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Abstract

We propose a non-traditional finite element method with non-body-fitting grids to solve

the matrix coefficient elliptic equations with sharp-edged interfaces. All possible situations

that the interface cuts the grid are considered. Both Dirichlet and Neumann boundary

conditions are discussed. The coefficient matrix data can be given only on the grids, rather

than an analytical function. Extensive numerical experiments show that this method is

second order accurate in the L∞ norm.
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1. Introduction and Formulations

Elliptic interface problems are widely used in a variety of disciplines when there are multi-

physics and multi-phase materials, such as in electromagnetics, material science, fluid dynamics

and so on.

We consider a rectangular domain Ω = (xmin, xmax) × (ymin, ymax). Γ is an interface

prescribed by the zero level-set {(x, y) ∈ Ω | φ(x, y) = 0} of a level-set function φ(x, y). The

advantage of using the level-set function is to represent interface cut locations on the grids

without having to parameterize the interface. The unit normal vector of Γ is n = ∇φ
|∇φ| pointing

from Ω− = {(x, y) ∈ Ω | φ(x, y) ≤ 0} to Ω+ = {(x, y) ∈ Ω | φ(x, y) ≥ 0}. Consider the problem

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω±,

[u(x)] = a(x), x ∈ Γ,

[(β(x)∇u(x)) · n] = b(x), x ∈ Γ,

u(x) = g(x), x ∈ ∂Ω,

or
∂u(x)

∂n
= 0, x ∈ ∂Ω,

where x = (x1, ..., xd) denotes the spatial variables and ▽ is the gradient operator. The

coefficient β(x) is assumed to be a d × d matrix that is uniformly elliptic on each disjoint
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subdomain, Ω− and Ω+, and its components are continuously differentiable on each disjoint

subdomain, but they may be discontinuous across the interface Γ. The right-hand side f(x) is

assumed to lie in L2(Ω). We have the following jump conditions:

{

[u](x) ≡ u+(x) − u−(x) = a(x),

[(β ▽ u) · n]Γ (x) ≡ n · (β+(x)▽ u+(x)) − n · (β−(x)▽ u−(x)) = b(x).

We introduce the weak solution by the standard procedure of multiplying by a test function

and integrating by parts: for the problem with Dirichlet Boundary Condition,

∫

Ω+

β ▽ u · ▽ψ +

∫

Ω−

β ▽ u · ▽ψ =

∫

Ω

fψ −

∫

Γ

bψ; (1.1)

and for the problem with Neumann Boundary Condition,

∫

Ω+

β ▽ u · ▽ψ +

∫

Ω−

β ▽ u · ▽ψ +

∫

∂Ω

∂u

∂n
ψ =

∫

Ω

fψ −

∫

Γ

bψ, (1.2)

where ψ is in H1
0 for equation 1.1 and H1 for (1.2).

The pioneering work on this topic was done by Peskin in 1977. The method he proposed

was called “immersed boundary” method [11, 12]. It uses a numerical approximation of the δ-

function, which smears out the solution on a thin finite band around the interface Γ. In [13], the

“immersed boundary” method was combined with the level set method, resulting in a first order

numerical method that is simple to implement, even in multiple spatial dimensions. However,

for both methods, the numerical smearing at the interface forces continuity of the solution at

the interface, regardless of the interface condition [u] = a, where a might not be zero.

To achieve high order accuracy, a large class of finite difference methods have been proposed.

The main idea is to use difference scheme and stencils carefully near the interface to incorporate

jump conditions and achieve high order local truncation error using Taylor expansion. Using

finite difference scheme typically requires taking high order derivatives of jump conditions and

interface in Taylor expansion. Also property of the discretized linear system is hard to analyze

for interface problem with general jump condition.

The “immersed interface” method presented in [3] can get second-order accuracy. This

method incorporates the interface conditions into the finite difference stencil, provided that

neither of the two jump conditions are zero. The corresponding linear system is sparse, but not

symmetric or positive definite. Various applications and extensions of the “immersed interface”

method are discussed in [6].

In [4], on basis of the “immersed interface” method, a fast iterative method was proposed

to solve constant coefficient problems with the interface conditions [u] = 0 and [βun] 6= 0. Non-

body-fitting Cartesian grids are used, and then associated uniform triangulations are added on.

Interfaces are not necessarily aligned with cell boundaries. Numerical evidence shows that this

method’s conforming version achieves second order accuracy in the L∞ norm, and higher than

first order for its non-conforming version.

Using finite element method developed in [17], elliptic problems with the interface conditions

[u] = 0 and [βun] 6= 0 can obtain second order accuracy in energy norm and nearly second order

accuracy in the L2 norm. Interfaces are aligned with cell boundaries.

In [9,10], the solution is extended to a rectangular region by using Fredholm integral equa-

tions. The proposed method can deal with interface conditions [u] 6= 0 and [un] = 0 and when

Greens function is available. The discrete Laplacian was evaluated using these jump conditions
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and a fast Poisson solver can be used to compute the extended solution. It can achieve second

or higher-order accuracy.

In order to develop a method that is robust and simple to implement, the boundary con-

dition capturing method [7] uses the Ghost fluid method (GFM) [1] to capture the boundary

conditions. This method was sped up by a multi-grid method [14]. The convergence proof for

the method is provided in [8]. The boundary condition capturing method can be obtained from

discretizing the weak formulation provided in [8]. The convergence proof follows naturally. The

method can solve the elliptic equation with interface conditions [u] 6= 0 and [βun] 6= 0 in two

and three dimensions. However, the original version is only first order accurate. In a recent

work [22], the method is improved to second order accuracy for smooth interfaces.

In [2], a non-traditional finite element formulation for solving elliptic equations with smooth

or sharp-edged interfaces was proposed with non-body-fitting grids for [u] 6= 0 and [βun] 6= 0.

It achieved second order accuracy in the L∞ norm for smooth interfaces and about 0.8th order

for sharp-edged interfaces. In [18], the matched interface and boundary (MIB) method was

proposed to solve elliptic equations with smooth interfaces. In [16], the MIB method was

generalized to treat sharp-edged interfaces. With an elegant treatment, second order accuracy

was achieved in the L∞ norm. However, for oscillatory solutions, the errors degenerate.

Also, there has been a large body of work from the finite volume perspective for developing

high order methods for elliptic equations in complex domains, such as [19,20] for two dimensional

problems and [21] for three dimensional problems.

Another recent work in this area is a class of kernel-free boundary integral (KFBI) methods

for solving elliptic BVPs, presented in [15].

In this paper, we further improve the method introduced in [23–27]. The major improvement

are as follows: first, we discussed all the possible ways the interface cuts the grid. In [23], for

simplicity, if the interface hits one or more grid points exactly, we used a perturbation to move it

away. This is not desired, as it is not a natural way to handle the problem. With the improved

method, no perturbation is applied. The resulting linear system is still (non-symmetric) positive

definite if β is positive definite and lower order terms are not present. Our second improvement

is, not only Dirichlet boundary condition but also Neumann boundary condition is considered.

Our third improvement is, the coefficient matrix data can only be given at grid points, not as

an analytic function. This makes our method more practical than before.

Extensive numerical experiments demonstrate the effectiveness of the above improvement.

The condition number of the coefficient matrix is also studied. The growth rate is the same as

that without the interface.

2. Numerical Method

For ease of discussion in this section, and for accuracy test in the next section, we assume

that a, b are smooth on the closure of Ω, β and f are smooth on Ω+ and Ω−, but they may

be discontinuous across the interface Γ. However ∂Ω, ∂Ω− and ∂Ω+ are kept to be Lipschitz

continuous. We assume that there is a Lipschitz continuous and piecewise smooth level-set

function φ on Ω, where Γ = {φ = 0}, Ω− = {φ < 0} and Ω+ = {φ > 0}. A unit vector n = ▽φ
|▽φ|

can be obtained on Ω, which is a unit normal vector of Γ pointing from Ω− to Ω+.

In this paper, we restrict ourselves to a rectangular domain Ω = (xmin, xmax)×(ymin, ymax)

in the plane, β is a 2 × 2 matrix that is uniformly elliptic in each subdomain. Given positive

integers I and J , set ∆x = (xmax − xmin)/I and ∆y = (ymax − ymin)/J . Define (xi, yj) =
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(xmin + i∆x, ymin + j∆y) for i = 0, ..., I and j = 0, ..., J as a uniform Cartesian grid. Each

(xi, yj) is called a grid point. For the case i = 0, I or j = 0, J , a grid point is called a boundary

point, otherwise it is called an interior point. The grid size is defined as h = max(∆x,∆y) > 0.

Two sets of grid functions are needed and they are denoted by

H1,h
± = {ωh = (ωi,j) : 0 ≤ i ≤ I, 0 ≤ j ≤ J},

H1,h
0 = {ωh = (ωi,j) ∈ H1,h

± : ωi,j = 0 if i = 0, I or j = 0, J}.

Cut every rectangular region [xi, xi+1]× [yj, yj+1] into two pieces of right triangular regions:

one is bounded by x = xi, y = yj and y =
yj+1−yj

xi−xi+1
(x − xi+1) + yj , the other is bounded by

x = xi+1, y = yj+1 and y =
yj+1−yj

xi−xi+1
(x − xi+1) + yj . Collecting all those triangular regions, we

obtain a uniform triangulation T h :
⋃

K∈Th K, see Fig. 2.1. We can also choose the hypotenuse

to be y =
yj+1−yj

xi+1−xi
(x−xi) + yj , and get another uniform triangulation from the same Cartesian

grid. There is no conceptual difference on these two triangulations for our method.

Fig. 2.1. A uniform triangulation.

If φ(xi, yj) ≤ 0, we count the grid point (xi, yj) as in Ω−; otherwise we count it as in Ω+.

An edge of a triangle in the triangulation is called an interface edge if two of its ends (vertices

of triangles in the triangulation) belong to different subdomains; otherwise we call it a regular

edge.

A cell K is called an interface cell if its vertices belong to different subdomains. In an

interface cell, we write K = K+
⋃

K−. K+ and K− are separated by a straight line segment,

denoted by Γh
K . The two end points of the line segment Γh

K are located on interface Γ and their

locations can be calculated from the linear interpolations of the discrete level-set functions

φh = φ(xi, yj). The vertices of K+ are located in Ω+
⋃

Γ and the vertices of K− are located

in Ω−
⋃

Γ. K+ and K−are approximations of the regions K
⋂

Ω+ and K
⋂

Ω− , respectively.

A cell K is called a regular cell if all its vertices belong to the same subdomain, either Ω+ or

Ω−. For a regular cell, we also write K = K+
⋃

K−, where K− = {} (empty set) if all vertices

of K are in Ω+, and K+ = {} if all vertices of K are in Ω−. Clearly Γh
K = {} in a regular

cell, K+ and K− are approximations of the regions K
⋂

Ω+ and K
⋂

Ω−, respectively. We use

|K+| and |K−| to represent the areas of K+ and K−, respectively.

Two extension operators are needed. The first one is T h : H1,h
± → H1

0 (Ω). For any ψh ∈

H1,h
0 , T h(ψh) is a standard continuous piecewise linear function, which is a linear function

in every triangular cell and T h(ψh) matches ψh on grid points. Clearly such a function set,
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denoted by H1,h
0 , is a finite dimensional subspace of H1

0 (Ω). The second extension operator

Uh is constructed as follows. For any uh ∈ H1,h
± with uh = gh at boundary points, Uh(uh) is a

piecewise linear function and matches uh on grid points. It is a linear function in each regular

cell, just like the first extension operator Uh(uh) = T h(uh) in a regular cell. In each interface

cell, it consists of two pieces of linear functions, one is on K+ and the other is on K−. The

location of its discontinuity in the interface cell is the straight line segment Γh
K . Note that two

end points of the line segment are located on interface Γ, hence the interface condition [u] = a

could be and is enforced exactly at these two end points. In each interface cell, the interface

condition [β ▽ u · n] = b is enforced with value b at the middle point of Γh
K . Similar versions

of such extension can be found in literature [5, 7]. In order to use this extension, we need the

following theorem.

Theorem 2.1. For all uh ∈ H1,h
± , Uh(uh) can be constructed uniquely, provided T h, φ, a and b

are given.

Proof. There are five different cases under consideration:

Case 0. The cell K1,2,3 is a regular triangle, see Fig. 2.2. When calculating, we assume that

all vertices of the triangular belong to Ω+ or Ω−.

Suppose vertices 1, 2, 3 in Fig. 2.2 belong to Ω−, then K1,2,3 ⊂ Ω−.

Uh(uh) = u(x1, y1) + u−x (x − x1) + u−y (y − y1), x, y ∈ K1,2,3,

u−x , u
−
y can be written in the following form

u−x = c−x,1u
−(1) + c−x,2u

−(2) + c−x,3u
−(3),

u−y = c−y,1u
−(1) + c−y,2u

−(2) + c−y,3u
−(3).

Case 1. The interface comes across one vertex of the cellK1,2,3, see Fig. 2.3. When calculating,

Fig. 2.2. Regular triangle.

we need to check whether one vertex is on the interface or not. If it is on the interface, we

assume this vertex belongs to Ω+, otherwise it depends on which domain it belongs to.

Suppose vertices 2, 3 in Fig. 2.3 belong to Ω−, K1,2,3 ⊂ Ω−.

Uh(uh) = u(x2, y2) + u−x (x − x2) + u−y (y − y2), x, y ∈ K1,2,3,
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u−x , u
−
y can be written in the following form

u−x = c−x,1u
+(1) + c−x,2u

−(2) + c−x,3u
−(3) + c−x,4a(1),

u−y = c−y,1u
+(1) + c−y,2u

−(2) + c−y,3u
−(3) + c−y,4a(1).

Fig. 2.3. The interface comes across one vertex of the triangle.

Case 2. The interface covers one edge of the cell K1,2,3, see Fig. 2.4. When calculating,

we also need to check whether one vertex is on the interface or not. If it is on the interface, we

assume this vertex belongs to Ω+, otherwise it depends on which domain it belongs to. The

difference between Case 1 and Case 2 is that when calculating the integration, Case 1 does not

need to calculate the line integration, but Case 2 does.

Suppose vertex 2 in Fig. 2.4 belongs to Ω−, K1,2,3 ⊂ Ω−.

Uh(uh) = u(x2, y2) + u−x (x − x2) + u−y (y − y2), x, y ∈ K1,2,3,

u−x , u
−
y can be written in the following form

u−x = c−x,1u
+(1) + c−x,2u

−(2) + c−x,3u
+(3) + c−x,4a(1) + c−x,5a(3) + c−x,6b(6),

u−y = c−y,1u
+(1) + c−y,2u

−(2) + c−y,3u
+(3) + c−y,4a(1) + c−y,5a(3) + c−y,6b(6).

Fig. 2.4. The interface covers one edge of the triangle.
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Case 3. The interface comes across one vertex and cuts one edge of the cell K1,2,3 =

K+
⋃

K−, see Fig. 2.5. When calculating, we also need to check whether one vertex is on the

interface or not. If it is on the interface, we assume this vertex belongs to Ω+, else are depended

on which domain they belong to.

In Fig. 2.5, suppose vertex 1 belongs to Ω+, vertex 3 belongs to Ω−, then K1,2,5 ⊂ Ω+,

K2,3,5 ⊂ Ω−.

Uh(uh) =

{

u(x1, y1) + u+x (x− x1) + u+y (y − y1), x, y ∈ K1,2,5,

u(x3, y3) + u−x (x − x3) + u−y (y − y3), x, y ∈ K2,3,5.

The value u(5)± of vertex 5 can be denoted as a linear function of u+(1), u+(2), u−(3),

u(5)+ = c+1 u(1)
+ + c+2 u(2)

+ + c+3 u
−(3) + c+4 a(2) + c+5 a(5) + c+6 b(6),

u(5)− = c−1 u(1)
+ + c−2 u(2)

+ + c−3 u
−(3) + c−4 a(2) + c−5 a(5) + c−6 b(6).

Hence u−x , u
−
y , u

+
x and u+y can be written in the following form

u+x = c+x,1u
+(1) + c+x,2u

+(2) + c+x,3u
−(3) + c+x,4a(2) + c+x,5a(5) + c+x,6b(6),

u+y = c+y,1u
+(1) + c+y,2u

+(2) + c+y,3u
−(3) + c+y,4a(2) + c+y,5a(5) + c+y,6b(6),

u−x = c−x,1u
+(1) + c−x,2u

+(2) + c−x,3u
−(3) + c−x,4a(2) + c−x,5a(5) + c−x,6b(6),

u−y = c−y,1u
+(1) + c−y,2u

+(2) + c−y,3u
−(3) + c−y,4a(2) + c−y,5a(5) + c−y,6b(6).

Fig. 2.5. The interface comes across one vertex and one edge of the triangle.

Case 4. The interface cuts two edges of the cell K1,2,3 = K+
⋃

K−, see Fig. 2.6. When

calculating, we need to check which domain one vertex belongs to.

In Fig. 2.6, suppose vertex 1 belongs to Ω+, vertices 2,3 belongs to Ω−, then K1,4,5 ⊂ Ω+,

K2,3,5 ⊂ Ω−.

Uh(uh) =

{

u(x1, y1) + u+x (x− x1) + u+y (y − y1), x, y ∈ K1,2,5,

u(x3, y3) + u−x (x − x3) + u−y (y − y3), x, y ∈ K2,3,5.

The value u(4)± and u(5)± can be denoted as a linear function of u+(1), u−(2), u−(3),

u(4)+ = c+4,1u
+(1) + c+4,2u

−(2) + c+4,3u
−(3) + c+4,4a(4) + c+4,5a(5) + c+4,6b(6),

u(4)− = c−4,1u
+(1) + c−4,2u

−(2) + c−4,3u
−(3) + c−4,4a(4) + c−4,5a(5) + c−4,6b(6),

u(5)+ = c+5,1u
+(1) + c+5,2u

−(2) + c+5,3u
−(3) + c+5,4a(4) + c+4,5a(5) + c+4,6b(6),

u(5)− = c−5,1u
+(1) + c−5,2u

−(2) + c−5,3u
−(3) + c−5,4a(4) + c−4,5a(5) + c−4,6b(6).
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Hence u−x , u
−
y , u

+
x and u+y can be written in the following form

u+x = c+x,1u
+(1) + c+x,2u

−(2) + c+x,3u
−(3) + c+x,4a(2) + c+x,5a(5) + c+x,6b(6),

u+y = c+y,1u
+(1) + c+y,2u

−(2) + c+y,3u
−(3) + c+y,4a(2) + c+y,5a(5) + c+y,6b(6),

u−x = c−x,1u
+(1) + c−x,2u

−(2) + c−x,3u
−(3) + c−x,4a(2) + c−x,5a(5) + c−x,6b(6),

u−y = c−y,1u
+(1) + c−y,2u

−(2) + c−y,3u
−(3) + c−y,4a(2) + c−y,5a(5) + c−y,6b(6).

Fig. 2.6. The interface cuts two edges of the triangle.

To complete the proof of Theorem 3.1, we need the following lemma:

Lemma 2.1. All coefficients c in Theorem 3.1 are finite and independent of uh, a and b.

Proof. See the proof of Lemma 3.1 in [23]. �

Based on the above discussion, we propose the following method:

Method 2.1 Find a discrete function uh ∈ H1,h
± such that uh = gh on boundary points so

that for all ψh ∈ H1,h
0 , we have

∑

K∈Th

(
∫

K+

β ▽ Uh(uh) · ▽T h(ψh) +

∫

K−

β ▽ Uh(uh) · ▽T h(ψh)

)

=
∑

K∈Th

(

∫

K+

fT h(ψh) +

∫

K−

fT h(ψh)−

∫

Γh
K

bT h(ψh)

)

.

To implement the above method, we use the Gaussian quadrature rule for integrals. The

idea is illustrated in Fig. 2.7. If T is separated into two pieces by the interface u4u5, we connect

u3 and u4, then we get three triangles: T1 = △u1u4u5, T2 = △u2u3u4, T3 = △u3u4u5. For

each triangle, label the center point pij of each edge uiuj . In numerical computation, apply

the average of three f(pij) in each triangle. Numerical results show the improvement over [2],

where fewer sample points were used.

When the value of β± are only defined on the grid points, we have coefficient matrix instead

of analytic function, which means we do not have any value defined on the interface. In this

case, we need to calculate the value of β+ on Ω+ and β− on Ω−. See Fig. 2.8. Since point p

is on the interface, we need to use extrapolation. To get the value of point p for β+ where the

interface come across the △432, first choose a point (x, y), where x = min{x4, x3, x2} − dx and

y = min{y4, y3, y2} − dy, dx, dy are the grid size, in Fig. 2.8, (x, y) is exactly point 1. Second,
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Fig. 2.7. Gaussian quadrature rule for integrals.

Fig. 2.8. β Extrapolation.

choose three points that are nearest to point p of Ω+, which satisfies x1 ≤ x ≤ x1 + 3dx and

y1 ≤ y ≤ y1 + 3dy and are not on the same line, for easy implementation, we just check 16

points around it. In Fig. 2.8 they are points 3, 5, 6. At last, use linear extrapolation to get the

value of β+ on point p: βp = aβ3 + bβ5 + cβ6.

3. Numerical Experiments

In all numerical experiments below, the level-set function φ(x, y), the coefficients β±(x, y)

and the solutions

u = u+(x, y), in Ω+,

u = u−(x, y), in Ω−,

are given. Hence

f = −∇ · (β∇u),
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a = u+ − u−,

b = (β+∇u+) · n− (β−∇u−) · n,

on the whole domain Ω. g is obtained as a proper Dirichlet boundary condition, since the

solutions are given.

All errors in solutions are measured in the L∞ norm in the whole domain Ω. All errors in

the gradients of solutions are measured in the L∞ norm away from interfaces.

Example 1. We use this simple example, where β is piecewise constant, to demonstrate that

the condition number for the fully discretized system depends on β−

β+ linearly, and that the

condition number grows with the order of O(h−2), which is the same as in the case without

interface. The level-set function φ, the coefficients β± and the solution u± are given as follows:

φ(x, y) = (x+ 1)2 + (y + 1)2 − 1,

β+(x, y) = 1,

β−(x, y) = 1, 50, 100, 150, 200, 250, 300,

u+(x, y) = 6 + sin(6πx) sin(6πy),

u−(x, y) = exp(x2 + 1) + y2.

We plot the condition number VS the ratio between β− and β+ for 20-by-20 grid in Fig.

3.1. The correlation coefficient is 0.9999996, which is clearly a linear relation. Table 3.1 shows

the error on different grids.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Fig. 3.1. Condition number VS β−

β+ .

Example 2. The level-set function φ, the coefficients β± and the solution u± are given as

follows:

φ(x, y) = x+ y, β+(x, y) = 1,

β−(x, y) = 2 + sin(x+ y), u+(x, y) = 8,

u−(x, y) = x2 + y2 + sin(x+ y).
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Table 3.1: Condition Number Growth Pattern.

β− 1

nx × ny Err in uh Order Condition Number

20× 20 0.40 2.35e+002

40× 40 0.092 2.10 9.43e+002

80× 80 0.023 2.02 3.77e+003

160× 160 0.0057 2.00 1.51e+004

β− 50

nx × ny Err in uh Order Condition Number

20× 20 0.42 8.38e+003

40× 40 0.21 1.02 3.35e+004

80× 80 0.068 1.61 1.34e+005

160× 160 0.014 2.24 5.37e+005

β− 100

nx × ny Err in uh Order Condition Number

20× 20 0.57 1.66e+004

40× 40 0.33 0.79 6.67e+004

80× 80 0.11 1.58 2.27e+005

160× 160 0.021 2.39 1.07e+006

β− 150

nx × ny Err in uh Order Condition Number

20× 20 0.75 2.49e+004

40× 40 0.43 0.82 9.97e+004

80× 80 0.15 1.55 3.99e+005

160× 160 0.028 2.38 1.60e+006

β− 200

nx × ny Err in uh Order Condition Number

20× 20 0.98 3.32e+004

40× 40 0.51 0.94 1.33e+005

80× 80 0.18 1.54 5.31e+005

160× 160 0.035 2.35 2.13e+006

β− 250

nx × ny Err in uh Order Condition Number

20× 20 1.19 4.14e+004

40× 40 0.59 1.02 1.66e+005

80× 80 0.20 1.54 6.64e+005

160× 160 0.040 2.32 2.66e+006

β− 300

nx × ny Err in uh Order Condition Number

20× 20 1.48 4.97e+004

40× 40 0.66 1.16 1.99e+005

80× 80 0.23 1.54 7.96e+005

160× 160 0.046 2.29 3.19e+006

This example illustrates the case when the interface is on the hypotenuse of a triangle.

Fig. 3.2 shows the numerical solution with our method using 40 grid points in both x and y

directions. Table 3.2 shows the error on different grids.

Example 3. The level-set function φ, the coefficients β± and the solution u± are given as
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Fig. 3.2. Interface lies on the Hypotenuse of a Triangle.

Table 3.2: Numerical Results when Interface lies on the Hypotenuse of a Triangle.

Method Method in [23] New Method

nx × ny Err in uh Order Err in uh Order

20× 20 1.13e-4 1.13e-4

40× 40 2.82e-5 2.00 2.82e-5 2.00

80× 80 7.04e-6 2.00 7.05e-6 2.00

160× 160 1.76e-6 2.00 1.76e-6 2.00

follows:

φ(x, y) = x, x+ y > 0,

φ(x, y) = −y, x+ y ≤ 0,

β+(x, y) = 1,

β−(x, y) = 2 + sin(x + y),

u+(x, y) = 6 + sin(6πx) sin(6πy),

u−(x, y) = x2 + y2 + sin(x+ y).

This example illustrates the case when the interface lies on one leg of a triangle. Fig. 3.3

shows the numerical solution with our method using 40 grid points in both x and y directions.

Table 3.3 shows the error on different grids.

Table 3.3: Numerical Results when Interface lies on one Leg of a Triangle.

Method Method in [23] New Method

nx × ny Err in uh Order Err in uh Order

20× 20 0.42 0.43

40× 40 0.14 1.63 0.14 1.63

80× 80 0.044 1.64 0.045 1.63

160× 160 0.013 1.71 0.014 1.71

Example 4. The level-set function φ, the coefficients β± and the solution u± are given as
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Fig. 3.3. Interface lies on one Leg of a Triangle.

follows:

φ(x, y) = (x+ 1)2 + (y + 1)2 − 1,

β+(x, y) = 1 + x2, β−(x, y) = 2 + y2,

u+(x, y) = xy2, u−(x, y) = exp(x2 + 1) + y3.

This example illustrates the case when the interface cuts one vertex of a triangle. Fig. 3.4

shows the numerical solution with our method using 40 grid points in both x and y directions.

Table 3.4 shows the error on different grids.

Table 3.4: Numerical Results when Interface cuts one Vertex of a Triangle.

Method Method in [23] New Method

nx × ny Err in uh Order Err in uh Order

20× 20 0.011 0.011

40× 40 0.0027 2.01 0.0027 2.01

80× 80 6.65e-4 2.00 6.67e-4 2.00

160× 160 1.63e-4 2.03 1.63e-4 2.03

The following examples are defined on [0, 1]× [0, 1].

Example 5. This example has the Neumann data ∇u · n = 0 on the boundary ∂Ω. The

level-set function φ, the coefficients β± and the solution u± are given as follows:

φ(x, y) = x2 + y2 − 0.25,

β+(x, y) = 1 + x2, β−(x, y) = 1 + y2,

u+(x, y) = (x3/3− x2/2 + 3)(y3/3− y2/2− 5),

u−(x, y) = cos(πx) cos(πy).

The interface intersects with the boundary of the domain. Fig. 3.5 shows the numerical

solution with our method using 40 grid points in both x and y directions. Table 3.5 shows the

error on different grids.
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Fig. 3.4. Interface cuts one Vertex of a Triangle.

Table 3.5: Numerical Results when Interface intersects with the Boundary of the Domain with Neumann

Boundary Condition.

nx × ny Err in uh Order

20× 20 0.0090

40× 40 0.0027 1.72

80× 80 8.06e-4 1.76

160× 160 2.37e-4 1.77

Example 6. This example has the Neumann data ∇u · n = 0 on the boundary ∂Ω. The

level-set function φ, the coefficients β± and the solution u± are given as follows:

φ(x, y) = 0.15− ((x− 0.5)2 + (y − 0.5)2),

β+(x, y) = 1 + x2, β−(x, y) = 1 + y2,

u+(x, y) = x3 + 2y2, u−(x, y) = cos(πx) cos(πy).
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Fig. 3.5. Interface intersects with the Boundary of the Domain with Neumann Boundary Condition.
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Fig. 3.6. Interface is inside the Domain with Neumann Boundary Condition.

Table 3.6: Numerical Results when Interface is inside the Domain with Neumann Boundary Condition.

nx × ny Err in uh Order

20× 20 0.0080

40× 40 0.0024 1.71

80× 80 7.05e-4 1.78

160× 160 2.05e-4 1.78

The interface is inside the domain. Fig. 3.6 shows the numerical solution with our method

using 40 grid points in both x and y directions. Table 3.6 shows the error on different grids.

In physical world, it often happens that we only have the value of β± and φ on the grid

points instead of the real function. In this situation, we use distance matrix to denote φ, use

linear extrapolation to calculate the value of β± on the interface. The following examples will

show the numerical result of such cases.
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Fig. 3.7. The Coefficients β± (Discrete Data) when Interface is a Line.
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Fig. 3.8. The Numerical Results when Interface is a Line with Discrete Coefficient Data.

Example 7. The solution u± are given as follows:

u+(x, y) = x2y,

u−(x, y) = x2 + y2 + sin(x+ y).

Case 1. When the coefficients β± is shown in Fig. 3.7 and the distance matrix is obtained

from the level-set function: φ(x, y) = x+ y− 1, Fig. 3.8 shows the numerical solution with our

method using 40 grid points in both x and y directions. Table 3.7 shows the error on different

grids.

Table 3.7: The Numerical Results when Interface is a Line with Discrete Coefficient Data.

nx × ny Err in uh Order

20× 20 4.22e-5

40× 40 1.06e-5 2.00

80× 80 2.64e-6 2.00

160× 160 6.60e-7 2.00

Case 2. When the coefficients β± on the domain is shown in Fig. 3.9 and the distance

matrix is obtained from the level-set function:

φ(r, θ) =
R sin(θt/2)

sin(θt/2 + θ − θr − 2π(i− 1)/5)
− r,

θr + π(2i− 2)/5 ≤ θ < θr + π(2i− 1)/5,

Table 3.8: Numerical Results when Interface is a corner of a Star with Discrete Coefficient Data.

nx × ny Err in uh Order

20× 20 0.0011

40× 40 2.77e-4 2.02

80× 80 7.68e-5 1.85

160× 160 2.15e-5 1.83



An Improved Non-Traditional FE Formulation for the Interface Problems 55

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

10

20

Fig. 3.9. The Coefficients β± (Discrete Data) when Interface is a corner of a Star.
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Fig. 3.10. The Numerical Results when Interface is a corner of a Star with Discrete Coefficient Data.

φ(r, θ) =
R sin(θt/2)

sin(θt/2− θ + θr − 2π(i− 1)/5)
− r,

θr + π(2i − 3)/5 ≤ θ < θr + π(2i − 2)/5,

with

θt = π/5, θr = π/7, R = 6/7 and i = 1, 2, 3, 4, 5,

Fig. 3.10 shows the numerical solution with our method using 40 grid points in both x and y

directions. Table 3.8 shows the error on different grids.

4. Conclusion

We proposed a non-traditional finite element method for solving the elliptic interface prob-

lem with Dirichlet boundary condition or Neumann boundary condition. All the possible ways
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the interface cuts the grid are considered. If β is positive definite and lower order terms are

not present, the resulting linear system is (non-symmetric) positive definite. The coefficient

matrix data can only be given at grid points, not as an analytic function, making our method

more practical. We used 7 examples to show that our method has second order accuracy in

L∞ norm, and the condition number of the coefficient matrix grows with order O(h−2), which

is the same as the case without interface.

Acknowledgments. L. Wang’s research is supported by Science Foundation of China Uni-

versity of Petroleum–Beijing (No.YJRC-2013-48). S. Hou’s research is supported by NSF grant

DMS–1317994.

References

[1] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A non-oscillatory eulerian approach to interfaces

in multimaterial flows (the ghost fluid method). J. Comput. Phys., 152:2 (1999), 457-492.

[2] S. Hou and X. Liu, A numerical method for solving variable coefficient elliptic equations with

interfaces. J. Comput. Phys., 202 (2005), 411-445.

[3] R.J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous

coefficients and singular sources. SIAM J. Numer. Anal, 31 (1994), 1019-1044.

[4] Z. Li, A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal, 35:1 (1998),

230-254.

[5] Z. Li, T. Lin, and X. Wu, New cartesian grid methods for interface problems using the finite

element formulation. Numer. Math., 96:1 (2003), 61-98.

[6] Z. Li and K. Ito, The immersed interface method: Numerical solutions of pdes involving interfaces

and irregular domains, SIAM, Philadelphia, 2006.

[7] X.-D. Liu, R. P. Fedkiw, and Myungjoo Kang, A boundary condition capturing method for Pois-

son’s equation on irregular domains. J. Comput. Phys, 160:1 (2000), 151-178.

[8] X.-D. Liu and T. Sideris, Convergence of the ghost fluid method for elliptic equations with inter-

faces. Math. Comp, 72 (2003).

[9] A. Mayo, The fast solution of Poisson’s and biharmonic equations in irregular domains. SIAM J.

Numer. Anal, 21:2 (1984), 285-299.

[10] A. Mayo, Fast high order accurate solutions of Laplace’s equation on irregular domains. SIAM J.

Sci. Stat.Comput, 6:1 (1985), 144-157.

[11] C. Peskin, Numerical analysis of blood flow in the heart. J. Comput. Phys, 25 (1977), 220-252.

[12] C. Peskin and B. Printz, Improved volume conservation in the computation of flows with immersed

elastic boundaries. J. Comput. Phys, 105 (1993), 33-46.

[13] M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incom-

pressible two-phase flow. J. Comput.Phys, 114 (1994), 146-154.

[14] J. W.L. Wan and X.-D. Liu, A boundary condition capturing multigrid approach to irregular

boundary problems. SIAM J. Sci. Comput., 25:6 (2004), 1982-2003.

[15] W.-J. Ying and C.S. Henriquez, A kernel-free boundary integral method for elliptic boundary

value problems. J. Comput. Phys., 227:2 (2007), 1046-1074.

[16] S. Yu, Y. Zhou, and G.W. Wei, Matched interface and boundary (MIB) method for elliptic problems

with sharp-edged interfaces. J. Comput. Phys., 224 (2007), 729-756.

[17] Z.-M. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic

interface problems. Numer. Math., 79 (1998), 175-202.

[18] Y.C. Zhou, S. Zhao, M. Feig, and G.W. Wei, High order matched interface and boundary method

for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys., 213

(2006), 1-30.



An Improved Non-Traditional FE Formulation for the Interface Problems 57

[19] P Colella and H Johansen, A Cartesian grid embedded boundary method for Poisson’s equation

on irregular domains. J. Comput. Phys., 60 (1998), 85-147.

[20] M. Oevermann, and R. Klein, A Cartesian grid finite volume method for elliptic equations with

variable coefficients and embedded interfaces. J. Comput. Phys., 219 (2006), 749-769.

[21] M. Oevermann, C. Scharfenberg, and R. Klein, A sharp interface finite volume method for elliptic

equations on Cartesian grids. J. Comput. Phys., 228 (2009), 5184-5206.

[22] P. Macklin and J. S. Lowengrub, A New Ghost Cell / Level Set Method for Moving Boundary

Problems: Application to Tumor Growth. J. Sci. Comput., 35 (2008), 266-299.

[23] S. Hou, W. Wang, L. Wang, Numerical method for solving matrix coefficient elliptic equation with

sharp-edged interfaces. J. Comput. Phys., 229 (2010), 7162-7179.

[24] S. Hou, Z. Li, L. Wang, and W. Wang, A numerical method for solving elasticity equations with

interfaces. Comm. Comput. Phys., (2012), 595-612.

[25] S. Hou, L. Wang, and W. Wang, A numerical method for solving the elliptic interface problems

with multi-domains and triple junction points. J. Comput. Math., 30:5 (2012), 504-516.

[26] S. Hou, P. Song, L. Wang, and H. Zhao, A weak formulation for solving elliptic interface problems

without body fitted grid. J. Comput. Phys., 249 (2013), 80-95.

[27] L. Wang, S. Hou and L. Shi, A Numerical Method for Solving 3D Elasticity Equations with

Sharp-Edged Interfaces. International Journal of Partial Differential Equations, vol. 2013, Article

ID 476873, 13 pages, 2013.


