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Abstract

In this paper, we analyze a compact finite difference scheme for computing a coupled
nonlinear Schrodinger equation. The proposed scheme not only conserves the total mass
and energy in the discrete level but also is decoupled and linearized in practical computa-
tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very
hard to obtain the optimal error estimate without any restriction on the grid ratio. In
order to overcome the difficulty, we transform the compact difference scheme into a special
and equivalent vector form, then use the energy method and some important lemmas to
obtain the optimal convergent rate, without any restriction on the grid ratio, at the order
of O(h*+7?) in the discrete L -norm with time step 7 and mesh size h. Finally, numerical
results are reported to test our theoretical results of the proposed scheme.

Mathematics subject classification: 65M06, 65M12.
Key words: Coupled nonlinear Schrédinger equations, Compact difference scheme, Con-
servation, Point-wise error estimate.

1. Introduction

In this paper, we consider the coupled nonlinear Schrédinger (CNLS) equations
i0pu + kOpzu + (Jul®* + Bv]*)u=0, z€QCR, t>0, (1.1)

1040 4 kOypv + ([0 + Blul?)v =0, z€QCR, t>0, (1.2)

which arise in a great variety of physical situations. In fiber communication system, such
equations have been shown to govern pulse propagation along orthogonal polarization axes in
nonlinear optical fibers and in wavelength-division-multiplexed systems [25,32,41]. Here u(z,t)
and v(z,t) are unknown complex-valued wave functions, k describes the dispersion in the optic
fiber, 3 is defined for birefringent optic fiber coupling parameter, 2 is a bounded computational

2 = —1. These equations also model two-component Bose-

domain, 7 is the imaginary unit, i.e. ¢
Einstein condensation and beam propagation inside crystals, photorefractives as well as water
wave interactions.

There are many studies on numerical studying of the CNLS equations. In [1,2,42], some
efficient time-splitting spectral methods were given to study the dynamics of two-component
Bose-Einstein condensate. In [30], a multi-symplectic method was constructed and the solitons

collision was simulated. In [29], a nonlinear implicit conservative scheme was proposed for the
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strong coupling of Schrodinger equations and both the analytic and numerical solutions were
discussed. In [15-17] a Crank-Nicolson difference scheme, a linearized implicit scheme and a
compact difference scheme were presented and some numerical experiments were given. In [13],
Ismail discretized the space derivative by central difference formulas of fourth-order, then solved
the resulting ordinary differential system by the fourth-order explicit Runge-Kutta method. The
linearly convergence of all of the difference schemes in [13,15-17] was proved by von Neumann
method. In [14], Galerkin finite element method was proposed to solve the CNLS equation.
In [33], Wang discussed the splitting spectral method for solving the CNLS equation. In [35],
Wang et al. proposed and studied a nonlinear symplectic difference scheme. They proved the
existence, uniqueness and second order convergence in {?>-norm under some restrictions on the
grid ratios, and proposed an iterative algorithm for solving the difference scheme. In [31], Sun
and Zhao also studied the nonlinear difference scheme proposed in [16,28,29]. They proved the
existence, uniqueness and second order convergence in [ norm (the discrete L* norm), and
proposed another interesting iterative algorithm for solving the nonlinear scheme. In [36], the
optimal error estimate in {* norm of the linearized difference scheme proposed in [17,34] was
established.

Recently, there has been growing interest in high-order compact methods for solving partial
differential equations, see, e.g., [4-7,9-12,18-23,26,40,43]. It was shown that the high-order
difference methods play an important role in the simulation of high frequency wave phenomena.
However, due to the difficulty caused by the compact difference on the nonlinear term, the
energy method can not be used directly on the compact difference scheme, and so there is
few proof of the unconditional error estimate in the [*°-norm of any a compact difference
scheme for nonlinear partial differential equations. In [37-39], without any restrictions on the
grid ratios, we established the optimal [*°-error estimates of some compact difference schemes
for the nonlinear Schrodinger equation (NLSE) with periodic boundary conditions where the
circulant coefficient matrix was used, but the technique can not be extended directly to NLSE
with Dirichlet boundary condition because the coefficient matrix is no longer circulant.

In this paper, we introduce an efficient compact difference scheme for the CNLS equation
on a finite domain Q = [Ly, Lo] with initial conditions

u(z,0) = (), v(z,0)=d¢(x), x€[L1,La], (1.3)
and homogeneous Dirichlet boundary conditions
U(Ll,t) = U(Lg,t) =0, ’U(Ll,t) = ’U(Lg,t) =0, t>0, (14)

where 1 (z) and ¢(x) are prescribed smooth functions vanishing at points © = L; and « = Ls.
The problem (1.1)-(1.4) has two kinds of standard conserved quantities, i.e., the total masses

Lo
M, () ;:/L |u(zx,t)|?de = M, (0), >0, (1.5)
Ly
Mo(t) ::/L lv(z,t)[>dz = My(0), t>0, (1.6)
and energy
Lo Lo
E(t) = S/L (19, (e, O + 2s0(a. 1)) — E/L (fuler. )1 + (e, )] )
—g - lu(x,t)|?|v(z, t)|>dz = E(0), t>0. (1.7)

Ly
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Z. Fei. et al. pointed out in [8] that the nonconservative schemes may easily show non-
linear blow-up, and they presented a new conservative linear difference scheme for nonlinear
Schrodinger equation. In [24], Li and Vu-Quoc also said, “...in some areas, the ability to preserve
some invariant properties of the original differential equation is a criterion to judge the success
of a numerical simulation.” However, the conservative difference schemes in existed references
almost are of second-order accuracy. To construct and analyze a stable finite difference scheme
which not only has high-order accuracy but also conserves the total masses and energy in the
discrete level is an important and interesting topic.

The remainder of this paper is organized as follows. In Section 2, we introduce some nota-
tions and important lemmas, then propose a compact finite difference scheme for the problem
(1.1)-(1.4) and state our main error estimate result. In Section 3, we prove that the proposed
scheme conserves the total masses and energy in the discrete level, and establish the optimal
[*°-norm error bound of the difference solutions by using a priori [°°-norm estimate of the
numerical solution. In Section 4, numerical results are reported to support our error estimate.
Finally, some concise conclusions are drawn in Section 5.

2. Finite Difference Scheme and Main Results

In this section, we introduce some notions and important lemmas, propose a compact finite
difference scheme for the problem (1.1)-(1.4), and state our main error estimate result.

Before giving the finite difference scheme, some notations are introduced. For a positive
integer N, choose time-step 7 = T'/N and denote time levels ¢, = nt, n=0,1,---, N, where
0 < T < Tmax with Thax the maximal existing time of the solution; choose mesh size h =
(L2 — L1)/J, with J a positive integer and denote grid points as «; = L1 + jh, j =0,1,--- ,J.

Denote (U i V]”) and (u?, v;l) be the numerical approximation, and respectively the exact
solution of (u(z;,t,),v(x;,t,)) for j=0,1,--- ,Jand n=0,1,--- , N, and denote (U™, V") €
C/*+1 x C7*! be the numerical solution and respectively (u™,v") € C/+! x C/*! be the exact

solution at time ¢ = t,. For a grid function v = {u;I |7 =0,1,---,J; n=0,1,--- ,N},
introduce the following finite difference operators:
5—}- ni]' n n 52 ni]' n 2™ n 6+ ni]' n+1 n
Uy =3 (ufpy —uf), dpuj = 72 (ufy = 2uf +ufy) s 6 uf = - (uj ™ —uf),
1 1
_ +1 -1 _
Spul = o (u;l —uj ), Apulf = 3 (u?fl +10u} + uyﬂ) )

We denote the space

and matrices

10 1 0 0
1 10 1 0
. 1 10 1 0
H=— ’
12
0 0 1 10 1
0 0 0 1 10

(J-1)x(J—1)
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2 -1 0 0 0
—1 2 -1 0 0
Lo 12 0
B=— )
h2 ..
0 o -1 2 -1
0 0 0o -1 2

(J—-1)x(J—-1)

and define discrete inner product and discrete norms over X; and X ,(L) as

ISES

J—1 ) J-1
(u0) = (@000 = h Y uj, ull = (w,0)?, Julla:= [ B Jul* |
j=1 j=1

— , Ik
llulloo := max Jusl, [[o7u]]

J—1 2

2 R
RY |6fus" ) L 16 ull = (ABa, a)g,
j=0

where f denotes the conjugate of f, A = H~!. Tt should be pointed out that ||6;}u|| and
[|[0ul|] are semi-norms of the discrete function u. Throughout the paper, we denote C' as
generic positive constant which may be dependent on the regularity of exact solution and the
given data but independent of the time step 7 and the grid size h, and we use the notation
w < v to present w < Cw.

Lemma 2.1. On the matrices H and B, we have the following results:
(a) The eigenvalues of the matrices H and B are

1 g 1 jm )
AHj = 12 (10 + 20057) , ABj = 72 (2 + 20057) , Jj=1,-,J-1 (2.1)
(b) They have the same eigenvectors, i.e.
kr . 2k J—1kr\ "
vk = (sin%,sin%,---,sin%) k=1, J—1. (2.2)

(c) AB= BA, AD = DA, where A= H™! and D? = B.

Proof. The results (a) and (b) can be verified directly. It follows from (b) that HB = BH
which implies AB = BA. Noticing that B is symmetric and positive definite, there exits
a symmetric and positive definite matrix D such that B = D2. Because D and D? have

same eigenvectors, the symmetric matrixes D and H have the same eigenvectors. This gives
DH = HD which implies DA = AD. d

Lemma 2.2. For any grid function u € Xy, we have

V6
2

105 ull < [0 ulll < <118 ull. (2.3)

Proof. Noticing A = H—!, we obtain that the biggest eigenvalue of the matrix A is )\;{1 1
and the smallest one is )\I_{,ll. This, together with the definition of the discrete inner product
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and semi-norms, gives
3
|16 u|||* = (ABa, 4)o = (ADa, D)o )\HJ 1(Dt, Dy < §(D11,D11)0
3, .. 3,0 4.2 +.112
= §(Bu,u>0 = 5 u, u) hz 05w = |(5 ul|?, (2.4)

otul||? = (ABu, 0)o = (ADw, D)o > A% (D, D)o > (D, D)o
T H,l
J—1
= (Bi, i)o = —(52u,u) = h Y |65 uy[* = |16, ul?, (2.5)
j=0

where Lemma 2.1 and the summation by parts formula were used. It follows from (2.4) and
(2.5) that

V6
185 ull < 1167 ulll < <~ 1oz wll.
This completes the proof. O
Lemma 2.3. For any grid function v € X, n=0,1,--- | N, we have
Re(AB(a" ™ +a"), 4" —a")o = [[|ou" T ||* — [[]6Fu"[[]*. (2.6)

Proof. By virtue of Lemma 2.1, we have

Re(ABi"+!,i")g = Re(ia™+!, BAu")y = Re(a™+!, ABi")g = Re(ABa", i"+')q.

This gives
Re<AB(An+1 +ﬁ”)7 ~n+1 >
= Re(ABa" ™ 4" — Re(ABG" 1, 4™ + Re(ABW", 4" )y — Re(ABG™, 0™
= Re(ABa"+, ")y — Re(ABa", ")y = |15} u* 1|2 = |15} u" | 2
This completes the proof. O

Lemma 2.4. ([27]) For any grid function u € Xy, there are
all S |0l Mull3e Sl |oful|,  ullo S J]05u]|- (2.7)
For computing the problem (1.1)-(1.4), we consider the following finite difference scheme:
. n k — 1 n n —
iAnd U7 + 02 (U7 + U2 ) S A (U712 4+ BIV2) (U~ + UpHY) ) =0,
j=1,--,J—1;n=1,-,N—1, (2.8)

. n k - 1 n n —
iARS V] +§5§<an 1+an+1) +§Ah<(|Vj I+ BIUM?) (v 1+an+1)) =0,
j=1,---,J—1;n=1,--- ,N—1, (2.9)
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A UP + 20 (U0 + UF) + 1 A ((U2P + UL + BIVIP + 81V} )
X (U4 UN) ) =0, =1, T,

SANTVY 4 55 (V4 V) + T An(((VPP 4 V)P + 809 + 10} )
x(Vj0+le)) —0, j=1,--,J—1,

U e Xp, V'eXp n=1,---,N.

The vector form of the scheme is

iHSU™ — gB (A”*1 + U"“) +HP"=0, n=1,---,N —1,
iHétV”—gB(”*lJrf/”“)+HQ":0, n=1,---,N—1,
iH6 TP — gB (UO + Ul) +HPO =0,
iHSVO — gB (vo + Vl) +HQ" =0,

UO = tha VO = Hh¢7
UrteX, V'eX,, n=01,---
where P™, Q" 1y, [1¢ € X;, with

2

. 1(|U;L|2 FBVE) (U U, G=1 T -1
Q@ =5 (vrE+popR) (vt v,

—_

Py = 2 (PP + (U} +BIVP R + BV ) (U + U} ), G=1e T -1,

—

Q) = (VP B+ IV + 8O+ BIU ) (VP + V), =1 T~ L,
(th)j = w(m]’)a (Hh¢)j = QS(xj)v j=1-,J-1L

The system (2.12)-(2.15) can be rewritten as the following equivalent form

iétU”—gAB (010" ) 4 Pr =0, m=1, N1,

0,V — ZAB (V"‘1+V”+1) 40" =0, n=1,-- . N—1,

i070° — SAB (UO + U1> + PO =0,
50— Fap (VO ; 1) 0 =

? t 2 + V +Q - 07
U° =y, VO =T,

Urte X, V'eX, n=0,1,---,N,
where A = H1.

1,---,N—

j=1,---,J-1, n=1,---,N —

63

L,

Before we state our main error estimate results, we make the following assumption on the

exact solution u(z,t) and v(z,t) of the problem (1.1)-(1.4):

(A) w,veC*([0,T];WO>(Q)) N C? ([0,T]; W»>(Q)) N C* ([0, T]; WH>(Q) N H(Q)) .
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Define the “error” functions e™, 0" € X}, as

el =u; —U}, 07 =0V j=0,1,---,J, n=0,1,--- N. (2.26)

Then for the compact difference scheme (2.8)-(2.11), we have

Theorem 2.1. Under the assumptions (A), there exist ho > 0 and 79 > 0 sufficiently small,
when 0 < h < hg and 0 < 7 < 719, we have the following optimal error estimates for the scheme
(2.8)-(2.13)

le™| S ht+ 72, 107 Sh*+ 72, 165l S ht+ 72, (16567 S ht + 77,
||e”||oo,§h4+7 ||9”||Oo<h4+7 n=1 N. (2.27)

~ T

3. Error Estimate

In this section, we prove that the proposed scheme not only has high order accuracy but
also conserves the total masses and energy in the discrete level.
3.1. Discrete conservation laws

Corresponding to the conservation laws (1.5),(1.6) and (1.7) preserved by the continuous
problem (1.1)-(1.4), the scheme (2.8)-(2.11) conserves the total mass and energy in the discrete
level.

Lemma 3.1. The scheme (2.8)-(2.11) satisfies the following conservation laws

In:: ||Un||2EM10a n:0,1,~~~ 7Na (31)
M2n:||vn||2EMgv n:()a]-a"'aNa

mn k n mn mn n
B = 5(|||6;U 112 + 185U 4+ 155V IP + 163V +1|||2>

7% <|Un| |Un+1|2+|vn| |Vn+1|2)
j=1
J—

- —hz (|U" PIVIH? + |U"+1|2|V”|2) =FE n=0,1,---,N—1. (3.3)
Jj=1

J—1

- k 1 -

B = 5 (0 P+ 116V IR) - 5 S (103104 IV + 280021 ) = B 30
=1

Here M, M3, and E™ are the discrete total “mass” and “energy”, respectively.

Proof. Computing the discrete inner product of (2.22) with U° + U' over X)) and then
taking the imaginary part, we obtain

1 1112 02 k 70 rl 0 rl »0 770 rl _
T(||U 12— [jUY| 2Im<AB(U +UY, 00+ U >O+Im<P NICEN i) >O_o. (3.5)
This, together with

m<AB(UO +UY,0° + U1>0 0, Im <P0, U0+ U1>O —0,
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gives
1
- Ul 2 UO 2 =0
— (I = [U°)?) = o,
which yields
UM = [[U°]%. (3.6)
Similarly, we obtain
IV =[]V (3.7)

Computing the discrete inner product of (2.20) with Un=1 4+ U+ over X} and then taking the
imaginary part, we obtain
1 k . N . .
2z (10 =0 ) = Slm (AB@" 4 070,04 O )
= 0,

+Im<]5”,f]”_1+f]"+1> n=1,---,N—1. (3.8)

0
This, together with

o (AB@ + 0,07 4 071 0, Im (P70 4 07H) o,

0 0

gives
1 n n—
o (TP = U"?) =0, n=1,-- N-1L (3.9)

This, together with (3.6), gives (3.1). Similarly, we can obtain (3.2).
Computing the discrete inner product of (2.20) with U™ —U"~! over X} and then taking
the real part, we obtain
k
2

Similarly, we obtain

Re <AB(U”_1 LY, O - U”—1>O + Re <15", Ot — ﬁ”—1>0 =0. (3.10)

k Srn—1 Srn+1 Srn41 Srn—1 An Yrn+1 Srn—1 _
2Re<AB(V NN 1% >O+Re<Q,V 1% >O_o. (3.11)

Adding (3.11) to (3.10), using Lemma 2.3 and noticing that

Re (P07 —0"1) 4 Re (Q",VH V1)

0
1 J-1 ﬂ J—1
n 1 —12 n|2 1 —1
= §hz |Uj |2 (|an+ |2 _ |an | ) + §hz |ij | (|an+ |2 _ |U]n |2)
Jj=1 j=1
1 J-1 B J—1
5h YAV (VR = (VTR 4 Sh Y O (V= V)
j=1 j=1
_ lhf (|Un|2|Un+1|2 4 |Vn|2|vn+1|2 +ﬂ|vn|2|Un+1|2 +5|Un|2|vn+1|2)
~ 9 J J J J J J J J
j=1
1 = n—112(7n|2 n—112y,n|2 n—11217m |2 n—1121y/n|2
*§hZ(IUj PIOF P+ VP PVEE + BIVE O P + BIUF PV
j=1

we can obtain (3.3). Similarly, we can obtain (3.4). O
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Lemma 3.2. The difference solution of the scheme (2.8)-(2.11) satisfies
orff<c, Vi< (18 Um < C, Jlgfv]] < C,

U |loo <C, [[V"]o <C, n=0,1,---,N. (3.12)
Proof. Tt follows from (3.1)-(3.2) that
\wrj<c, [v*<¢, n=0,1,---,N. (3.13)
Utilizing the Cauchy-Schwarz inequality, discrete Sobolev inequality and the estimate (3.13),
we obtain
J—1 1
YRRV < S (0 + v, (3.14)
j=1
103 < U015 < ClIU™E

<elloFUn* + Ce)|U]? < ellgfUn|)* + C, (3.15)

where ¢ is an arbitrary small number. Noticing (3.14)-(3.15), we obtain from (3.3), (3.4) and
(3.13) that

loyur<c, |lgfvr||<C, n=1,---,N. (3.16)
By virtue of lemma 2.3, we obtain from (3.13) and (3.16) that

U™ loe <C, [[VM|loo <O, m=1,---,N. (3.17)
This completes the proof. O

3.2. Error estimate

Define the local truncation error (n™, &™) € Xp, x X}, of the conservative scheme (2.8)-(2.11)

as
k
Aunj = iAnGru + 267 (uf ™+ uf ) + A, (3.18)
- n k - n
An&l = i ARdv} + 55926 (v} 1+ U;-H_l) + Angj,
j=1,---,J—1,n=1,--- ,N—1, (3.19)
) k )
Apnl) =i Apduf + 553; (W) +uf) + Appd, =1, ,J—1, (3.20)
. k .
Angj = iAnd{ v) + 507 (v +0j) + Angg, G=1eee T 1, (3.21)
u’ =Tpep, ° =T, j=0,1,---,J (3.22)
u™ € Xy, v e Xy, n=1,---,N, (3.23)

where p™, ¢" € X} with

o = 5 (124 81 ) (g ),

0 = 5 (R P+ 8l ?) (o 4 0f ™), =1 -1 =1 N
P = 2 (W9 b7 + B + et ?) (2 + 3,

@ = 7 (1007 +10b? + BdP + Bud ) (9 +b), =1, T -1
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The system (3.18)-(3.23) can be rewritten as the following equivalent vector form:

64" — gAB (@t +a"t) +p"=n", n=1,--- ,N—1, (3.24)
mt@”ngB ("ot 4t =€, n=1,-- ,N -1, (3.25)
600 — gAB (@°+a') +p° =7°, (3.26)
i0; 0 — gAB (00 +0") +¢° =€, (3.27)
u® =10, 00 =100, (3.28)
u" e Xy, vV"e€X n=0,1,2--- N, (3.29)

On the truncations ™ and &7, using Taylor’s expansion, we obtain

Lemma 3.3. (Local truncation error) Under assumption (A), there are

||77n||00§7_2+h4a ||£n||00§7—2+h47 n=0,1,---,N -1, (3'30)
0™ oo S T2+ R, (1066 |0 ST24+ A, n=1,--- ,N—1. (3.31)

Based on the lemmas above, we are now ready to prove the main Theorem 2.1.

Proof. Theorem 2.1: Subtracting (2.20)-(2.25) from (3.24)-(3.29) gives the following “error”
equations:

k e
i0,6" = SAB (& &) 15 =i, (3.32)
. k . N ) .
0"~ 5 AB (9”*1 + 0"“) v i =ér p=1, N1, (3.33)
k ~0
i e = SAB (" +é') +p =1, (3.34)
A k A A 20 2
i670" — SAB (90 + 01) v =£0 (3.35)
=0, 6°=0, (3.36)
e"eXy,, 0meX, n=0,1,2---,N, (3.37)
where
ff)ﬂ:ﬁnfpna ('Ajﬂ:qnién, ’Il:O,l,"',N*].. (338)

Computing the discrete inner product of (3.34) with é! over X}, then taking the imaginary
part, we obtain

112 A0 NSt

il I < , > — Tm (7°, &) . 3.39

—lle!l® +Tm (p ") =Im (i’ e), (3-39)
Using Cauchy-Schwarz inequality and Lemma 3.2, we obtain

[(72et) | < (et + 1181). (3.40)
(%, 5)o] < llet* + [Pl (3.41)
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Plugging (3.40) and (3.41) into (3.39) yields
et 12 < o (N2 + 116112 + 1’| 2 (3.42)
Similarly, we can obtain
16112 < O (Jle!I12 + 116"]12) + 711€°] 2 (3.43)
Adding (3.43) to (3.42) yields
e 12 + 116712 < Cr (1112 + 16'112) + 7 (1In°12 + [1€°)1?). (3.44)

If the time step 7 is chosen to be small enough such that 1 — C7 > 0, we obtain from (3.44)
and Lemma 3.3 that

2
12+ l16")12 < 7 (72 + 7). (3.45)
This implies
]+ 16* ] S V(2 + hY) S 7+ b, (3.46)

Computing the discrete inner product of (3.34) with —é! over Xg, and taking the real part
yield

Sl et + Re (57 6) = Re (P, e"), . (3.47)
This, together with (3.40), (3.41), (3.46) and Lemma 3.3, gives
5P < Nt + 161 + 1) < (7 4+ mt). (3.48)
Similarly, we can obtain
1561 S 11! 12+ 181 + 11”1 < (7 + 1) (3.49)

It follows from (3.48), (3.49) and Lemma 2.2 that

16501 + |6 et|| S 72 + h*. (3.50)
Computing the discrete inner product of (3.32) with é"*! + é"~! over X,?, and taking the
imaginary part give

1 n n— A n— AN n An— ~n
5= (e 17 = le 1||2)+Im<p et te +1>O:Im<n ,enhpently L (3.51)

Using Cauchy-Schwarz inequality and Lemma 3.2, we obtain

(5" et e ) [ <ol IR+ len 1 + e lP + l0)17). (3:52)

A An— N n n— 1 n
(i et e oL < Hlem P+ e HIE + Sl 1% (3.53)
Plugging (3.52) and (3.53) into (3.51) yields

e 2 = et < Cr(llem 2 4+ lenl + llen |2+ 16712) + 7l (3.54)
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Similarly, we obtain
107> = [l H* < CT(||€”||2 + " + 11671 + ||9”*1||2) +llg"|[%. (3.55)
Adding (3.54) to (3.55) and denoting
Fr= e+ 1107 + eI + [lom 1%,

we obtain
Fr—rr =t <er (P + Y+ (I + 1€ - (3.56)
This, together with (3.50), Gronwall’s inequality and Lemma 3.3, gives
S [+ hh) (3.57)
This implies
e[+ 0" S 7> +h*, n=1,---,N. (3.58)

Computing the discrete inner product of (3.32) with —276;é™ over X 2, and taking the real part
lead to

k _ ano . .
S(IaEe I = 1 emHI[2) = 27Re (5, 0" ) = —2rRe (7", 016"y, (3.59)

where Lemma 2.3 was used. Summing up (3.59) for the superscript n for 1 to m and then
replacing m by n yields

o eI +l1aF el
1 o 4 &
_ + 1112 N/ Al oAl
= [ll5ze +ET;Re<p,ate >OET;Re<n,ate o (3.60)

Noticing that

k R
Biel = —ig AB(E 4 et + i — it (3.61)
o k o o ~ N
5l = —iZABO' + 0 + i — i, (3.62)
we have
Al oo . PSP Y,
Re(p ,8:é 7Re p, i— AB( )+ ip —in
0
_k 2 A1 | alt1 Ay
= Im <p JAB(E -+ ¢ )>0 Im <p 7 > , (3.63)
where Im(f) denotes the imaginary part of f. Noticing B = D?, DA = AD, 5+U" =4 ay —
oFe}, and [[e"]|oo < |[u"|[oo + [[U™||oo < O, we have

‘<p AB (8171 4 &) > }<AHJ 1‘@[,3( +el+1)>0‘

h25+ +e)
Slate )7+ [ake||” + [l + IIWIF
S e =17+ [l[axe! ||+ [llaF eI + [lleF '] (3.64)

2
i (5 2") | Nl P+ Nl e+ o+ flt )P s (0 +72) s (39)

_ ~l
:AH}J—IKpa(Si( +el+1 > ‘7)‘HJ 1
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where (3.58), Lemma 2.2, Lemma 2.4, Lemma 3.2 and Lemma 3.3 were used. For the third
term of (3.60), we have

TiRew,(Stél)O
Z

n—1 n—1
llln 2+ 1"+ (" ||2+TZ|I5m||2+||61||2+||6"||2+||e"+1||2+TZ|I@IIIQ]
4

<

Ty (i, b
=1

n—1 n—1
>+ I~ |2+|n?|2+rZ|6tn§|2+Ie}l2+|e?|2+|e?“|2+rZ|e§|2]
=2 =2

4>|H

/"\ > =

1=2 1=2
< (3.66)
where Lemma 3.3 and (3.58) were used. Plugging (3.63)-(3.66) into (3.60) gives
|16 em+ )12 < (h4+72)2 n=1,---,N—1. (3.67)
This, together with Lemma 2.2, gives
l5fe"|| Sht+ 7%, n=2,--- N. (3.68)
Similarly, we obtain
656" Skt +7°, n=2,-- N. (3.69)
It follows from (3.50), (3.58), (3.69), Lemma 2.4 and Sobolev inequality that
lle™ oo +10"|0 Sh*+ 7%, n=1,--- N. (3.70)
This completes the proof. U

Remark 3.1. The compact difference scheme can be used to numerically solve the periodic
boundary initial value problem by making some minor changes on the spatial grid (see [22]),
and the corresponding error estimate in Theorem 2.1 is also valid.

Remark 3.2. Though the proof of the convergence can not be directly extended to the high
dimensions, but under some reasonable assumptions on the grid ratio and using the analysis
methods used in [2,3], we can prove that the global error of the compact difference method
for the high-dimensional coupled GP equations is still fourth-order in spatial directions and
second-order in the temporal direction.

4. Approximation Property

In this section, we report numerical results of the compact difference scheme (2.8)-(2.11) of
the CNLS equation (1.1)-(1.4) to test the error estimate and the conservation laws.
On the whole real line, the CNLSE has the following exact solution

(e, t) = \/%sech (x/ﬁ(x - Vt)) exp (m; — (”; - a> t) . zeR, t>0, (41)
(i, t) = \/%sech (\/ﬁ(x - mf)> exp (m; — (V; - a> t> , zeR, t>0, (42)
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where a, v are constants. It is easy to see that u(z, t) and v(z, t) decay to zero rapidly as |x| — oo
for a fixed ¢, so numerically we can solve the CNLS equation in a finite domain (L, Lo), where
—L1,Ls > 1, i.e., we just only solve the initial-boundary value problem (1.1)-(1.4) with

P(x) =4/ 12fﬁsech(\/ﬁz)exp(iz/z), x € [L1, Lo, (4.3)

d(z) = —4/ 12fﬂsech(\/%x)exp(il/x), x € [Lq, La. (4.4)

The parameters used in the test are chosen as

Li=-20, Ly=060, a=1, v=1, k=1/2, B=2/3. (4.5)
Denote
1Be(h Dl = mas, " (u)loes 1B D)l = mas, [16°(h,7)
orderl = log (||Ee(h1,7)||e / || Ee(h2, T)||c) / log (h1/h2),
order2 = log (||E0(h1, 7)l|oo / [[EO(h2,T)||s0) / log (h1/h2),
order3 = log (||Ee(h, T1)||oo / || Ee(h, 72)||0o) / log (T1/72),
orderd = log (|| EO(h, 71)|[ec / |[EO(h, T2)|o0) / log (11/72),

where ||€"(h, T)||oo and ||0"(h, T)||cc denote the maximum norm error of U and V, respectively,
at t,, = nt with the grid size h and time step 7.

Table 4.1: Maximum norm errors of u and v computed by the proposed scheme at ¢t = 1 with 7 = 0.0001.

h  ||Ee(h,T)||cc Orderl [|EO(h,T)||looc  Order2
0.4 1.8302e-002 —_— 1.8306e-002 —_—
0.2 1.0608e-003 4.11 1.0609e-003 4.11
0.1 6.4405e-005 4.04 6.4405e-005 4.04

0.05  4.0115e-006 4.01 4.0115e-006 4.01

The point-wise errors and convergence order of the proposed scheme, under different values
of grid ratios A = 7/h?, are listed in Table 4.1 and Table 4.2. It is easy to see that the order
of convergence in [°°-norm almost equals to 4 in the spatial direction and 2 in the temporal
direction, which supports Theorem 2.1. The values of total masses and energy in the discrete
level are listed in Table 4.3. We see from Table 4.3 that the compact difference scheme conserves
the discrete masses and energy very well, which supports Lemma 3.1.

Table 4.2: Maximum norm errors of u and v computed by the proposed scheme at t = 10 with h = 0.02.

T A [|[Ee(h, T)||loo Order3 [|[EO(h,T)|looc Orderd
0.1 250 1.40706e-002 — 1.40706e-002 —
0.05 125 3.2237e-003 2.13 3.2237e-003 2.13
0.025 62.5 8.1239e-004 1.99 8.1239e-004 1.99
0.0125 31.25  2.0456e-005 1.99 2.0456e-005 1.99
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Table 4.3: Discrete masses and energy computed by the proposed scheme with A = 0.1, 7 = 0.05.

tn QT Q3 E"

0 1.697056274847714  1.697056274847715  0.282824663263791
2 1.697056274847716  1.697056274847717  0.282824663263803
4 1.697056274847721  1.697056274847723  0.282824663263802
6 1.697056274847725  1.697056274847726  0.282824663263814
8  1.697056274847730  1.697056274847730  0.282824663263815
10 1.697056274847732  1.697056274847734  0.282824663263821

5.

Conclusion

In general, in order to establish error estimates of finite difference schemes for nonlinear
partial differential equations, one always use the standard energy method on the finite difference
schemes. However, due to the difficulty caused by the compact operator A, the classical
method is no longer valid for analyzing the compact difference scheme. In this paper, in order
to overcome the difficulty, we transform the difference scheme into an special and equivalent
vector form, then use the energy method on the equivalent system to prove the conserved masses
and energy in the discrete level, and we obtain the optimal point-wise error estimate without
any restriction on the grid ratio.

Though the compact finite difference scheme can be extended directly to the high-dimensional
case, the error estimate is not valid in high dimensions. Because we can’t obtain the error bound
in the discrete H2-norm, but only in the discrete H'-norm, we know from the embedding theory
that it is not enough to get the error bound in the [*°-norm. The unconditional fourth-order
convergence in the discrete H'-norm of finite difference schemes for CNLS equation in 2-D and
3-D is under considering, the future work is to get the error bound in [*°-norm.
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