24, 27, 34, 38, 44]. In the following we propose to estimate the ∆t by computing

the corresponding matrices on the element. The used finite element in discretization is the

third-order Lagrange element introduced in Section 2.1. The method developed here can be

used for other high order elements without essential difficulty. The computations are usually

implemented in the reference element shown in Fig. 3.1. A affine transformation may be used

in computations to map ∆A1A2A3 in Fig. 2.1(b) to the reference element K̃ in Fig. 3.1 (see,

e.g., [28, 45, 54]). The seven basis functions at the three vertices Ŝ1, Ŝ2, Ŝ3, three midpoints

M̂1, M̂2, M̂3 and the centroid Ĝ are

Ŝ1 : 2λ2
1 − λ1 + 3λ1λ2λ3,

Ŝ2 : 2λ2
2 − λ2 + 3λ1λ2λ3,

Ŝ3 : 2λ2
3 − λ3 + 3λ1λ2λ3,

M̂1 : 4λ2λ3 − 12λ1λ2λ3, (3.18)

M̂2 : 4λ1λ3 − 12λ1λ2λ3,

M̂3 : 4λ1λ2 − 12λ1λ2λ3,

Ĝ : 27λ1λ2λ3,

respectively, where λ1, λ2 and λ3 are the barycentre coordinates and λ1 + λ2 + λ3 = 1.

To start with, we consider the element mass matrix M on the reference element K̂. For

convenience, we omit the velocity in the matrices M and L in the derivation and add it in the

final result. After calculating by (2.8) and (2.11) we know the expression of the element mass

matrix M̂ is a 7× 7 diagonal matrix with the diagonal elements:

diag
( 1

40
,
1

40
,
1

40
,
1

15
,
1

15
,
1

40
,
9

40

)

. (3.19)

Notice that M is a diagonal matrix. It it obvious that

λ(M) > min
j

Mjj . (3.20)
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Fig. 3.1. The reference triangular element K̃ in the Cartesian coordinate system λ1 − λ2.

For the mesh with the right-angle side h shown in Fig. 3.2, we have

λ(M) >
2

15
. (3.21)

The stiff matrix K on the reference element K̂ is given by

K̂ =























2
5 − 1

10 − 1
30

1
5 − 7

15 0 0

− 1
10

2
5 − 1

30 − 7
15

1
5 0 0

− 1
30 − 1

30
7
10 − 1

15 − 1
15

2
5 − 9

10
1
5 − 7

15 − 1
15

8
3 0 − 8

15 − 9
5

− 7
15

1
5 − 1

15 0 8
3 − 8

15 − 9
5

0 0 2
5 − 8

15 − 8
15

64
15 − 18

5

0 0 − 9
10 − 9

5 − 9
5 − 18

5
81
10























, (3.22)

and the maximal eigenvalue of K̂ is λmax(K̂) = 10.773929. We estimate the upper bound

estimation of the eigenvalues of the stiff matrix K. Let K̂ be the element stiff matrix on the

reference element. And let uk be the restriction of vector u on K. Then

u
TKu =

∑

K∈τh

∫∫

K

∇wi∇wjdxdz =
∑

K∈τh

u
T
KK̂uK

6 λmax(K̂)
∑

K∈τh

||uK||
2
0 = λmax(K̂)

∑

K∈ωj

||uK||
2
0

6 λmax(K̂)maxℵωju
T
u, (3.23)

Thus we have

λ(K) 6 λmax(K̂)maxℵωj . (3.24)

where ℵωj denotes the number of finite elements associate with the jth node.

Now we consider matrices L and J . From (2.12) and (2.32) we know the matrix L on the

domain edge of the reference element K̂ is a 3× 3 diagonal matrix given by

L̂ = diag
(1

6
,
1

6
,
2

3

)

, (3.25)
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and we have

λ(L) > min
j

Ljj , (3.26)

or

λ(L) >
1

3
, (3.27)

for the mesh shown in Fig. 3.2.

The matrix J on the domain edge of the reference element K̂ is given by

Ĵ =





7
6 − 1

6 − 4
3

− 1
6

7
6 − 4

3

− 4
3 − 4

3
8
3



 , (3.28)

so the maximal eigenvalue of Ĵ is λmax(Ĵ) = 4. Similarly we have

λ(J) 6 λmax(Ĵ)maxℵω̃j , (3.29)

where ℵω̃j denotes the number of line elements associated with the jth node on the domain

boundary ∂Ω.
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Fig. 3.2. Schematic mesh used in numerical computations. Points denote interpolation nodes. There

are seven nodes on each element.

When the computational mesh is fixed, the values of maxℵωj and maxℵω̃j can be obtained

easily. For example, for the typical uniform mesh shown in Fig. 3.2 or the mesh with the same

topological structure as Fig. 3.2, we have

maxℵωj = 6, (3.30)

since there are six triangular elements around the triangular vertex at most, and

maxℵω̃j = 2, (3.31)

since there are two line elements for a node on the domain boundary at most. Thus from (3.16),

(3.21), (3.24) and (3.30), we can get the stability condition for the Dirichlet condition and the

first-order ABCs

∆t 6 2
h

c

√

2

15
×

1

6× 10.773929
=

0.0908h

c
. (3.32)



14 W.S. ZHANG, E.T. CHUNG AND C.W. WANG

And from (3.17), (3.27), (3.29) and (3.31) we can obtain the stability condition for the second-

order ABCs

∆t 6
h

c
min

{

√

3×
2

15
×

1

6× 10.773929
,

√

2×
1

3
×

1

4× 2

}

6
h

c
min

{

0.0787, 0.2887
}

6
0.0787h

c
. (3.33)

Therefore, we have the following theorem:

Theorem 3.2. For the typical uniform mesh shown in Fig. 3.2 or the mesh with the same

topology as Fig. 3.2, the stability condition is

∆t 6
0.0908h

c
, (3.34)

for the Dirichlet condition and the first-order ABCs. Moreover, the stability condition is

∆t 6
0.0787h

c
, (3.35)

for the second-order ABCs.

Remarks: For the general unstructural mesh, the similar results like (3.34) and (3.35) can

also be obtained based on the idea above. For the inhomogeneous media, we may consider

velocity c(x, z) as the maximal value of velocity. It is obvious that the stability condition for

the second-order ABCs is more strict than the stability condition for the first-order ABCs.

4. Numerical Computations

First of all, we present a comparison between the finite element approximation and the exact

solution. For simplicity, we set c(x, z) = 1. The exact solution is chosen as

u(x, z, t) = sin
(πx

10

)

sin
(πz

10

)

sin(t2), (4.1)

which produces a source term s(x, z, t) on the right hand side of (2.1):

s(x, z, t) = sin
(πx

10

)

sin
(πz

10

)(

2
π2

100
sin(t2) + 2 cos(t2)− 4t2 sin(t2)

)

. (4.2)

The computational domain Ω is (x, z) = [0, 10]×[0, 10]. Fig. 4.1 is a comparison of vibration

waveform between the finite element solution (dashed) and the exact solution (solid) at a fixed

position (x, z) = (5.0, 5.0). We can see that the two vibration curves coincide very well. We

also numerically test the convergence rate of the third-order Lagrange element. We consider

L2 norm after some fixed propagation time, for example 0.1s. We choose different mesh size

h but keep the ratio ∆t/h be constant 0.002. Fig. 4.2 is the log-log plot of the errors. The

circles represent the errors and line represents the least-square fitted line. We found that the

slope of the line is 3.02 which shows perfect agreement between theory and computations of

convergence order. By the way we point out that the chose of the fixed propagation time has

no effect on the convergence analysis.
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Fig. 4.1. A comparison between the finite element solution (dashed) and the exact solution (solid).
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Fig. 4.2. A log-log plot for the L2 norm errors.

In the following, we consider wave simulation with ABCs. The initial conditions in the

computations are zero. For simplicity, we consider a homogeneous model temporary. The

velocity is c(x, z) = 1000m/s. The simulation domain is a square and is meshed by right-angle

triangles like Fig. 3.2. The time signature of the source is

f(t) =

{

−2π2f0(t− t0)e
−π2f2

0
(t−t0), t 6 2t0,

0, t > 2t0,
(4.3)

where t0 = 1/f0, and f0 is the central frequency and is chosen 20Hz. The space distribution of

the source is given by the function

g(x, z) = e−a[(x−x0)
2+(z−z0)

2]
1/2

, (4.4)

where (x0, z0) is the source position, and a is a suitable constant which we choose a = 10 in our

computations. We choose h = 5m. The explicit expressions (3.34) and (3.35) can be applied

directly in numerical computations. From (3.34) and (3.35) we know that the stability condition
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(a) (b) (c)

Fig. 4.3. Snapshots of wave propagation in a homogeneous model at 1.5s with the Dirichlet condition

(a), the first-order (b) and second-order (c) ABCs.

is ∆t ≤ 0.000454s for the Dirichlet condition and the first-order ABCs, and ∆t ≤ 0.0003935s

for the second-order ABCs. For the sake of comparison the time step is chosen 0.0001s. Fig. 4.3

shows the snapshots of wave propagation at 1.5s with the Dirichlet condition (a), the first-order

(b) and second-order (c) ABCs. As we can see in Fig. 4.3(a) the boundary reflections are serious

before absorption but they are eliminated effectively after adding ABCs. Comparisons in Fig.

4.3 show that both the first-order and second-order ABCs can absorb boundary reflections well,

and that the second-order ABCs (c) behaviors a little better than the first-order ABCs (b) for

this model. The ratio of cpu time between two cases with the first-order and second-order

ABCs is about 1:2. We also give a comparison of computational time to show the necessity of

using mass-lumping technique. The cpu time for extrapolating every 100 time steps is 10.3s if

the mass-lumping technique is used in the computations, while it is 3h41m if it is not. This

cpu comparison is obtained on a PC with one processor and 3Ghz frequency.

(a) (b) (c)

Fig. 4.4. Snapshots of wave propagation in a three-layered model at 0.88s with the Dirichlet condition

(a), the first-order (b) and second-order (c) ABCs.

The next numerical example is a three-layered model with interval velocity 2100m/s, 1500

m/s and 2200m/s from top to bottom respectively. We choose h = 12m in computations. From

(3.34) and (3.35) we know that the stability condition is ∆t ≤ 0.0004953s for the Dirichlet

condition and the first-order ABCs, and ∆t ≤ 0.0004293s for the second-order ABCs. We still

choose ∆t = 0.0001s for comparison. Fig. 4.4 shows the snapshots of wave propagation at 0.88s

with the Dirichlet condition (a), the first-order (b) and second-order (c) ABCs. Comparisons

in Fig. 4.4 show that the boundary reflections are absorbed obviously after using the first-order
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Fig. 4.5. Marmousi velocity model.
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Fig. 4.6. Snapshot of wave propagation in Marmousi model at 0.9s with the Dirichlet condition.
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Fig. 4.7. Snapshot of wave propagation in Marmousi model at 0.9s with the first-order ABCs.

or the second-order ABCs.

Finally we select the complex Marmousi model which is shown in Fig. 4.5. The velocity

varies from 1500m/s to 5500m/s. The model is gridded with (Nx, Nz) = 490 × 750. The

Marmousi model is usually used for testing the ability of migration/inversion algorithms (see,
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e.g., [48, 50, 51]). Here we use it to simulate wave propagation. The source position is set at

the grid (xi, zi) = (250, 350) of the model. We choose mesh size h = 10m in computations.

From (3.34) and (3.35) we know the stability is ∆t ≤ 0.0001651s for the Dirichlet condition

and the first-order ABCs, and ∆t ≤ 0.0001431s for the second-order ABCs. We choose the

time step ∆t = 0.0001s. The total degrees are 2200043. The cpu time for extrapolating every

100 time steps is about one minute. Fig. 4.6 shows the snapshot of the waves at 0.9s with

the Dirichlet condition, and Fig. 4.7 is the result for the first-order ABCs. The result for the

second-order ABCs is much more similarly with Fig. 4.7 for this model. We omit it here to

save space. Comparing Fig. 4.7 with Fig. 4.6, we can see the boundary reflections in Fig. 4.6

are eliminated effectively in Fig. 4.7.

5. Conclusions

The simulation of wave propagation has important applications in oil prospection and geo-

physical inverse problem. To provide an efficient and accurate solver for these problems, we

have proposed a new discretization form for the wave equation and numerically verified its cor-

responding finite element method on triangular mesh with the third-order Lagrange element for

wave simulations. The adopted element may keep the mass lumping technique. The approach

allows us to naturally impose the first-order and the second-order absorbing boundary condi-

tions, which are essential for simulation in practical situations. This approach makes us to be

easier to construct high accuracy schemes for the absorbing boundary conditions. Moreover,

new stability conditions both in abstract and explicit forms for the full-discrete the schemes

are derived which are very useful for designing computational parameters. Numerical results

show that our method is very efficient and produces numerical solutions with negligible artificial

boundary reflections. The new idea of stability analysis in this paper can be applied to other

similar problems. For the irregular and curved domain boundary we may adopt the perfectly

matched layer method, which is our future research topic.
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